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Only recently novel high-throughput binary interaction data in E. coli became available that allowed us to
compare experimentally obtained protein-protein interaction networks of prokaryotes and eukaryotes (i.e.
E. coli and S. cerevisiae). Utilizing binary-Y2H, co-complex and binary literature curated interaction sets in
both organisms we found that characteristics of interaction sets that were determined with the same
experimental methods were strikingly similar. While essentiality is frequently considered a question of a
protein’s increasing number of interactions, we found that binary-Y2H interactions failed to show such a
trend in both organisms. Furthermore, essential genes are enriched in protein complexes in both organisms.
In turn, binary-Y2H interactions hold more bottleneck interactions than co-complex interactions while
both binary-Y2H and co-complex interactions are strongly enriched among co-regulated proteins and
transcription factors. We discuss if such similarities are a consequence of the underlying methodology or
rather reflect truly different biological patterns.

E
. coli is a primary model organism for microbial biology and applied bacteriology, ranging from studies of
fundamental processes to structural genomics and the design of modern antibiotics. Maps of its protein-
protein interaction (PPI) network are therefore of utmost importance for our understanding of its basic

biological functions. Large-scale high-throughput tandem affinity purification approaches followed by mass
spectrometry (AP/MS) have identified the composition of protein complexes in E. coli1,2 but are usually unable
to distinguish if two proteins interact either directly or through other intermediaries. In turn, yeast two-hybrid
(Y2H) approaches do not reveal the composition of a complex but allow an insight into its binary interactions.
Specifically, such a system has been successfully applied to find protein-protein interactions in several eukar-
yotes3–7, prokaryotes8,9, and viruses10,11. Recently, a first map of binary protein-protein interactions in E. coli was
released12 that has been entirely determined by a yeast two-hybrid approach. To date, however, S. cerevisiae
remains the best-studied organism whose interactome has been comprehensively investigated by various experi-
mental means3,7,13–16, allowing a thorough evaluation of the quality of these studies3.

Predominantly, we compare the interactome characteristics of different data sets in E. coli, accounting for
experimentally determined binary-Y2H, co-complex as well as literature curated binary interaction data.
Importantly, we observed surprising differences in the underlying data, suggesting that certain characteristics
are strongly data set specific. Notably, our E. coli specific results strongly resemble analogously made observations
in corresponding protein-protein interaction data sets in S. cerevisiae.

Methods
Protein-protein Interactions. We collected 2,186 binary-Y2H interactions between 1,264 proteins in E. coli that were experimentally
determined using a yeast-two-hybrid approach (Y2H) by Rajagopala et al.12. Furthermore, we utilized a total of 9,399 co-complex
interactions between 2,044 proteins that were experimentally derived from large-scale tandem affinity purification approaches followed by
mass spectrometry (AP/MS) as provided by Hu et al.1 and Butland et al.2. To find interactions Hu et al. used a logistic regression procedure,
accounting for the degree of consistency of co-purified protein pairs. Such an approach balanced the tradeoff between ‘‘spoke’’ and ‘‘matrix’’
representation models of interactions within co-purified groups of proteins to decrease the false discovery rate1. Finally, we obtained 1,929
literature-curated binary interactions between 1,399 proteins provided by Rajagopala et al.12 that were largely curated from small –scale
studies and thus obtained by a multitude of methods, including yeast-two hybrid approaches. As a source of binary-Y2H interactions in yeast
we utilized 2,930 interactions between 2,018 yeast proteins provided by Yu et al.3. As for co-complex interactions we used 9,420 interactions
between 2,935 yeast proteins that were experimentally derived from large-scale tandem affinity purification approaches followed by mass
spectrometry from Krogan et al.13 and Gavin et al.14. Specifically, Krogan et al. used a machine-learning procedure while Gavin et al.
employed a ‘‘spoke’’ model to find interactions. As for a literature curated binary set of yeast interactions we used 3,624 PPIs between 1,873
proteins from the HINT database (Aug. 2013)17 that were mostly determined using yeast-two hybrid approaches.
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Essential Genes. We used 712 essential proteins in E. coli and 1,110 essential genes in
S. cerevisiae from DEG 10, an update of the database of essential genes (DEG) that
collects data about essential genes from the literature18. Note that the E. coli specific
data combines sets from individual studies, each of which reported fewer than 712
essential genes.

Enrichment Analysis as a Function of Degree. We grouped proteins according to
their number of interactions in an underlying protein-protein interaction network.
We represented each group by N$k proteins that had at least k interactions. In each
group we determined the fraction of essential proteins, f$k. As a null model, we
sampled random sets of essential proteins of equal size out of all proteins in the

underlying interaction network. Specifically, we defined E§k~
f§k

fr,§k

as the

enrichment of essential proteins. fr,$k referred to the corresponding random fraction
of essential proteins in the corresponding group where all proteins had at least k
interactions. After averaging E over 1,000 randomizations E . 1 pointed to an
enrichment and vice versa, while E , 1 indicated a random process19.

Protein Complexes. For E. coli, we utilized a set of 517 protein complexes from a co-
affinity purification/mass spectrometry (AP/MS) study1. As for S. cerevisiae, we
collected 408 protein complexes from the CYC2008 database (version 2.0, Aug.
2013)20.

Regulatory Interactions. We used 4,442 regulatory interactions between 187
transcription factors and 1,638 genes in E. coli from RegulonDB (version 8.0)21. As for
S. cerevisiae we utilized 48,082 regulatory interactions between 183 transcription
factors and 6,403 genes from the YEASTRACT database (August 2013)22.

Bottleneck Edges. As a global measure of an edges centrality, we calculated its
betweeness centrality, indicating an interactions appearance in shortest paths
through the whole network. In particular, we defined betweeness centrality cB of an

edge e as cB eð Þ~
X

s=t=t[V

sst eð Þ
sst

, where sst was the number of shortest paths between

proteins s and t while sst (e) was the number of shortest paths running through edge e.
We defined a set of bottleneck edges as the top 10% of interactions with highest
betweeness centrality23.

Interactions between functional classes. Proteins were grouped according to broad
functional classes that were defined by clusters of orthologous groups (COGs)24,25

since COGs provide a consistent classification of bacterial and eukaryotic species
based on orthologous groups. Focusing on a set of protein-protein interactions, we
counted the occurrence of different class combinations8. For each combination of

classes i, j we determined its probability po(i,j)~
nij

N
, where N is the total number of

interactions between classes. As a null-model, we determined an expected probability

of interactions between classes i, j pe(i,j)~
(vivj){

J2
ij

2
N(N{1)

2

. Specifically, vi is the number of

viable proteins in class i (i.e. proteins of class i that are involved in at least one
interaction in the underlying set), and Ji,j is the number of genes that are involved in
both classes. Combining these probabilities, we determined a log-odds ratio

r~
po(1{po){1

pe(1{pe)
{1 . For large samples, we estimated the variance of the odds

distribution as s2~n{1
ij z(N{nij)

{1za{1z(b{a){1 where a~(vivj){
J2

ij

2
and

b~
N(N{1)

2
. In particular, we calculated a P-value for the significance of a link

between two classes by a Z-test, where Z~
r
s

. Specifically, we considered each link

that had a P , 0.058.

Results
To compare different sets of interactions in E. coli, we collected 2,186
binary interactions between 1,264 proteins that were determined
with a yeast-two hybrid approach (binary-Y2H)12. Furthermore,
we accounted for 9,399 experimentally obtained co-complex inter-
actions1,2 that connect 2,044 proteins (co-complex). As for literature
curated binary interactions, we investigated a set of 1,929 interac-
tions12 between 1,399 proteins that were mostly obtained with yeast-
two hybrid approaches.

Essentiality. The importance of a protein in a protein-protein
interaction network is frequently considered a function of its
number of interaction partners. For instance, the so-called
centrality-lethality rule3,26 suggests that central proteins with many
interactions are more likely to be essential than poorly connected
proteins. While highly connected proteins are more often essential in
S. cerevisiae they are also involved in an increasing number of protein
complexes27, suggesting that their essentiality is a consequence of
their involvement in essential complexes28–30. To determine
essentiality-specific characteristics we utilized a set of 712 essential
proteins in E. coli from the DEG database18. While the overlaps
between the sets of proteins that are involved in our different
protein-protein interaction networks of E. coli are considerable, we
surprisingly found an enrichment when we focused on the
corresponding sets of essential interacting genes (Fig. 1A). In
Fig. 1B we determined the enrichment of essential proteins in
groups of increasingly interacting proteins in different interaction
data sets of E. coli. To compare with yeast specific data we used a set
of 2,930 binary-Y2H interactions3, 9,420 co-complex interactions13,14

and 3,624 literature curated binary interactions17. Similarly to yeast3

we observed that essential proteins were no more essential than any
other proteins in binary-Y2H protein-protein interactions in E. coli.

Figure 1 | Enrichment of essential genes in different protein-protein interaction datasets of E. coli. (A) Overlaps between sets of proteins that are

involved in binary-Y2H, co-complex and literature curated binary protein-protein interaction data sets in E. coli, including the number of essential

proteins that are involved in interactions (brackets). (B) Enrichment of essential bacterial proteins as a function of their number of interactions in E. coli

and S. cerevisiae. Notably, we observed that binary-Y2H interactions failed to show an ascending trend compared to literature curated binary and co-

complex interactions in both organisms.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 7187 | DOI: 10.1038/srep07187 2



In Fig. 2A, we determined the overlaps of protein-protein inter-
actions in the given data sets, including interactions between essen-
tial proteins. While the overlap between interactions in the different
sets is limited, interactions between essential proteins appear to fur-
ther deplete overlaps. Starting from essential proteins, we deter-
mined groups of proteins that are a given number of interactions
away in the underlying network. In each bin we calculated the frac-
tion of essential proteins, indicating that essential proteins generally
accumulated in the immediate vicinity of other essential proteins in
all interaction sets of E. coli (Fig. 2B). Notably, enrichments of essen-
tial proteins in the network vicinity of each other was strongest in co-
complex, followed by literature-curated binary and binary-Y2H
interactions, an observation that matches results obtained with cor-
responding interaction data sets in S. cerevisiae3.

The observation that essential proteins predominantly appear in
the vicinity of each other suggested that essential proteins were orga-
nized in subnetworks through their interactions. By randomly pick-
ing sets of essential genes 10,000 times, we determined the observed
and expected sizes of the largest connected components between
essential genes. Fig. 2C indicates that both co-complex and literature
curated binary interactions in E. coli showed significantly larger sub-

networks composed of essential proteins than were randomly
expected (P , 1024), again a result that matches similar observations
in yeast3.

Functional cross-talk. We grouped E. coli and yeast proteins
according to broad functional classes that were defined by clusters
of orthologous groups (COGs)24,25 and counted the occurrence of
inter-class PPIs within the different interaction datasets8. We
determined a log-odds ratio of the observed and expected
frequencies of interactions between proteins of the corresponding
functional classes, allowing us to calculate a P-value with a Z-test (see
Materials and Methods). Fig. 3 shows that interactions mostly
appeared between the same classes in binary-Y2H, co-complex and
literature curated binary data. Interestingly, we found significant
cross-talk between different functions that was dependent on the
species and method used. For instance, both binary-Y2H and co-
complex data show enriched interactions among yeast cell cycle
(letter ‘‘D’’) and cytoskeleton proteins (‘‘Z’’). However, co-complex
and literature-curated binary interactions in yeast also point to
interactions between chromatin proteins and transcription/
replication proteins/RNA processing (Fig. 3). By contrast, the
difference between binary-Y2H and co-complex data is much
more pronounced in E. coli. Here, binary-Y2H interaction data
sets detect the strongest cross-talk signal between transcription and
signal transduction while co-complex data indicates a strong
connection between translation/ribosomes and a number of other
processes. However, given the unusually strong connection of
ribosomal proteins to several other processes we suspect that this
observation is the consequence of an artifact of ribosome-associated
proteins (see discussion).

Protein Complexes. As for a different level of cellular organization,
we utilized a set of 517 protein complexes in E. coli that were obtained
from a co-affinity purification study followed by mass spectrometry
analyses1. As for yeast, we used 408 protein complexes from the
CYC2008 database20 that collects experimentally obtained complex
information from the literature. We wondered whether interactions
in our different data sets are enriched within single complexes or
between complexes (Fig. 4BC). Considering binary-Y2H and co-
complex interactions in both organisms, we counted the number
of inter- and intra-complex interactions. As a random null model
we randomly assigned the same number of proteins to each
corresponding complex 10,000 times. Interactions connecting
complexes appeared less frequently than expected in both
organisms and data types (P , 1024, Fig. 4BC). In turn,
interactions between proteins in the same complex occurred more
frequently than expected (P , 1024, Fig. 4BC). Focusing on
interactions between essential proteins, we found an even stronger
trend in both organisms (P , 1024, Fig. 4BC). In Fig. 4D we
calculated the fraction of essential genes in each complex. As a
null-model, we randomly sampled essential genes 10,000 times.
Notably, complexes that had the lowest and highest fractions of
essential genes were significantly enriched in E. coli. Such a result
was confirmed only for yeast complexes with few essential proteins.

Regulatory interactions. Utilizing 4,442 regulatory interactions
between 187 transcription factors and 1,638 genes in E. coli from
RegulonDB21, we measured the number of interactions that appeared
between co-regulated target genes (Fig. 5A). In addition, we
determined the number of interactions between transcription
factors co-regulating the same target genes (Fig. 5A). As a null
model we randomly assigned the same number of targeted genes
to each corresponding transcription factor 10,000 times. Fig. 5B
indicates that binary-Y2H as well as co-complex interactions
between targets of transcription factors were significantly enriched
(P , 1024). Utilizing 48,082 regulatory interactions between 183
transcription factors and 6,403 genes from the YEASTRACT

Figure 2 | Essential genes in the protein-protein interaction networks of
E. coli. (A) The Venn diagram shows overlaps between the binary-Y2H, co-

complex and literature curated binary interaction networks in E. coli, as

well as interactions between essential genes in these sets (brackets). (B) We

grouped E. coli proteins that were placed a given distance away from

essential proteins in the underlying interaction networks. The fraction of

essential proteins is largest in the immediate vicinity of other essential

proteins. Error bars indicate 95% confidence interval. (C) Observed and

expected sizes of the largest connected component between essential genes

in E. coli. As a null model we randomly sampled essential genes 10,000

times, indicating that the size of the largest component in co-complex and

literature curated binary interaction sets was significantly larger than

randomly expected (P , 1024).
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database22 we obtained similar results in yeast (P , 1024), confirming
that enrichment signals were stronger for interactions between
transcription factors than among their target genes3.

Network topology. As a different measure of the central placement of
interactions we calculated their edge betweeness centrality in a
network that combined binary-Y2H, co-complex and literature-
curated binary interactions in E. coli as well as yeast. Specifically, we
defined a set of bottleneck interactions23 as the top 10% of interactions
with highest centrality (Fig. 6A). To assess if bottlenecks were
preferably provided by binary-Y2H, co-complex or literature
curated binary interactions, we randomly sampled bottleneck edges
10,000 times. Fig. 6B clearly suggests that bottleneck interactions
preferably occurred in the binary-Y2H interaction set in both
organisms (P , 1024), a result that was previously reported in
yeast3. Notably, however, we observed that literature curated binary
interactions in yeast significantly contributed to bottleneck
interactions while we found the opposite in E. coli.

Discussion
Until recently, S. cerevisiae remained the only organism whose inter-
actome has been investigated extensively by multiple experimental

approaches. However, the availability of novel protein-protein inter-
action data in E. coli from different experimental sources offered a
new opportunity to analyze and compare the properties of prokar-
yotic and eukaryotic interaction networks. In particular, we utilized a
recently published set of binary-Y2H interactions that was deter-
mined by a yeast two-hybrid method, an interaction set obtained
from tandem affinity purification approaches followed by mass spec-
trometry as well as literature curated binary interactions in E. coli. In
comparison to yeast specific interactions, we found surprising sim-
ilarities and differences in the various interaction datasets that were
largely congruent on an organism’s level.

Essential proteins. While proteins with many different interaction
partners are more often essential we observed that such a trend was
absent when we considered binary-Y2H interactions in E. coli.
Notably, binary-Y2H interactions in yeast are not enriched in
essential genes among highly connected proteins either3. This
observation may be based on the fact that larger complexes are
more likely to contain essential components while their size leads
to larger degrees, especially when matrix models are used. Both co-
complex protein-protein interaction data sets may contain highly
connected artifacts because of contaminated purifications or
because of unspecific ‘‘sticky’’ proteins, respectively. Specifically,

Figure 3 | Interactions between functional classes. Significant connections between functional classes are mediated by protein-protein interactions. For

each dataset and each class combination a P-value was calculated, reflecting the significance of the interaction density between classes in an

interaction dataset of certain size and class coverage. Functional groups that exhibit cross-talk are highlighted (dotted lines are a guide to the eye).
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yeast two-hybrid approaches are highly sensitive to expression levels
and to auto-activating bait proteins. As a consequence, proteins
appear to have many more biologically relevant binary interaction
partners than actually exist in reality. Furthermore, yeast two-hybrid
approaches may not detect interactions of many essential genes
because they may not interact at all with other proteins. For
instance, metabolic enzymes may only interact with their small
molecule substrates or under certain physiological conditions.

As for properties of essential genes in different interaction data
sets, we observed that essential genes largely accumulate in the vicin-
ity of each other, a characteristic that is valid for both organisms.
Notably, binary-Y2H interactions fail to produce a statistically sig-
nificant size of a connected component that was composed of
essential genes. In both yeast3 and E. coli the largest components in
binary-Y2H interactions were generally smaller than in co-complex
and literature curated binary interactions. The observed difference is
clearly a result of the data models used given that the number of
interactions increases linearly (spoke) or exponentially (matrix) in
AP/MS data. As for literature curated interactions an sociological
bias potentially determines degree: the more a protein is considered
important the more it is studied, and - as a consequence - more
interactions are found.

Interactions within and between protein complexes. Interactions
within protein complexes were significantly enriched, while
interactions between complexes were significantly depleted. When
we considered interactions between essential proteins we found that
this trend was reinforced in both organisms. Since yeast complexes
were reported to show a modular nature of essentiality30–32, our results
indicate that such a behavior is true for different types of interactions
and both pro- and eukaryotes, suggesting that such an observation
potentially represents a universal pattern of biological systems.

Regulatory interactions. Another level of cellular organization is
represented by transcription factor – gene interactions. All
interaction data sets provided significant enrichments of
interactions between targets of the same transcription factor in E.
coli, a result that strongly resembles observations made in yeast3.
Notably, interactions between transcription factors that regulated
the same target genes were enriched in both organisms, suggesting
that transcription factors are preferably wired between each other to
carry out regulation of gene expression. Since enrichment signals
appear similar in binary and co-complex of both organisms, such
transcription factor specific characteristics potentially indicate a
universal pattern.

Figure 4 | Protein complexes and protein-protein interactions. (A) Schematic illustration of interactions that appear between and within complexes. In

(B) E. coli and (C) S. cerevisiae we determined the number of binary-Y2H and co-complex interactions between proteins in the same complex as well as

within complexes. As a random null model we resampled proteins in complexes 10,000 times. Our results in the upper panels indicate that interactions

between complexes appear diluted in all interaction sets (P , 1024) while interactions in the same complexes seem to be enriched (P , 1024).

Analogously, we investigated interactions between essential proteins in both organisms (lower panels), confirming an enrichment of PPIs within

complexes compared to between-complexes in both organisms (P , 1024). In (D) we calculated the fraction of essential genes in each complex. As a null-

model, we randomly sampled essential genes 10,000 times, indicating that complexes generally do not randomly contain essential proteins. Notably,

complexes with a very low/high fraction appear to show a significant enrichment of essential genes.
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Network topology. In a combined network of binary-Y2H, co-
complex and literature curated binary interactions, we found that
binary-Y2H interaction sets in both organisms were significantly
enriched for bottleneck interactions while the opposite held for co-
complex interactions. Since proteins in co-complex interactions are
involved in more interactions, at least theoretically, shortest paths
may be more evenly distributed over different edges, therefore
providing less bottleneck interactions. Notably, a similar result was

previously obtained in yeast3 and may be rooted in the experimental
way interactions have been detected. As mentioned before,
many yeast two-hybrid interactions probably reflect transient
interactions between complexes while the matrix model used for
complexes over-represents interactions within complexes.

Conclusions. Only when equivalent datasets are used, we can
meaningfully compare protein interaction patterns in prokaryotes
and eukaryotes. A new large-scale dataset from E. coli allows us for
the first time to compare binary interaction data to that of yeast.
We find that prokaryotes and eukaryotes (here: yeast) behave
surprisingly similar in a number of network characteristics. Y2H
and AP/MS studies appear to be more different than datasets differ
between prokaryotes and eukaryotes generated by the same methods.
We conclude that the differences in network characteristics between
prokaryotes and eukaryotes are thus likely to be artifacts of the
experimental approaches rather than differences in biology.
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