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Accumulation of somatic mutations and genomic instability are hallmarks of both aging and
cancer. Epigenetic alterations occur across cell types and tissues with advancing age.
DNA methylation-based estimates of biologic age can predict important age-related
outcomes, including risk of frailty and mortality, and most recently have been shown to
be associated with risk of developing cancer. In this mini-review, we examine pathways
known to exhibit altered methylation in aging tissues, pre-malignant lesions, and tumors
and review methodologies of epigenetic clocks that reliably predict cancer risk, including
those derived from methylation studies of peripheral blood, as well as those methylation
levels from within the tissues at high risk of cancer.
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INTRODUCTION

Cancer incidence increases exponentially with advancing age, beginning at the midpoint of the
lifespan in most mammalian species (Campisi and Yaswen, 20092009). Somatic mutations
accumulate within cells with chronic cell cycling (Moskalev et al., 2013), leading to genomic
instability, a hallmark of both aging and cancer (Hanahan and Weinberg, 2011; López-Otín et al.,
2013). Over the past decade, epigenetic alterations that occur with advancing age across cell types and
tissues have been identified (Teschendorff et al., 2010; Horvath, 2013), and methylation markers at
select sites have been shown to reliably predict chronologic age (Teschendorff et al., 2010; Bocklandt
et al., 2011; Hannum et al., 2013; Horvath, 2013). Epigenetic clocks have been further shown to
predict age-related diseases and outcomes, including frailty and mortality, suggesting that they are
reliable markers of biologic aging (Chen et al., 2016; Levine et al., 2018; Lu et al., 2019a). Importantly,
methylation age has recently also been associated with cancer risk (Levine et al., 2015; Lu et al., 2019a;
Yu et al., 2020). In this article, we will review studies of global methylation alterations that occur with
advancing age and cancer risk, compare the development and features of first- and second-
generation epigenetic clocks, as well as the epigenetic pacemaker clock and other methods, and
illustrate their ability to predict risk of incident cancer.

PATHWAYS WITH ABERRANT METHYLATION IN MALIGNANT
TISSUES

DNA methylation is thought to play an important role in the etiology of complex traits, including
cancer (Esteller, 2008; Petronis, 2010). The importance of DNA methylation in carcinogenesis was

Edited by:
Christine Nardini,

National Research Council (CNR), Italy

Reviewed by:
Claudia Sala,

University of Bologna, Italy

*Correspondence:
Mary E. Sehl

msehl@mednet.ucla.edu

Specialty section:
This article was submitted to

Genomic Analysis,
a section of the journal

Frontiers in Bioinformatics

Received: 03 January 2022
Accepted: 21 March 2022
Published: 02 June 2022

Citation:
Chen L, Ganz PA and Sehl ME (2022)
DNA Methylation, Aging, and Cancer

Risk: A Mini-Review.
Front. Bioinform. 2:847629.

doi: 10.3389/fbinf.2022.847629

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 8476291

MINI REVIEW
published: 02 June 2022

doi: 10.3389/fbinf.2022.847629

http://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2022.847629&domain=pdf&date_stamp=2022-06-02
https://www.frontiersin.org/articles/10.3389/fbinf.2022.847629/full
https://www.frontiersin.org/articles/10.3389/fbinf.2022.847629/full
http://creativecommons.org/licenses/by/4.0/
mailto:msehl@mednet.ucla.edu
https://doi.org/10.3389/fbinf.2022.847629
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2022.847629


recognized with the discovery of numerous hypermethylated
promoters of tumor suppressor genes in tumor samples, as
well as findings confirming the role of DNA methylation in
facilitating DNA damage, e.g., in the silencing of mismatch
repair genes (Jones and Laird, 1999). Hundreds of genes,
including key tumor suppressor genes, are hypermethylated at
promoter CpG islands, and are either transcriptionally silenced or
blocked from normal induction, in nearly every patient’s cancer
compared with normal cell counterparts (Vaissière et al., 2009;
Baylin and Jones, 2016; Xie et al., 2018). The similarity in
epigenetic alterations that occur during tumorigenesis and
senescence raises the question of whether programmatic
changes that occur during senescence play a role in
carcinogenesis. Though the promoter hypermethylation events
in malignant transformation appear to arise independently of
cellular senescence (Xie et al., 2018), further exploration is needed
to identify a relationship between cancer risk and epigenetic
events occurring in development and aging.

AGE-DEPENDENT HYPERMETHYLATION
OF POLYCOMB GROUP TARGET
PROTEINS
Polycomb group proteins repress genes required for stem cell
differentiation, and targets of polycomb group proteins (PCGTs)
are repressed in human embryonic and adult stem cells through
reversible chromatin modifications (Lee et al., 2006). PCGTs are
12-fold more likely to be methylated in cancer tissues than non-
PCGTs, suggesting a mechanism of carcinogenesis where cells are
locked in an un-differentiated state of self-renewal and
predisposed to malignant transformation. In an analysis of
whole blood samples from 261 postmenopausal women,
Teschendorff demonstrated that PCGT CpGs are
hypermethylated with advancing age, and this methylation
signature was validated in seven independent data sets
encompassing 900 samples, from multiple cell types and
tissues including blood, ovarian cancer, cervix, and marrow
mesenchymal stem and stromal cells (Teschendorff et al., 2010).

VARIABILITY IN AGE-RELATED
METHYLATION PATTERNS IN
PREMALIGNANT LESIONS
Methylation markers drift differentially with age between normal
and premalignant tissues. In pre-malignant dysplastic tissues,
age-PCGT CpGs were more highly methylated than in normal
samples, suggesting that age may contribute to carcinogenesis by
irreversibly silencing genes that are suppressed in stem cells
(Teschendorff et al., 2010). Importantly, in dysplastic tissues,
differential variability in methylation identifies cancer risk
markers more reliably than differences in mean methylation
(Teschendorff and Widschwendter, 2012). Differentially
variable features identified in precursor non-invasive lesions
exhibit significantly increased enrichment for developmental
genes compared with differentially methylated sites

(Teschendorff and Widschwendter, 2012). In studies of
normal and pre-malignant esophageal tissues, differential
methylomic drift occurs in Barrett’s esophagus (BE) relative to
normal squamous tissue (Curtius et al., 2016). Using a Bayesian
model incorporating longitudinal methylomic drift rates, patient
age, and methylation data from BE and normal squamous tissue,
Curtius et al. have developed a molecular clock to reliably
estimate patient-specific BE onset times, providing information
about how long an individual has lived with the precursor lesion
(Curtius et al., 2016).

DNA METHYLATION-BASED ESTIMATES
OF AGE

Table 1 summarizes 16 epigenetic clocks that have been developed
over the past decade. These clocks reliably estimate chronologic age
based onmethylation levels at select CpGs (Di Lena et al., 2021). In an
early work analyzing methylation patterns in saliva associated with
advancing age, lasso penalized regression was used to screen for the
top predictors of age, and a leave-one-out regression analysis was
used to form an accurate epigenetic predictor of age (Bocklandt et al.,
2011). Subsequently, Horvath developed a multi-tissue epigenetic
clock across 51 healthy tissues and cell types, that reliably estimated
methylation age across cell types and tissues (Horvath, 2013). This
epigenetic clock was found to be close to zero for embryonic and
induced pluripotent stem cells, applied across species to chimpanzees
(Horvath, 2013), and importantly was later found to be accelerated in
disease states (Horvath et al., 2014; Rickabaugh et al., 2015) and
predictive of frailty and mortality (Chen et al., 2016). This clock
utilizes elastic net regression on a transformed continuous,
monotonically increasing function of age to select a set of CpGs
whoseweighted average reliably predict age across a wide spectrumof
tissues and cell types. Elastic net regression linearly combines the l1
(lasso) and l2 (ridge) penalty terms. While the lasso tends to select
only one variable from a group of highly correlated variables, the
quadratic expression elevates the loss function toward being convex,
allowing a larger number of variables to be included when there is a
higher correlation of variables and higher grouping effect. To avoid
low efficiency in predictability and high bias from subjecting
coefficients to two types of shrinkages, coefficients are rescaled by
multiplying them by (1 + l2). TheHannum clock similarly uses elastic
net regression to estimate chronologic age from methylation levels at
71 CpGs in peripheral blood (Hannum et al., 2013). Blood-based
epigenetic age measures Intrinsic and Extrinsic epigenetic age
incorporate information on cell composition (imputed from
methylation data at additional sites) to estimate age. While
Intrinsic epigenetic age is independent of changes in cell
distribution that occur with advancing age, Extrinsic epigenetic
age is positively and negatively correlated with estimated
proportions of naïve and senescent cytotoxic T lymphocytes.
More recently, second generation clocks have been developed,
including Phenotypic age (Levine et al., 2018) and Grim age (Lu
et al., 2019a) which are both more closely associated with lifespan,
and utilize a two-step process to estimate biologic age. In the
development of the Phenotypic age clock, first 1) Cox penalized
regression is used to identify a set of biomarkers that best predict
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aging-related mortality, and next 2) a mortality score based on the
regression coefficients from step 1 is converted into units of years and
the resultant phenotypic age estimate is regressed on DNA
methylation using an elastic net regression analysis. Grim age
clock also involves a two-step process in which 1) methylation
data is used to estimate smoking pack-years and levels of plasma
proteins known to be associated with morbidity or mortality, and 2)
time-to-death is regressed on these DNA methylation-based
surrogate biomarkers, resulting in a mortality risk estimate that is
transformed into units of years. The Skin and Blood clock is a robust
estimator of methylation age in fibroblasts, keratinocytes, buccal cells,
endothelial cells, lymphoblastoid cells, skin, blood, and saliva, andwas
developed when it was found that other clocks performed poorly in
human fibroblasts and other skin cells (Horvath et al., 2018). A DNA
methylation-based estimate of telomere length, DNAmTL, is a
measure of cell replicative history, and outperforms measured
leukocyte telomere length in predicting time to death and age-
related pathologies (Lu et al., 2019b). Stubbs et al. developed an
accurate multi-tissue age estimator in mice, with CpGs from
pathways involved in morphogenesis and development (Stubbs
et al., 2017). Additional clocks have been developed to more
accurately predict age in human cortical tissue (Shireby et al.,
2020), skeletal muscle (Voisin et al., 2020), and pediatric buccal
epithelial (McEwen et al., 2020) tissues. Finally, epigenetic clocks have
been developed to predict gestation age using methylation levels of
cells from umbilical cord and placental tissues (Bohlin et al., 2016;
Knight et al., 2016; Mayne et al., 2017; Lee et al., 2019).

Despite high accuracy, epigenetic clocks do not permit
characterization of the non-linear epigenetic aging patterns that
occur across the entire lifespan. Recently, a new method was
developed to model epigenetic changes with age while accounting
for the nonlinearities of this relationship that occur with advancing
age (Snir et al., 2019). This integrated framework, based on
evolutionary models, addresses the acceleration and deceleration

of epigenetic changes that occur over time, and has been applied
to methylation data from broad age ranges and multiple tissue types.
The Epigenetic Pacemaker (EPM) employs a fast conditional
expectation maximization algorithm to model epigenetic states
associated with a phenotype of interest, such as aging and type 2
diabetes mellitus. In this algorithm, each methylation site is assigned
an independent rate of change and starting methylation value, while
each individual is assigned an epigenetic state. Given i methylation
sites and j individuals, a single methylation site can be described as:

m̂ij � m0
i + risj + ∈ij

Where m̂ij is the observed methylation value, m0
i is the initial

methylation value, ri is the rate of change, sj is the epigenetic
state, and ∈ij is a normally distributed error term. The goal of the
EPM is to find the optimal values of the initial methylation value,
rate of change, and epigenetic state to minimize the error between
the predicted and observed methylation values across a system of
methylation sites. The epigenetic state is then updated through
each iteration of the EPM to minimize the error across the
observed epigenetic landscape. Because the epigenetic state is
updated while fitting the EPM, the assumption of linearity
between the methylation values and the phenotypic trait of
interest is relaxed. In addition to examining age as an
outcome of interest, these models can be employed to study
additional phenotypes of interest, including risk of cancer.

EPIGENETIC CLOCKS PREDICTING RISK
OF CANCER

Older tissues are at greater risk of malignant transformation
because of acquired mutations that occur in the setting of
prolonged epithelial proliferation. Several recent studies have
demonstrated that accelerated aging in peripheral blood

TABLE 1 | Features of epigenetic clocks.

Clock Methods # CpGs Pathways Special Features Ref

Pan-tissue Elastic net 353 Survival, apoptosis, self renewal Reliable across cell types and tissues 5
Hannum Elastic net 71 Cell cycle regulation, DNA repair, iron

homeostasis
Widely used in epidemiologic studies 8

Phenotypic Cox penalized regression +
elastic net

513 JAK-STAT cascade, tumor necrosis, NFkB,
lipopolysaccharide

Strong predictor of healthspan and lifespan 11

Grim Cox penalized regression +
elastic net

1,030 MHC II, cytokine signaling, protein
sumoylation

Strongest predictor of mortality 10

EpiTOC Informed selection 385 Stem cell renewal and differentiation Estimated rate of stem cell division 37
Skin and Blood Elastic net 391 Survival, apoptosis, selfrenewal, cell cycle

regulation, DNA repair
Most accurate predictor of age in skin and
fibroblasts

25

Epigenetic
pacemaker

Conditional expectation
maximization

varies variable Accounts for nonlinearities in aging rates 27

DNAmTL Elastic net 140 Cadherin, cell signaling Marker of cell replicative history 26
Mouse clock Elastic net 329 Development, morphogenesis Multi-tissue predictor in mice 28
Human cortex
clock

Elastic net 347 None reported Accurate in human cerebral cortex 29

Skeletal muscle
clock

Elastic net 200 None reported Accurate in human skeletal muscle 30

PedBE clock Elastic net 94 None reported Accurate in buccal cells of children 31
Gestational age
clocks

Elastic net, lasso 148, 62, 58,
5,474

Cell aging and senescence Umbilical cord blood and placenta at birth;
predictive of gestational age

32–35
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predicts subsequent development of cancer (Levine et al., 2015;
Kresovich et al., 2019a; Zheng et al., 2016; Perna et al., 2016;
Durso et al., 2017; Kresovich et al., 2019b). Table 2 summarizes
epigenetic clocks that have demonstrated association with cancer
risk. Pan-tissue clock acceleration in peripheral blood is
associated with later development of lung cancer (Levine et al.,
2015), breast cancer (Durso et al., 2017), and male colon cancer
(Durso et al., 2017). Grim age, a strong predictor of mortality, is
associated with time to any cancer (Lu et al., 2019a). Intrinsic
epigenetic age acceleration in peripheral blood is associated with
risk of post-menopausal breast cancer, with epigenetic
acceleration detected up to 10 years prior to cancer diagnosis
(Ambatipudi et al., 2017). In a large study examining methylation
in 2,764 cancer free women in the Sister Study, 1,566 of whom
subsequently developed breast cancer after an average of 6 years,
acceleration of Pan-tissue age, Hannum age, and Phenotypic age
each predicted risk of subsequent breast cancer (Kresovich et al.,
2019b). In this study, Grim age was associated with invasive
breast cancer in post-menopausal women (Kresovich et al.,
2019a). Using data from seven nested case-control studies of
peripheral blood DNA methylation and colorectal, gastric,
kidney, lung, prostate, and urothelial cancer, and B cell
lymphoma from the Melbourne Collaborative Cohort Study,
epigenetic aging was associated with both risk of cancer and
increased risk of death after cancer diagnosis (Dugué et al., 2018).
A five-year increase in age acceleration was associated with a
4–9% increase in risk of cancer, and a 2–5% increased risk of
death following cancer diagnosis (Dugué et al., 2018).

In addition to the associations found between cancer risk and
epigenetic aging in peripheral blood, several studies have examined
age-related epigenetic changes in tissues that subsequently develop
cancer. Epigenetic aging is associated with cancer risk (in at-risk
tissues) and prognosis (in cancerous tissues). For example, Pan-
tissue age acceleration in colon cancer samples has been linked with
colon cancer molecular subtypes and improved prognosis
prediction because it is linked with overall survival (Zheng
et al., 2019). In breast tumor samples, methylation studies
within the breast of very young women with more aggressive
breast cancer exhibit accelerated DNA methylation age compared
with breast cancer in older counterparts, suggesting a role of
accelerated epigenetic aging in breast cancer risk (Oltra et al.,
2019). In addition, methylation-based markers of cell replication
have been associated with cancer risk, including the epigenetic
mitotic clock (EpiTOC) which approximates the rate of stem cell

division in normal tissues by focusing on promoter CpG sites that
localize to PCGT genes, and has been shown to be accelerated in
precancerous lesions and cancer (Yang et al., 2016). Furthermore,
Youn et al. demonstrated that quantitative estimates of mitotic age
(total number of cell divisions) of a tissue, derived using the
stochastic replication errors accumulated during cell divisions
predict shorter disease associated survival in thirteen cancer
types studied (Youn and Wang, 2018). In healthy breast tissue,
methylation of tumor suppressor genes APC (Lewis et al., 2005;
Euhus et al., 2008) and RASSF1 (Lewis et al., 2005) is associated
with breast cancer risk as measured by the Gail model risk score. In
a recent study comparing disease-free breast tissue cores from
women at high versus average risk for breast cancer using the
Tyrer-Cuzick model, 1698 DNA methylation aberrations were
identified in high-risk breast tissues, from pathways involving
cell adhesion, ErbB, and protein kinase A signaling (Marino
et al., 2021). A global study of age-related DNA methylation
changes in healthy breast demonstrated that increased
methylation primarily occurs at enhancer regions of binding
sites for chromatin remodeling genes (Johnson et al., 2017).
Epigenetic age of healthy breast is elevated above chronologic
age and appears older with other tissues in the body (Horvath,
2013; Sehl et al., 2017), including matched peripheral blood
samples from healthy breast tissue donors (Sehl et al., 2017).
Estrogen stimulation and chronic cell cycling are thought to
drive accelerated aging in breast tissue (Pike et al., 1983; Pike
et al., 1993). Risk factors for breast cancer that relate to lifetime
estrogen exposure, including earlier menarche and elevated body
mass index, are associated with accelerated Grim age in healthy
breast tissue (Sehl et al., 2021). Likewise Pan-tissue age, Hannum
age, and Phenotypic age in peripheral blood are associated with risk
factors for breast cancer, including BMI and alcohol use (Chen
et al., 2019). Furthermore, in peripheral blood, an epigenome wide
analysis of estimated lifetime estrogen exposure (ELEE) in 216
women in the EPIC-Italy study identified a methylation index of
ELEE based on 694 CpGs, and developed a methylation index
based on 31 of these most varying CpGs that predicted subsequent
breast cancer risk in 440 women with incident breast cancer and
440 controls from the Generations Study (Johansson et al., 2019).
An increase of DNA methylationbased ELEE of 1 year was
associated with a 5% increase in breast cancer risk (Johansson
et al., 2019).

DNA methylation studies comparing normal adjacent breast
tissue from women with breast cancer and healthy tissues from

TABLE 2 | Epigenetic clocks predictive of cancer risk.

Epigenetic clock Tumor type Ref

Grim age (blood) Time to cancer (all), invasive breast cancer in post-menopausal women 10, 28
Intrinsic age (blood) Breast cancer risk 33
Pan-tissue age (blood) Lung, breast cancer risk, other cancers 12, 32, 34
Hannum age (blood) Breast cancer risk 32
Phenotypic age (blood) Breast cancer risk 32
Pan-tissue (colon cancers) Cancer subtype, prognosis 35
Pan-tissue (breast tumors) More aggressive breast cancers in younger women 36
EpiTOC (precancerous lesions and cancer) Accelerated in precancerous lesions and cancer 37
MiAge calculator (13 cancer types and adjacent normal tissues) Accelerated mitotic age in tumor tissues is associated with worse survival 47
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cancer-free women revealed epigenetic field effects, with aberrant
methylation in specific pathways related to stem cell
differentiation, including WNT signaling, known to be
epigenetically deregulated in cancer (Teschendorff et al., 2016).
Furthermore, epigenetic age in normal adjacent breast tissue from
luminal breast cancer patients is increased compared with healthy
breast tissue from donors with no history of breast cancer
(Hofstatter et al., 2018). In a recent study of 107 breast tumor
samples compared with 45 paired adjacent-normal breast tissue
samples and 459 normal breast samples, DNA methylation age
was estimated using 286 CpGs out of over two million candidate
CpGs. Breast tumor samples exhibited age acceleration, appeared
12 and 13 years older than adjacent normal and normal breast
tissue with identified pathways involving cellular development
and morphology, epidermal growth factor and estrogen receptor
signaling (Castle et al., 2020).

Finally, a recent study of epigenetic age-related methylation
changes in healthy mammary epithelial tissues demonstrated
accelerated epigenetic aging in 12 women with germline
mutations in cancer susceptibility genes (Miyano et al., 2021).
This study used a breast-specific molecular clock based on
methylation of ELF5, a marker critical for mammary
development. This finding suggests a link between inherited
alterations in DNA repair capacity and accelerated epigenetic
aging in tissues at highest risk of developing malignancy.

CONCLUSION AND FUTURE DIRECTIONS

DNA methylation-based estimates of biologic age are
associated with both cancer risk factors and risk of
incident cancer, suggesting a potential mechanistic link

between genomic instability, epigenetic age acceleration,
and carcinogenesis. Further work is needed to investigate
alterations in transcriptomic and proteomic pathways that
accompany epigenetic age acceleration prior to the
development of cancer. Identification of these changes
could lead to targets for chemoprevention in individuals at
high risk for cancer. In addition, future studies should
identify nonlinear trends in epigenetic age that are
associated with cancer risk and modeling epigenetic states
that are associated with risk of cancer. Integrative analyses of
methylation age along with genomic, transcriptomic, and
proteomic data within an individual prior to the
development of cancer may ultimately be used to develop
predictive tools that could be used to guide risk reduction
strategies.
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