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Abstract

Background: Plant apoplast is the prime site for signal perception and defense response, and of great importance in
responding to environmental stresses. Hydrogen peroxide (H2O2) plays a pivotal role in determining the responsiveness of
cells to stress. However, how the apoplast proteome changes under oxidative condition is largely unknown. In this study,
we initiated a comparative proteomic analysis to explore H2O2-responsive proteins in the apoplast of rice seedling roots.

Methodology/Principal Findings: 14-day-old rice seedlings were treated with low concentrations (300 and 600 mM) of H2O2

for 6 h and the levels of relative electrolyte leakage, malondialdehyde and H2O2 were assayed in roots. The modified
vacuum infiltration method was used to extract apoplast proteins of rice seedling roots, and then two-dimensional
electrophoresis gel analysis revealed 58 differentially expressed protein spots under low H2O2 conditions. Of these, 54 were
successfully identified by PMF or MS/MS as matches to 35 different proteins including known and novel H2O2-responsive
proteins. Almost all of these identities (98%) were indeed apoplast proteins confirmed either by previous experiments or
through publicly available prediction programs. These proteins identified are involved in a variety of processes, including
redox homeostasis, cell wall modification, signal transduction, cell defense and carbohydrate metabolism, indicating a
complex regulative network in the apoplast of seedling roots under H2O2 stress.

Conclusions/Significance: The present study is the first apoplast proteome investigation of plant seedlings in response to
H2O2 and may be of paramount importance for the understanding of the plant network to environmental stresses. Based on
the abundant changes in these proteins, together with their putative functions, we proposed a possible protein network
that provides new insights into oxidative stress response in the rice root apoplast and clues for the further functional
research of target proteins associated with H2O2 response.
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Introduction

Reactive oxygen species (ROS), including singlet oxygen (1O2),

superoxide anions (O2
2), hydrogen peroxide (H2O2) and hydroxyl

radicals (HO?) are highly reactive and toxic, and they can lead to the

oxidative destruction of cells. However, ROS have also been

discovered to function as important regulators of many biological

processes, such as cell growth and development, hormone signaling

and stress responses [1]. ROS imbalance is closely linked to a wide

range of oxidative destruction, so that the cellular redox condition

should be tightly regulated. Unlike other ROS, H2O2 is non-radical,

carrying no net charge, and has a comparatively longer half-life,

which makes it a more likely long-distance signaling molecule [2]. As

a physiological indicator of stress intensity, when plants are

challenged with biotic and/or abiotic stresses, H2O2 can accumulate

and be used to activate stress-responsive genes [3]. Therefore, an

omics analysis for H2O2-response may be of paramount importance

for the understanding of the plant network to environmental stresses.

Until now, most studies on H2O2 in plants have focused on

changes in transcriptional levels [4–6]. Desikan et al. reported that

more than 170 non-redundant ESTs were regulated by H2O2 in

Arabidopsis [4]. Another study revealed that 349 transcripts were

up-regulated and 88 were down-regulated by high levels of light-

induced H2O2 in catalase-deficient Arabidopsis plants [5].

Similarly, 713 ESTs were found to be regulated by high levels of

light-induced H2O2 in catalase-deficient tobacco plants [6].

Although large-scale transcriptome studies have revealed the

transcriptional dynamics of a large number of antioxidative genes,

the molecular mechanisms involved in the response to H2O2 can

not be thoroughly characterized without information about their

functional products of these genes. In our previous work, a

comparative proteomic study on rice seedling leaves under H2O2

stress revealed how the leaves adapt to oxidative challenge [3],

which provides new insights into the oxidative stress responses of

rice leaves; however, little is known about how the proteome

changes under oxidative stress in other organs of rice plants, such

as the root, which is a main exchange interface between plants and

their environments.

The plant cell is enclosed by the apoplast, which consists of the

cell wall and the intercellular spaces [7]. As the first compartment
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of the plant cell, the apoplast, especially the root apoplast, is

important for all of the plant’s interactions with its environment. It

can sense environmental changes and stress signals and then

transfer them into the cell interior to trigger a whole cell response

[7]. In addition to signal perception and transduction, apoplast

proteins can also be used for cell wall modification and

reconstruction, as well as defense responses, although they

comprise only 5%–10% of the wall dry weight [7]. Using a

bioinformatics approach, it is estimated that there are more than

1000 different apoplastic proteins in Arabidopsis [8]. However, to

date, the biolgoical functions of only a few apoplast proteins have

been reported [9]. Recently, there have been several reports about

leaf apoplast proteomes under biotic or abiotic stresses, such as salt

in tobacco [10], wounding in Medicago [11], dehydration in

chickpea and rice [12,13], virus infection in oilseed rape and

tobacco [14,15], manganese toxicity in cowpea [16], and boron

deficiency in Lupinus albus [17]. These studies broadened our

understanding of the complicated regulation of leaf apoplast

proteins. Nevertheless, few studies have addressed the dynamic

changes in the proteome of the plant root apoplast in response to

oxidative stress, especially to H2O2, which serves as a physiological

indicator of biotic and abiotic stress intensity.

In this study, we initiated a proteomic investigation into

functional H2O2-responsive proteins in the root apoplast of rice

seedlings using two-dimensional electrophoresis (2-DE). Under

H2O2 stress, 58 protein spots were found to be differentially

expressed, of which 54 were successfully identified by mass

spectrometry and represented 35 different proteins, of which more

than one-third are newly identified at the protein level. The

abundant changes in these identified proteins, as well as their

putative functions, are consistent with the proposed role of the

apoplast in H2O2 signal perception, transduction and defense

response. The correlation between these H2O2-responsive proteins

and apoplast response was explored. This is the first proteomic

study of the apoplast in response to H2O2, and the results greatly

expand our knowledge about the complexity of apoplast proteins

in rice and provide a framework for further functional studies of

each identified protein.

Results and Discussion

Preparation of apoplast proteins from rice seeding roots
To minimize the contamination of apoplast proteins with

intracellular proteins, it is absolutely critical to adopt appropriate

H2O2 concentrations for the treatments of rice seedling roots.

Electrolyte leakage is an important indicator of the cell membrane

damage under adverse conditions including oxidative stress [18].

To evaluate the effect of H2O2 stress on the cell membrane,

changes in relative electrolyte leakage (REL) were measured in rice

seedling roots treated with different concentrations of H2O2. As

shown in Figure 1A, REL increased slightly from 24.76% (control)

to 34.82% (300 mM) or 40.83% (600 mM) as the concentration of

H2O2 increased from 0 to 600 mM, indicating that these

treatments with H2O2 indeed triggered some root responses.

When the concentrations of H2O2 were increased to 900 mM or

higher, REL jumped to more than 50%, suggesting some oxidative

damage to the cell membrane. It has been reported that, if the

seedling REL of the chilling-sensitive rice cultivar TN.1 reaches

50% or higher under chilling (5uC) treatment, the survival ratio is

less than 70%, demonstrating severe oxidative damage to the cell

membrane [19]. These data suggest that treatments with higher

than 600 mM H2O2 may be inappropriate for this study. The

effect of H2O2 concentrations on rice seedling roots was further

evaluated by an assay for malondialdehyde (MDA), which is a

breakdown product of membrane lipid peroxidation and can also

be used as a marker to indicate the degree of damage of the cell

membrane under oxidative stress [20]. As presented in Figure 1B,

there were almost no changes in the MDA concentration between

the control (12.161.22 nmol/g FW) and samples treated with

300 mM H2O2 (12.362.03 nmol/g FW). Even under the 600 mM

H2O2 treatment, the MDA concentration increased only slightly

to 18.260.6 nmol/g FW (0.01,p,0.05, compared to the control)

(Figure 1B). Based on the results of the REL and MDA assays, it is

clear that 300 mM H2O2 led to some responses in the cell

membrane without obvious lipid peroxidation change. However,

600 mM H2O2 caused slight oxidative damage to the cell

membrane with increased lipid peroxidation and electrolyte

leakage. Additionally, the levels of apoplastic H2O2 in roots

treated with exogenous H2O2 of 300 and 600 mM H2O2

concentrations were increased by 30.8% and 76.8% over control,

respectively, showing a dose-dependent pattern of accumulation

(Figure 1C). Furthermore, 600 mM H2O2 treatment for 6 h caused

the seedling leaves to roll inward, and the net photosynthetic rate

was declined by about 20% over control [3]. Taken together, these

results suggest that these two concentrations represent different

oxidative conditions and rice seedlings could tolerate these

concentrations without serious destruction to the cell membrane,

therefore, 300 mM and 600 mM H2O2 were adopted for the

treatments in this study.

A modified vacuum infiltration method was employed to extract

apoplast proteins from the H2O2-treated or control rice seedling

roots. The protein yields were about 15 mg/g FW (Figure 1D)

although the protein yield of samples treated with 600 mM H2O2

slightly increased compared to the other conditions. However, the

difference among the three sample sets was not stastically

significant (p.0.05), indicating H2O2 had no obvious effect on

the total apoplast protein amount. The levels of intracellular

contamination in the vacuum infiltrates (VI) were quantitatively

evaluated from the enzyme activity of glucose-6-phosphate

dehydrogenase (G6PDH), which is a cytoplasmic enzyme that

can be used as a specific marker for any plasma membrane

damage that may occur during apoplast extraction by the vacuum

infiltration procedure [21]. The average contamination percentage

was 0.43%, 1.2% and 1.32% for the control, 300 mM and 600 mM

H2O2 treated samples, respectively (Figure 1E). According to the

previous studies, less than 3% is considered to be negligible

contamination [17]. Hence, the apoplast extracts prepared in this

study were relatively pure and were suitable for the subsequent

proteomic analysis.

Apoplast proteome of rice seedling roots under H2O2

stress
Using the modified vacuum infiltration procedure in combina-

tion with MS compatible silver staining, the average number of

reproducible spots in this study reached around 400 spots on each

2-DE gel (Figure 2), of which the spot number is greatly increased

compared to the previous report of rice root apoplast (around 100

spots) [22]. The three reproducible gel maps for the control and

two different treatments are shown in Figure 2A–C. From the

profile analysis combined with statistical tests, a total of 58 stained

spots were found to show significant changes (p,0.05) and are

marked in Figure 2D. Most of these spots (51 spots) had a greater

than 2-fold change in abundance under at least one of the H2O2

treatments (Table S1).

Figure 3A shows the number of differentially displayed spots

under different H2O2 treatments, and a venn diagram illustrates

the overlap of these spots. Among the 18 up-regulated spots, 4

spots co-increased in abundance, and among the 40 down-

H2O2-Responsive Proteins in the Rice Root Apoplast
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regulated spots, 26 spots co-decreased in abundance under the two

H2O2 treatments (Figure 3A). Obviously, more than 50% of the

differentially expressed spots (30 spots) exhibited a similar

regulatory pattern under 300 and 600 mM H2O2 (Table S1).

The expression levels of the other 28 spots increased or decreased

under only one treatment (Figure 3A). Of these, 14 spots were

found to be differentially expressed in response to 300 mM H2O2,

while the other 14 spots showed significant changes under 600 mM

H2O2 (Table S1), indicating that these spots were specifically

responsive to a treatment concentration. Figure 3B shows

examples (spot 06, 20, 24 and 53) representing the dynamic

changes of differentially expressed proteins in response to H2O2

treatments. Together, these data suggest that plant cells are able to

monitor different levels of stress intensity by modulating

corresponding protein expression.

Identification of the differentially expressed proteins
A total of 58 differentially expressed protein spots were

subjected to in-gel digestion and analyzed by MALDI-TOF/

TOF-MS, and 54 spots were successfully identified (Table S1). Of

these, 33 spots were identified by PMF, and 21 spots were

identified by MS/MS analysis (Table S2). The PMF images and

annotated spectra by MS/MS analysis for all spots are shown in

File S1 and File S2 in Supporting Information, respectively.

Among the 54 identities, 53 are deposited in the current database

as putative functional proteins, whereas spot 54 is a hypothetical

rice protein with unknown function. To annotate its identity, its

sequence was used as a query to search for homologs using

BLASTP (www.ncbi.nlm.nih.gov/BLAST/). The corresponding

homolog with the highest score was pyridoxamine 5’-phosphate

oxidase in Desulfotomaculum with a 31% identity at the amino acid

level, suggesting that it might have similar functions in rice.

Additionally, for those peptides that matched several members of a

protein family, the one with the highest score was selected (Table

S3). Taken together, the 54 identities represent 35 different

proteins (Table S1), and more than one-third of these identities are

newly identified at the protein level.

Moreover, among the 35 differentially expressed proteins, 10

proteins were present as multiple spots on the 2-DE gels, with one

spot representing an isoform (Figure 4A). Of these, the isoforms for

8 proteins [a-L-arabinofuranosidase/b-D-xylosidase isoenzyme,

enolase, putative a-galactosidases, a putative b-1,3-glucanase, two

peroxidases (OsPrx112 and OsPrx125), a malate dehydrogenase

and the DUF26 motif-containing protein, OsRMC], representing

20 identities showed similar up- or down-regulated changes in

abundance in response to H2O2 treatment. The isoforms for the

other two proteins (OsPrx111 and b-1,3-glucanase), representing 9

identities, exhibited opposite expression patterns (Figure 4B).

Likewise, similar phenomena have been observed in previous

proteomics studies [3,23,24], which are probably due to the

posttranslational modifications. These results suggest that isoforms

of a certain protein may play either the same or different roles in

modulating cell responses to H2O2 treatments in rice seedlings.

The apparent Mr value predicted by SDS-PAGE has an error

deviation of about 610% compared to the theoretical value (Table

S1). Among the 58 identified protein spots, 3 spots (spots 23, 24

and 45) representing 2 proteins (putative b-1,3-glucanase and Arm

repeat protein) were found with observed Mr values that were

much smaller than the theoretical values (less than 55%) (Table

S1), suggesting that these proteins might be the partially degraded

products of their intact proteins. This speculation is supported by

the previous finding that protein degradation is enhanced in

H2O2-treated rice seedlings [3]. Also, this apoplast protein

degradation phenomenon was reported in a previous proteomic

Figure 1. Effects of H2O2 treatments in rice seedlings, protein yields and intracellular contamination ratio. (A) Effects of H2O2

treatments on REL in rice seedlings. (B) Effects of H2O2 treatments on MDA concentrations in rice seedling roots. (C) Accumulation of apoplastic H2O2

in rice seedling roots. (D) Protein yields from vacuum infiltrates. (E) Intracellular contamination of vacuum infiltrates. Two-week-old seedlings were
treated with H2O2 at different concentrations for 6 h. Values are means of independent replicates6SE, n = 3. Levels of significance of T-test are shown
by * and ** for p,0.05 and 0.01, compared to the control.
doi:10.1371/journal.pone.0016723.g001

H2O2-Responsive Proteins in the Rice Root Apoplast
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study of the chickpea extracellular matrix during dehydration

stress [12].

Subcellular localization prediction and functional
classification of H2O2-responsive proteins

To confirm that all the proteins we identified were indeed

apoplast proteins, their subcellular location were predicted by the

TargetP program (www.cbs.dtu.dk/services/TargetP) [25]. As

listed in Table S1, 36 of the 54 identities were predicted to be

typical secretory proteins with signal peptide sequences. In plants,

there have been many reports of the existence of non-classical

proteins in the apoplast [8,9,26–29]. Moreover, several cytosolic

proteins called moonlighting proteins have been experimentally

shown to perform another function in the cell wall or outside the

cell [30–32]. Therefore, we also used the SecretomeP set-up

(http://www.cbs.dtu.dk/services/SecretomeP-1.0) [33] to inspect

the non-classical secretory proteins, and 6 of the 18 spots were

predicted to be putative leaderless secreted proteins (Table S4).

For the remaining 12 spots, we determined their potential

subcellular localization from reports in the literature. As listed in

Table S4, 11 of the 12 spots have been reported to exist in the

apoplast (except for spot 40), and most of the 11 spots have been

detected in the apoplast by Western blot or immunocytochemistry

in addition to proteomics [12,27,28,34–40], with only two spots

(spots 45 and 51) detected just by proteomic approaches [27,41].

Taken together, 53 out of the 54 spots (98%) were confirmed to be

localized in the apoplast either through publicly available

prediction programs or according to previous references. There-

fore, consistent with the results of the G6PDH enzyme assay

(Figure 1E), our apoplast protein samples are of high quality, with

no obvious cytoplasmic contamination, and can be used to reflect

the actual apoplast proteome profile.

To characterize the apoplast proteome response to H2O2, all 54

identified protein sequences were functionally classified by

GoFigure (http//www.geneontology.org). All H2O2 responsive

proteins were grouped into 8 major categories as shown in Figure 5

and Table S1. An impressive 45% of these identities belonged to

functional categories including redox homeostasis, cell rescue/

defense and signal transduction, suggesting the functional

importance of these processes in the apoplastic response to

H2O2 treatments.

Carbohydrate metabolism in the root apoplast of rice
seedlings under H2O2 Stress

One of the noteworthy aspects of this research is that 26 of the

54 H2O2-responsive protein spots were involved in carbohydrate

metabolism (Figure 5). Of which 17 were glycosylhydrolases (GHs)

that catalyze the hydrolysis of the glycosidic linkage. The result is

remarkably similar to a previous report in which nearly 30% of

apoplastic proteins are predicted to act on polysaccharides of the

cell wall in Arabidopsis [8]. Polysaccharides, which make up around

90% of the apoplast, form a rigid structure to strengthen the plant

cell wall and participate in cell-cell interactions and the defense

responses [42]. In this work, most of the GHs such as a-

Figure 2. 2-DE image analysis of rice root apoplast proteome under H2O2 treatments. (A–C) Set of three gels corresponding to apoplast
protein samples treated with 0 (A), 300 (B), and 600 mM (C)of H2O2. (D) A representative gel showing the identified differentially expressed protein
spots. 200 mg of the protein sample was loaded onto 24 cm IPG strips, pH 4–7 and electrophoresed as described in the text. The gel (12.5%) was
stained using a mass spectrometry compatible silver staining method. A total of 58 protein spots were expressed differentially in response to the
oxidative treatments, with p,0.05. Among these, 54 spots corresponding to 35 proteins are listed in Table S1.
doi:10.1371/journal.pone.0016723.g002
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galactosidase (spots 12–14), b-1,3-glucanases (spots 16–24), and b-

1,3;1-4-glucanase precursor (spot 25) were found to be down-

regulated in the H2O2-treated seedlings (Table S1, Figure S1A

and Figure S2A). Suppression of these polysaccharide hydrolases

under H2O2 stress might reduce the hydrolysis of glucan and other

polysaccharides to alter the dynamic remodeling of the polysac-

charides to withstand the deleterious effects of oxidative stress [43].

For example, the down regulation of a-galactosidase (EC 3.2.1.22)

might lead to raffinose accumulation (Figure S2A), which plays

effective roles in stabilizing the membrane [44] and scavenging

ROS [45], and subsequently confers tolerance to various abiotic

stresses [44,46]. In comparison, the activities of a-L-arabinofur-

anosidases (spots 01-04) were up-regulated under at least one of

the H2O2 treatments (Table S1, Figure S1A and Figure S2A). The

a-L-arabinofuranosidase can catalyze the degradation of the

carbohydrate moieties of arabinogalactan-proteins (AGPs), a

family of highly glycosylated hydroxyproline-rich glycoproteins

involved in intercellular signal transduction and stress responses

[47,48]. Therefore, the up-regulated a-L-arabinofuranosidase

might make the AGP core protein accessible for providing

signaling information to reinforce the cellular defense responses

under oxidative stress.

Besides, proteins related to the synthesis of cell wall polysac-

charides is also influenced by H2O2 treatments in rice seedlings.

UDP-glucose pyrophosphorylase (UGPase, EC 2.7.7.9) (spot 06), a

key enzyme in producing UDP-glucose from glucose-1-phosphate

and UTP, was found to be up-regulated under H2O2 stress (Table

S1, Figure 1SA and Figure S2A). As UDP-glucose is the substrate

for the synthesis of cell wall polysaccharides, such as cellulose [49],

the up-regulation of UGPase probably benefit for maintaining

normal wall polysaccharide synthesis by providing UDP-glucoses

to compensate for the reduced cytosolic nucleoside diphosphate

sugars [50]. In agreement, a UGPase was indeed induced upon

exposure to low doses of H2O2 in Saccharomyces cerevisiae [51].

Figure 3. Change profile of the differentially expressed protein spots. (A) Venn diagram analysis of the differentially expressed protein spots
in the apoplast of rice seedling roots treated with 300 mM and 600 mM H2O2. The number of differentially expressed protein spots with up- (left panel)
or down-regulation (right panel) under a given concentration of H2O2 are also shown. (B) Typical examples of spSots showing different profiles.
doi:10.1371/journal.pone.0016723.g003
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Additionally, a cell wall modifying enzyme of pectinesterase (PME,

spot 46) was found to be up-regulated upon H2O2 treatment

(Table S1, Figure S1A and Figure S2A). PME (EC 3.1.1.11) could

catalyze the specific demethylesterification of homogalacturonans

to strengthen the cell wall. The methanol released during this

process may diffuse into the cytoplasm and be converted to

formate, which is used for the biosynthesis of sugars, amino acids,

purines and organic acids during plant defense metabolism

[52,53].

Interestingly, some glycolytic enzymes, such as phosphoglycer-

ate mutase (PGM, EC 5.4.2.1) (spot 05) and enolases (EC 4.2.1.11)

(spots 07-10, representing 3 proteins), were also identified in this

study. These enzymes catalyze the initial steps of the glycolytic

pathway and are known to be in the cytoplasm. However,

accumulating experimental data illustrate that many glycolytic

enzymes function as cell wall components [28–30,37,38], although

their exact function in the apoplast is still unclear. The differential

expression profiles of these glycolytic enzymes under H2O2

treatments (Table S1 and Figure S2A) indicate their potential

roles in the root apoplast under oxidative stress.

Redox state regulation in the root apoplast of rice
seedlings under H2O2 stress

Another noteworthy aspect in this study is that nearly half (24/

54) of the identities are related to redox state regulation. These

proteins can be classified into three functional subgroups: redox

homeostasis (spots 26-41), signal transduction (spots 42-45) and cell

rescue/defense (spots 47-50) (Table S1 and Figure S2B). In the

first subgroup of redox homeostasis, 11 out of 16 identities belong

to Class III peroxidases: OsPrx111 (spots 26, 27 and 28),

OsPrx112 (spots 29, 30 and 31), OsPrx22 (spot 32), OsPrx125

(spots 33, 34 and 35) and OsPrx71 precursor (spot 36). Class III

peroxidases (EC 1.11.1.7), secreted glycoproteins encoded by a

large number of paralogous genes, are key enzymes for regulating

the H2O2 level in the apoplast [54]. In this study, all of the

peroxidases identified were acidic, suggesting they might partic-

ipate in the consumption of H2O2 [55,56]. The comparative

proteomic analysis and enzymatic assays showed that both the

abundance and activity of almost all these isoenzymes were down-

regulated by H2O2 especially at the lower H2O2 concentration

(300 mM) except spots 26 and 35 which were more than two-fold

up-regulated in abundance (Table S1, Figure S1B and Figure

S1B), indicating the different functional assignments for each

individual peroxidase in rice seedlings under stress conditions,

Figure 4. Close-up of possible isoforms detected by 2-DE (A) and their expression profile patterns (B). All 29 differentially expressed
protein spots, matching 10 different proteins, are shown. T1 and T2 represent H2O2 treatments of 300 mM and 600 mM, respectively. ARA-I, a-
arabinofuranosidse/b-D-xylosidase isoenzyme; Prx, peroxidase; MDH, malate dehydrogenase; RMC, root meader curling.
doi:10.1371/journal.pone.0016723.g004

Figure 5. Functional classification and distribution of the 54
identified protein spots. The number represents the number of
protein spots identified in each functional catalog.
doi:10.1371/journal.pone.0016723.g005

H2O2-Responsive Proteins in the Rice Root Apoplast
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although little is known concerning the function of individual

peroxidase in plants. Besides, it should be noted that malate

dehydrogenase (MDH, spots 37 and 38), a protein related to

H2O2-producing was down-regulated, which might decrease

H2O2 production by supplying less NADH to avoid unnecessary

H2O2 production [13,57] (Figure S1B) under H2O2 treatments.

Moreover, proteins participating in the thiol redox were regulated

in the root apoplast of rice seedlings treated with low-dose H2O2,

of which the flavin-containing monooxygenase (FMO, spot 40)

was markedly down-regulated, while protein disulfide-isomerase

(PDI, spot 41) was up-regulated at 600 mM H2O2 concentration

(Table S1 and Figure S2B). FMO (EC 1.14.13.8) is involved in the

formation of protein disulfide bonds, and its suppressed expression

might result in an accumulation of reduced proteins and sulfide

compounds to maintain the reducing potential [58]. PDI could

function to remove the abnormal disulfide bonds induced under

oxidative conditions and forms part of the antioxidative defense

system [59].

In this study, we also found four differentially expressed protein

spots related to signal transduction including three isoforms of

OsRMC protein with the DUF26 motif (C-X8-C-X2-C, a

cysteine-rich-repeat motif) and an Arm repeat protein in response

to H2O2 treatments. DUF26 motif-containing proteins can be

classified into two main groups: receptor-like kinases (RLK) and

receptor-like proteins (RLP). The former consist of three distinct

domains including an extracellular domain containing two DUF26

motifs, a transmembrane domain and an intracellular kinase

domain, while the latter only have an extracellular domain [60].

All three isoforms (spots 42, 43 and 44) of the OsRMC protein

identified in the present study only contain an extracellular

domain with two DUF26 motifs, and lack the transmembrane

domain and intracellular kinase domain (Figure S3). Expression of

these isoforms was observed to be repressed at 300 mM H2O2

treatment (Table S1 and Figure S2B). Therefore, they might

function as RLP and play a negative role in the RLK signaling

pathway as an antagonist similar to other reported plant RLPs to

RLKs [61]. Furthermore, another line of evidence has indicated

that knocking down the expression of OsRMC in transgenic rice

led to improved tolerance to NaCl stress [22], although further

work is required to elucidate its regulation mechanism. On the

other hand, a partially degraded form of an arm repeat protein

(spot 45) was found to be down-regulated under H2O2 stress

(Table S1 and Figure S2B). This protein is proposed to be

plasmodesmatal components, interacting with plant receptor

kinases and participating in the signal transduction [62]. This is

the first time that an Arm repeat protein was identified as an

H2O2-responsive protein in the root apoplast of rice seedlings,

although definitive function of this protein would require further

investigation.

It is widely recognized that chitinases and pathogenesis-related

protein PR-1a play important roles in self-defense against

pathogens and can be induced by both biotic and abiotic stresses

[63,64]. Not surprisingly, one up-regulated PR-1a (spot 47) and

one up-regulated chitinases (spot 48) were identified in the root

apoplast of rice seedlings under oxidative stress. Interestingly, two

down-regulated chitinases (spots 49 and 50) were found in this

study. The different expression profiles of the three chitinase

proteins indicate the complex function of chitinases in response to

H2O2.

A possible H2O2-responsive protein network in the root
apoplast of rice seedlings

The proteins present in apoplast are essential constituents of

plant cells and have critical roles in modifications of cell wall

components, plant defense and signal transduction that allow cells

to respond effectively to various extracellular signals, possibly

through regulation of H2O2 levels [8]. However, no systemic

investigation into how apoplast proteomes function under

oxidative stress through adjustment of the metabolic process and

antioxidative system has been conducted to date [8]. In the present

work, we initiated a carefully performed proteomic investigation of

proteins that are responsive to low-dose H2O2 in the root apoplast

of rice seedlings. Based on our proteomic data, H2O2-responsive

proteins could be divided into two main categories: one group is

related to redox regulation including adjusting redox homeostasis,

sensing stress cue and thus triggering corresponding reactions;

while the other group participates in adjusting metabolism to

overcome the deleterious effects of oxidative stress (Table S1,

Figure 5 and Figure S2). The results presented in this work are

demonstrated in a putative H2O2-responsive protein network

(Figure 6) to address the events that occur in the root apoplast of

rice seedlings under oxidative stress condition.

When rice seedlings are exposed to low dose of H2O2, a large

amount of exogenous H2O2 can easily diffuse into apoplast and thus

result in an overall increase of apoplastic H2O2 level in rice roots

(Figure 1C). It is noteworthy that a number of redox-associated

enzymes such as MDH and Prx are suppressed at protein levels,

which might avoid unnecessary H2O2 production and modulate the

H2O2 concentration to an appropriate level [13,57]. Additionally,

thiol redox-associated proteins, such as FMO and PDI, are

regulated to influence the disulfide bond formation and breakage

within proteins, thus activating proteins involved in the antiox-

idative defense (Figure 6) [58,59]. Furthermore, down-regulation of

the receptor-like protein (RLP) might facilitate transduction of

oxidative signals via the receptor-like kinase (RLK). Through a

series of signal transduction pathways, finally, defense-related genes

such as chitinase and PR-1a could be activated and their products

are produced, and then function as a defense factor against

oxidative stress in the apoplast of rice roots (Figure 6).

The overall enhanced level of H2O2 in the root apoplast not

only strongly affects the redox homeostasis-related proteins but

also acts intensively on carbohydrate metabolism-associated

proteins. Down-regulation of almost all GHs, together with up-

regulation of UGPase, ARA and PME might strengthen the cell

wall through influencing polysaccharide degradation and synthe-

sis, and increasing the pectin demethylesterification (Figure 6).

Furthermore, the down-regulation of a-GAL may contribute to

stabilize the cell membrane [44], which could reduce the damage

to the membrane caused by oxidative stress (Figure 6).

The present work proposed a H2O2-responsive protein network

to elucidate the molecular basis of antioxidative system in the root

apoplast of rice seedlings. As H2O2 could function as a signal

molecule in stress perception, we compared our results with other

rice apoplast proteome studies under stress conditions [13,22] to

analyze the similarities and differences (Table S5), and found

proteins involved in the redox regulation, such as Class III

peroxidases and OsRMC, were common in the rice seedling roots

under H2O2 and NaCl treatments [22], and proteins related with

antioxidative reactions were both regulated under H2O2 and

dehydration [13], though the specific proteins were different, which

might be due to the different tissues studied. However, many

proteins were unique to each of the treatments, indicating although

the cellular responses to abiotic challenges are similar in regard to

production of ROS, the detailed stress response mechanisms might

be different. Therefore, a big effort should be made to answer the

specificity and cross-talking under different stress conditions.

Overall, by comparative proteomic study of the root apoplast

of rice seedlings under low-dose H2O2 condition, we have
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identified 54 H2O2-responsive proteins with obvious functional

tendencies towards redox regulation and carbohydrate metabo-

lism. These proteins might work cooperatively to establish a

complex network of apoplast response to exogenous H2O2 in the

rice seedling root, and depict the strategies of the root apoplast to

oxidative challenge. These findings, in conjunction with previ-

ously reported results, significantly advanced our understanding

of the molecular basis associated with the oxidative responses

occurring in plant apoplast and are also expected to provide a

basis for further functional and mechanical research of each

identified protein.

Materials and Methods

Chemicals
CHAPS, IPG DryStrips, IPG buffers, glucose-6-phosphate

(G6P), NADP disodium salts and iodoacetamide were purchased

from GE Healthcare (Buckinghamshire, UK); modified trypsin,

urea, acrylamide and bis-acrylamide were from Promega (Madi-

son, USA); TCA was from Merck (Darm-stadt, Germany) while

thiourea and guaiacol were from Sigma (St. Louis, MO, USA).

Deionized water (Millipore, Bedford, MA, USA) with resistance of

greater than 18 MV cm was used throughout.

Plant growth and treatment
Rice seeds (Oryza sativa L. ssp Indica cv. 93-11) were soaked in

distilled water for 24 h and germinated in the dark for 45 h at

37uC. Then the rice seedlings were grown in the biological

incubator I-36LL (Percival, IA, USA) at 28/21uC (16-h day/8-h

night) with a relative humidity of 70%. To provide whole nutrition

to the rice seedlings, Hogland solution was supplied every 2 days.

Two-week-old rice seedlings were treated with H2O2 at different

concentrations for 6 h in different plastic containers. Seedlings

immersed in double-distilled H2O were used as control. Roots

were harvested immediately for apoplast protein extraction.

Measurements of relative electrolyte leakage,
malondialdehyde and apoplastic H2O2 content

The relative electrolyte leakage (REL) assay was performed as

previously described by Huang et al [65]. with some modifications.

Two-week-old rice seedling roots were subjected to test tubes

containing 5 ml of an aqueous solution with different H2O2

concentrations (0–600 mM) at room temperature. The tubes were

incubated for 6 h at room temperature with gentle shaking, after

which the conductivities of the solutions were determined by a

conductivity meter (Model DDS-IIA, Leici Instrument Inc.,

Shanghai, China). The tubes with roots were then placed in

boiling water for 20 min. After cooling down to room tempera-

ture, the conductivities of the solutions were measured again. The

relative electrolyte leakage was calculated as the percentage of the

conductivity before boiling over that after boiling. Three biological

replicates for each treatment were made.

MDA content was measured using the thiobarbituric acid (TBA)

assay [66]. Two-week-old rice seedlings were treated with or

without H2O2 (300 or 600 mM), then the roots (,2 g per sample)

were harvested and ground on ice with 0.4 g quartz sand, then

extracted with 5 ml phosphate buffer (10 mM, pH 7.0). After

centrifugation (12 000 g for 10 min at 4uC), the supernatant was

used to determine the MDA concentration using an MDA

detection kit (Jiancheng Bio., Nanjing, China). Three biological

replicates for each treatment were made.

H2O2 accumulated in the apoplast of treated or control roots

was measured according to Chang et al. [67] with some

modifications. The H2O2 in the apoplast was extracted by the

vacuum infiltration-centrifugation method [10] with phosphate

buffer (50 mM, pH 6.5). To quantify the H2O2 content,

750 mL of the extracted solution was mixed with 250 mL of

0.1% titanium sulphate in 20% (v/v) H2SO4 and then the

mixture was centrifugated at 6 000 g for 15 min. Oxidation of

titanium sulfate was recorded by reading A410. Readings were

converted to corresponding concentrations using a standard

Figure 6. A putative network of H2O2-responsive apoplast proteins in rice seedling roots. The H2O2-responsive proteins identified in this
study are listed in brown boxes. The up-regulated proteins are marked byq, and the down-regulated proteins are marked byQ. The number
represents the number of protein spots identified. SOD, superoxidase dismutase; FMO, flavin-containing monooxygenases; PDI, protein disulfide-
isomerase; Prx, peroxidase; MDH, malate dehydrogenase; GH, glycosylhydrolase; ARAs, proteins with a-L-arabinofuranosidase activity; PME,
pectinesterase; UGPase, UDP-glucose pyrophosphorylase; a-GAL, a-galactosidases; RLP, receptor like protein; RLK, receptor like protein kinase; CHN,
chitinase; PR-1a, PR-1 type pathogenesis-related protein; S-S, disulfide bond; SH, the reduced formation of S-S.
doi:10.1371/journal.pone.0016723.g006
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calibration plot. Three biological replicates for each treatment

were made.

Apoplast protein extraction
To extract the apoplast proteins, the vacuum infiltration-

centrifugation method [10] was adopted with some modifications.

Roots were cut into approximately 5 cm segments, placed inside

tubes, washed with chilled deionized water as rapidly as possible

and then submerged into the chilled extraction buffer (100 mM

Tris-HCl pH 7.5, 0.2 M KCl, 1 mM PMSF,) in Beckmann

centrifuge bottles. The bottles were placed over ice and were

subjected to vacuum infiltration at a reduced pressure of 70 kPa

for 15 min. The vacuum was then gradually released for 5 min

until normal pressure was reached. After the excess extraction

buffer was dried under gravity, the infiltrate was collected by

centrifugation at 1 000 g for 10 min at 4uC. The procedure was

repeated and the combined extract was filtered through 0.22 mm

membrane filters and concentrated to 500–700 ml using the

Microcon YM-5 (Millipore). The concentrate was then subjected

to the glucose-6-phosphate dehydrogenase (G6PDH) enzyme

assay or TCA precipitation for 2-D electrophoresis. Three

biological replicates for each treatment, corresponding to

independent protein extracts were performed.

G6PDH enzyme assay and cytoplasmic contamination
calculation

The G6PDH enzyme assay was performed according to the

method described by Weimar et al. [68] to assess the contamina-

tion of the apoplast extracts by cytoplasmic proteins. The following

reaction mixtures were prepared: 850 ml reaction buffer (0.1 M

Tris-HCl pH 7.6, containing 12.5 mM MgCl2), 50 ml glucose-6-

phosphate (60 mM), and 50 ml nicotinamide adenine dinucleotide

phosphate (NADP) (20 mM). The reaction was started by the

addition of 50 ml of the concentrated apoplast protein extract or

total root soluble extract, and the change in absorbance at 340 nm

was monitored over 5 min at 25uC using a UV/Visible

Spectrophotometer (Ultrospec 3300 pro, Amersham Biosciences,

Sweden).

To calculate the cytoplasmic contamination, the total soluble

proteins were also extracted. Root tissues were frozen in liquid N2

and ground to a fine powder with quartz sand. The powder was

suspended in extraction buffer (100 mM Tris-HCl pH 7.5, 0.2 M

KCl, 5 mM DTT, 1 mM PMSF) and then sonicated 10 times for

10 seconds each time. After centrifugation (16 000 g for 30 min at

room temperature), the supernatant was used for the G6PDH

enzyme assay. Finally, the cytoplasmic contamination was

calculated as the percentage of G6PDH activity in the apoplast

extracts compared with the activity in the total root soluble protein

extracts on a fresh weight basis. Three biological replicates for

each treatment were made.

2-DE and gel staining
For 2-DE analysis, apoplast proteins were precipitated from the

extract by adding equal volume of 20% TCA in acetone

containing 0.5% DTT as described by Haslam et al. [69] and

incubated overnight at 220uC. The precipitates were collected

and resolubilized as described by Wan and Liu [3]. First, the

precipitates were collected by centrifugation at 23 000 g for

30 min at 4uC and subsequent washed three times with acetone

and centrifugated at 20 000 g for 15 min at 4uC with 30 min

incubation at 220uC each time. The pellet was dried with N2 to

remove any remaining acetone. The dried powder was resus-

pended completely in 300 ml lysis buffer (9 M urea, 4% [w/v]

CHAPS, and 2% ampholytes, pH 3–10). After incubation at 25uC
for 0.5 h, the extract was reduced by adding 5 mM Tris-(b-

carboxyethyl)-phosphine hydrochloride. The reduction continued

for 1 h at room temperature. Samples were then alkylated by

treatment with 16 mM iodoacetamide for 1.5 h at room

temperature. This reaction was quenched by the addition of

50 mM DTT. The samples were centrifugated at 16 000 g for

30 min at 25uC and stored at 280uC for further 2-DE gel analysis.

The protein concentration was estimated by Bradford method

[70]. Prior to IEF, the samples were diluted with the rehydration

buffer (6 M urea, 2 M thiourea, 2% CHAPS, and 40 mM DTT)

so as to load 200 mg proteins per 24 cm linear pH 4–7 IPG strip.

The strips were subjected to active rehydration at 30 V/h for 18 h

on the Ettan IPGphor system (GE Healthcare) with the following

IEF program: 200 V for 40 min, 500 V for 40 min, 1000 V for

1 h, 4000 V for 2 h, 8000 V gradient for 1 h, and 8000 V for

around 7.5 h until a total voltage hour of 75000 was achieved.

Before the SDS-PAGE, the strips were equilibrated for 15 min in

10 ml of reducing equilibration buffer (6 M urea, 50 mM Tris-

HCl with pH 8.8, 30% [v/v] glycerol, 2% [w/v] SDS, a trace of

bromophenol blue and 1% [w/v] DTT) and for another 15 min in

alkylating equilibration buffer that contained 2.5% (w/v) iodoa-

cetamide instead of 1% DTT. The strips were placed on the top of

vertical 12.5% SDS-PAGE selfcast gels. The electrophoresis was

carried out at 25uC and 2.5 W/gel for 30 min, and then at 17 W/

gel until the dye front reached about 1 mm from the bottom of the

gel using an EttanTM DALT System (GE Healthcare). For each

treatment, three gel replicates were run with three biological

replicates. Protein spots were visualized by the mass spectrometry

compatible silver staining method [11].

Gel scanning and image analysis
The 2-DE gels were scanned with a UMAX PowerLook

2100XL scanner (Willich, Germany) using LabScan 5.0 software.

As triplicates were applied to each treatment, a total of 9 silver-

stained 2-DE gels were analyzed using the ImageMasterTM 2-D

platinum software version 5.0 (GE Healthcare). Only the spots

present in all the three replicate gels and qualitatively consistent in

size and shape in the replicate gels were considered. Matching

spots were rechecked manually. The spot volume was taken as a

percentage relative to the total volume of all spots in the gel. A

criterion of p,0.05 was used to define the significant difference

when analyzing the parallel spots between groups. One-way

ANOVA and the Student-Newman-Keuls test was carried out

using the SAS software package version 8.2 (SAS Institute).

Protein identification
Protein spots showing significant changes in abundance during

the treatments were selected and excised manually for protein

identification. In- gel digestion of protein spots was performed

according to Wan and Liu [3], except that gel pieces were first

destained with a solution of 15 mM potassium ferricyanide and

50 mM sodium thiosulfate (1:1) instead of 25 mM ammonium

bicarbonate with 50% ACN. After that, the particles were washed

twice in 100% ACN for 10 min and then dried under vacuum for

15 min. Proteins in the gel pieces were digested in 25 mM

NH4HCO3, 10 ng/mL trypsin over night at 37uC. To recover the

peptides, four volumes of 5 mM n-OGP in 0.25% TFA were

added, and incubation was performed for 1 h at 37uC. The

extraction solutions were used in the subsequent mass analysis. All

MALDI-TOF/TOF information was obtained from an ABI 4800

MALDI TOF/TOFTM Analyzer (Applied Biosystems, CA, USA).

The TOF spectra were recorded in the positive ion reflector mode

with a mass range from 700 to 3500 Da, and 5 of the strongest
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peaks of the TOF spectra per sample were chosen for MS/MS

analysis. The spectra were corrected by an external standard

method using trypsin-treated myoglobin peptides. The MS/MS

results were searched using GPS (Applied Biosystems, USA) -

MASCOT (Matrix Science, London, UK) with the following

criteria: NCBInr database; species restriction to Oryza sativa (rice);

MS tolerance was set at 6100 ppm and MS/MS at 60.6 Da; at

most one missed cleavage site; fixed modification was carbamido-

methyl (Cys) and variable modification was oxidation (Met); and

cleavage by trypsin was the C-terminal side of Lys and Arg unless

the next residue was Pro. If peptides were matched to multiple

members of a protein family, or if a protein appeared under

different names and accession numbers, the entry with the highest

score was selected. In addition, the theoretical molecular weights

and pI of the identified proteins were calculated using the

PeptideMass program (http://au.expasy.org/tools/peptide-mass.

html).

Location prediction
The subcellular location of the identified proteins were

predicted by the TargetP program (www.cbs.dtu.dk/services/

TargetP) [25]. For those proteins without typical signal peptide

sequences, SecretomeP software program (http://www.cbs.dtu.

dk/services/SecretomeP-1.0) [33] was performed to inspect the

non-classical secretory proteins.

Peroxidase enzyme assay
The peroxidase enzyme assay was performed according to

Fecht-Christoffers et al. [56]. To measure the H2O2-consuming

peroxidase (acidic) activity in the VI (vacuum infiltrates), the

apoplast protein extract was mixed with 10 mM Na2HPO4 buffer

(pH 6.0), 20 mM guaiacol and 0.03% (w/w) H2O2. Then the

activity was measured at l= 470 nm. For the enzyme activity

calculation, the molar extinction coefficient of 26.6 mM21cm21

for tetraguaiacol was used. Three biological replicates for each

treatment were made.
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