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Introduction: The assessments of the motor symptoms in Parkinson’s disease (PD) are
usually limited to clinical rating scales (MDS UPDRS III), and it depends on the clinician’s
experience. This study aims to propose a machine learning technique algorithm using the
variables from upper and lower limbs, to classify people with PD from healthy people,
using data from a portable low-cost device (RGB-D camera). And can be used to support
the diagnosis and follow-up of patients in developing countries and remote areas.

Methods: We used KinectreMotion system to capture the spatiotemporal gait data
from 30 patients with PD and 30 healthy age-matched controls in three walking trials.
First, a correlation matrix was made using the variables of upper and lower limbs. After
this, we applied a backward feature selection model using R and Python to determine
the most relevant variables. Three further analyses were done using variables selected
from backward feature selection model (Dataset A), movement disorders specialist
(Dataset B), and all the variables from the dataset (Dataset C). We ran seven machine
learning models for each model. Dataset was divided 80% for algorithm training and
20% for evaluation. Finally, a causal inference model (CIM) using the DoWhy library was
performed on Dataset B due to its accuracy and simplicity.

Results: The Random Forest model is the most accurate for all three variable Datasets
(Dataset A: 81.8%; Dataset B: 83.6%; Dataset C: 84.5%) followed by the support
vector machine. The CIM shows a relation between leg variables and the arms swing
asymmetry (ASA) and a proportional relationship between ASA and the diagnosis of PD
with a robust estimator (1,537).

Conclusions: Machine learning techniques based on objective measures using portable
low-cost devices (KinectreMotion) are useful and accurate to classify patients with
Parkinson’s disease. This method can be used to evaluate patients remotely and help
clinicians make decisions regarding follow-up and treatment.

Keywords: Parkinson’s disease, gait, biomechanics, kinect, depth camera, machine learning

Frontiers in Human Neuroscience | www.frontiersin.org 1 May 2022 | Volume 16 | Article 826376

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2022.826376
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2022.826376&domain=pdf&date_stamp=2022-05-19
https://creativecommons.org/licenses/by/4.0/
mailto:beatriz.munoz@fvl.org.co
https://doi.org/10.3389/fnhum.2022.826376
https://www.frontiersin.org/articles/10.3389/fnhum.2022.826376/full
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Muñoz Ospina et al. Machine Learning Classifiers in PD

INTRODUCTION

Parkinson’s disease (PD) represents the second most prevalent
neurodegenerative disease in the world with an alarming growth
rate in the number of affected individuals estimating that the
number of cases will double between 2015 and 2040 (de Lau
and Breteler, 2006; Tysnes and Storstein, 2017; Dorsey and
Bloem, 2018). PD is clinically characterized by motor symptoms
such as bradykinesia, rigidity, tremor, gait disturbance, and
impaired postural instability (Schneider and Obeso, 2014;
Postuma et al., 2015; Deb et al., 2021). Diagnosis and follow-up
are based on several scales and questionnaires to assess severity
including Movement Disorder Society-Sponsored Revision of
the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS;
Goetz et al., 2008). However, these clinical scales are subjective
with high inter-rater variability between clinicians. Furthermore,
follow-up is also based on self-report questionnaires that imply
recall bias (Deb et al., 2021). In the last 20 years, there
has been great interest in developing objective measurement
focused on early diagnosis, accurate follow-up, evaluation of
motor fluctuations, and prognosis in PD, from which has
arisen technology-based objective measurements (TOMs) as a
complement for clinical assessment (Urcuqui et al., 2018; Deb
et al., 2021).

In PD, changes in gait kinematics and spatiotemporal features
are hallmarks of the disease. Gait analysis is complex and
usually requires a gait and biomechanics laboratory which is
expensive and not globally available for medical consultation
(Urcuqui et al., 2018). Recently, several cost-effective instruments
have been used to assess PD motor symptoms such as
RGB-D cameras (Kinectr). Despite the large number of
TOMs studies and available data, such as inertial measurement
units (IMUS) that do not need a specialized laboratory,
the RGB-D cameras are the most accessible technology in
remote areas for its cost and its simplicity. However, the data
processing and classification methods are still variable upon
the studies.

Machine learning (ML) techniques have been studied
in several medical areas including PD (Sidey-Gibbons and
Sidey-Gibbons, 2019) in order to classify healthy volunteers
from patients using voice analysis (Ozkan, 2016), feet
pressure systems (Abdulhay et al., 2018), RGB-D cameras
(Buongiorno et al., 2019; Jaggy Castaño-Pino et al., 2019),
optoelectronic motion analysis system (Varrecchia et al.,
2021), wearable sensors such as accelerometers or inertial
measurement units (IMU; Yoneyama et al., 2013; Caramia
et al., 2018), walkway pressure analysis (Wahid et al., 2015), and
variables associated with knee and trunk rotation (Varrecchia
et al., 2021). Other studies have been using unsupervised
learning to extract features in the initial stages of the disease
(Singh and Samavedham, 2015), propose a method to obtain
informative correlation-aware signals (Zhang et al., 2021),
and evaluate clustering algorithms to support the prediction
of the disease (Sherly Puspha Annabel et al., 2021). Most
of the studies that aimed to classify healthy people from
PD patients focused solely on leg variables or arm variables
or axial trunk and knee rotation even though the disease

involves all four limbs and the first affected are the arms
(Ospina et al., 2018; Monje et al., 2021).

With the rise of telemedicine in recent years, particularly
after the beginning of the SARS-CoV2 pandemic, never has it
been so important to develop simple assessment methods that
do not require high costs or specialized equipment, particularly
in developing countries where access to specialized medicine
is limited. In addition, telemedicine programs in Parkinson’s
disease are a growing field and gait measurement demands many
challenges to evaluate patients in rural regions and developing
countries in order to ensure quality evaluation. Remote
monitoring with synchronous and asynchronous assessments
included the use of specialized devices and recorded and
uploaded videos, for motor evaluation such as bradykinesia, gait,
and falls (Shalash et al., 2021).

In this work, our aim is to study the causal relationship
between gait features from upper and lower extremities and
assess the performance of a machine learning model to classify
people with PD from healthy subjects using data from a portable
low-cost device (Depth Camera) called KinectreMotion system
in order to support diagnosis and follow-up to patients with PD
in remote areas.

MATERIALS AND METHODS

Design and Participants
The dataset was extracted from a single-center study carried
out between June and December 2016, by the Neurology
Service at the Fundación Valle del Lili academic Hospital in
Cali—Colombia (Muñoz Ospina et al., 2019). We included
spatiotemporal gait data from 30 patients with PD and
30 healthy age-matched controls. Each patient was evaluated
by a movement disorder specialist and met the criteria from
the UK Parkinson’s Disease Society Brain Bank diagnostic
criteria. No participants had major features that affected
their gait (major orthopedic surgeries, osteoarthritis, other
neuromuscular disorders, or walking aids) All participants
with PD were treated with dopaminergic agonists and
were evaluated in the ‘‘on’’ state. Institutional review
board approval was obtained prior to starting the study
and all participants provided written informed consent
before participation.

Gait data were obtained from previous studies using
an RGB-D camera (KinectreMotion) coupled with a signal
processing software. Subjects underwent a single gait evaluation
session during which each subject was asked to walk at their
preferred speed during three consecutive walking trials. The
measurements were made in a corridor 4 m long and 1.5 m wide
free of interference. The distance allowed for Kinectr to record a
minimum of one full gait cycle per limb. Figure 1 shows the setup
during a measurement campaign in a rural area in the southwest
of the country.

As indicated in previous studies we used wavelet techniques to
extract gait phases and generate several spatio/temporal variables
(see Table 1). These variables were obtained based on a wavelet
decomposition using a Daubechies wavelet (Db8; Jaggy Castaño-
Pino et al., 2019).
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FIGURE 1 | RGB-D camera setup and gait evaluation zone.

TABLE 1 | Gait variables definition.

Arms variables

Swing magnitude (left/right) Distance taken by the wrist from the maximum anterior to the maximum posterior point during an arm
swing cycle.

Swing time (left/right) Time taken by the wrist to travel the distance between the maximum anterior and maximum posterior points
during an arm swing cycle.

Swing speed (left/right) Calculated as the distance traveled by the arm (arm swing) per unit of time (arm time)

Arm swing asymmetry (ASA; Zifchock et al., 2008) ASA =

[
45◦−arct

(
Arm swing more
Arm swing less

)]
90◦ × 100

Leg variables

Global gait speed Calculated as the distance traveled (test distance) per unit of time (test time)

Total time (left/right) Time during which the ankle (left/right) was in the motion capture area.

Total distance (left/right) Distance during which the ankle (left/right) was in the motion capture area.

Total swing time (left/right) Total time while the foot (left/right) was in the swing phase.

Total stance time (left/right) Total time while the foot (left/right) was in the stance phase.

Swing time (left/right) Time, while one foot left/right, was on swing phase during 1 leg gait cycle.

Stance time(left/right) Time while one foot (left/right) was on stance phase during 1 leg gait cycle.

Number of steps (left/right) Number of steps taken by one foot (left/right) during the test.

Step length (left/right) Distance traveled by one foot (left/right) during 1 step.

ASA: arm swing more is the value of the arm’s swing magnitude with the highest value. It is expressed in percentages.

Preprocessing Features
As we aimed to study arms and legs variables (one dataset for
each set of features), the integration of all the data was made

using a unique ID for each patient and the result was a dataset
of 620 records and 28 features. The join presented 96 records
without values that were excluded during the study. After the
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filtering process, the dataset had a shape of 554 × 28; 37% of the
dataset corresponded to healthy controls and 63% to PD patients.

Two datasets were generated with the same shape for
further analysis: one with normalized information because this
is a prerequisite for some machine learning algorithms and
the other set of information without normalizing technique.
For normalization we used the open library ClusterSim
(Walesiak and Dudek, 2020) which uses the following
formula: (x−mean)√

(sum(x−mean)2
.

Exploratory Analysis
The data exploration included an evaluation between gait
variables using a correlation matrix; three thresholds (0.35, 0.4,
and 0.9) were selected randomly from a range of 0–1. Each value
was analyzed, the correlations higher than the threshold 0.9 did
not show similarity in the variables related to arms and legs.
Using the value of 0.4 the features presented a similarity; the
highest similarities between upper and lower extremities were
obtained using 0.35 as the correlation threshold. Scatter plots
were created using the correlation matrix. Backward and forward
feature selection models were applied using R and Python to
determine the most important variables for further analysis,
especially to perform a partial correlation analysis with different
sets of features. The significance level selected was 5% for all the
variables in the backward feature selection process.

Machine Learning and Evaluation
Three further analyses were done using variables selected from:
Backward models (Dataset A), movement disorders specialist
(Dataset B), and all the variables from the dataset (Dataset C).

Dataset A: In order to find the most important variables, a
backward elimination process for all the models used in this
research was run for the full set of variables and the results were:
Left-arm magnitude, arm swing asymmetry (ASA; Zifchock et al.,
2008), left swing time, left length of step.

Dataset B: Eight variables were selected (Swing magnitude
of both arms, swing time of both legs, step length of both
feet, ASA, and global gait speed) by a movement disorder

specialist according to their clinical relevance to PD diagnosis
and follow-up.

Dataset C: All variables were included in this dataset.
Seven machine learning algorithms were chosen based on the

results of previous studies (Urcuqui et al., 2018; Reyes et al.,
2019; Alzubaidi et al., 2021). Six of the selected algorithms were
trained using R statistical software (logistic regression, decision
tree without processing, pre-pruning decision tree, post-pruning
decision tree, naive Bayes, and random forest). Using Python, a
support vector machine model was trained (see Table 2: machine
learning parameters and commands for execution).

The experiments applied hold-out (a train set, validation
set, and testing set were made) and K-fold cross-validation to
reduce overfitting. The dataset was divided into: 10 records
for final validation, 80% for algorithm training, and 20%
for testing. The cross-validation used k iterations equal
to 5 to include different sets of information during the
training and validation phases. Classification metrics used
in this study for the testing phase were accuracy, false-
positive ratio, false negative ratio, and Cohen’s Kappa,
the latter as an evaluation metric to evaluate the model’s
performance against the imbalance of the values from the
dependent variables.

Causal Inference Model
We decided to find if there was some causal relationship between
the variables. For this task, we used the DoWhy library (Sharma
and Kiciman, 2020) and applied the causal inference model
(CIM). The causal model was applied to each relevant variable
of the selected dataset.

The DoWhy library is a Python library developed by
Microsoft with the aim to spark causal thinking and analysis.
The main idea of the DoWhy library is to model and validate
causal assumptions testing these assumptions for any estimation
method. The library is based on the Structural Causal Model
theory proposed by Pearl (1995) and implements a refutation
API to simplify the analysis for non-experts in this area (see
Supplementary Material for details on the procedure).

TABLE 2 | Machine learning parameters and commands for execution.

Model Dataset C Dataset B Dataset A

Logistic regression method=“glmStepAIC”
Direction= “forward”
preprocess = c (“center”, “scale”)
trace = TRUE,
AIC = 607.49

method=“glmStepAIC”
Direction= “forward”
preprocess = c (“center”, “scale”)
trace = TRUE,
AIC = 621.4

method=“glmStepAIC”
Direction= “forward”
preprocess = c (“center”, “scale”)
trace = TRUE,
AIC = 620.67

Support Vector Machine Kernel = rbf
C = 5
Gamma = 0.05

Kernel = rbf
C = 10
Gamma = 0.05

Kernel = rbf
C = 10
Gamma = 0.05

Decision tree without processing CP = 0.042 CP = 0.036 CP = 0.027

Decision tree pre-pruning Depth = 5 Depth = 8 Depth = 7

Decision tree post-pruning CP = 0.042 CP = 0.036 CP = 0.054

Naïve Bayes Laplace = 0
UserKernel = TRUE
Adjust = 1

Laplace = 0
UserKernel = TRUE
Adjust = 1

Laplace = 0
UserKernel = TRUE
Adjust = 1

Random Forest Mtry = 3
nTree = 1500

Mtry = 2
nTree = 1500

Mtry = 2
nTree = 1500
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RESULTS

We included data from 30 patients with PD, 17 (57%) men, and
30 healthy age-matched controls. Both groups had a median age
of 66 years (IQR 59–75). The median duration of the disease was
5 years (IQR 1–7). Hoehn and Yahr stage classification was stage
I for 17% of the patients, stage II for 73%, and stage III for the
remaining 10%. The mean of MDS-UPDRS part III was 39.06
(±13.74; see Table 3). We retained a dataset with 554 records and
28 variables, we did not exclude outliers to simulate real clinical
situations.

First, we conducted an exploratory analysis using a correlation
matrix to identify the most relevant variables. We reduced data
based on the degree of correlation, retaining only variables with
a correlation greater than 0.35 (see Figure 2).

Based on the correlation matrix we obtained several scatter
plots (see Figure 3).

Variable Selection
Using the Backward feature selection model, the most relevant
variables were: (1) swing magnitude of left arm; (2) swing time
of left leg; (3) left step length; and (4) arm swing asymmetry
(ASA). Based on previous studies and clinical expertise, a dataset
was created (B) to perform further analysis with some selected
variables: swing magnitude of both arms, swing time of both legs,
step length of both feet, arm swing asymmetry (ASA), and global
gait speed.

Machine Learning Results
Results from the coefficient of concordance Kappa and accuracy
for each model using each set of variables for the test dataset are
shown in Table 4.

As we can see, the Random Forest model is the most accurate
for all three variable Datasets (Dataset A: 81.8%; Dataset B:
83.6%; Dataset C: 84.5%) followed by the support vector machine
for both, A and B datasets, and decision tree pre-pruning for

TABLE 3 | Clinical features of the sample.

PD patients Healthy
controls

p-value

Age 66 (IQR 59–75) 66 (IQR 59–75) 0.88
Sex:
Male
Female

17 (57%)
13 (43%)

19 (63%)
11 (36%)

0.60

Disease duration
(years)

5 (IQR 1–7) -

Hoehn and Yahr
I
II
III

5 (17%)
22 (73%)
3 (10%)

-

MoCA
Left side symptoms
Right side symptoms
Symmetrical

22 (IQR 16–26)
17/30 (57%)
11/30 (37%)
2/30 (7%)

22.5 (IQR 21–24) 0.57

MDS-UPDRS III 39.06 (±13.74) -
FOG-Q 6.73 (± 4.95) -

MoCA, Montréal cognitive Assessment; FOG-Q, Freezing of gait questionnaire. MDS-
UPDRS part III: movement disorder society sponsored revision of the Unified Parkinson’s
Disease Rating Scale. The laterality of the symptoms was obtained based on the MDS-
UPDRS part III.

dataset C. Results showing the degree of false positive and false
negative are shown for each model and each set of variables in
Table 4.

In order to verify the accuracy of the model we selected
10 aleatory data from the sample (validation records), we
compared the classification between patient and control that the
algorithm was able to predict vs. the real diagnosis. The accuracy
was 90% with only one false positive case.

Relationship Between Arms and Legs
Variables
Due to its accuracy (83.6%) and simplicity (eight variables),
dataset B was chosen to run the CIM. Using this model and the
DoWhy library relationships between leg gait variables and arm
swing variables were analyzed (Figure 4).

Causal inference estimator results show that there is a
proportional relationship between ASA and the diagnosis of
PD (estimator: 1,536). This can be interpreted as every time
the classifier goes up 1 unit (the subject is diagnosed with
PD), ASA goes up 1,536 units. To verify the robustness of
this estimation three refuters tests were calculated. When
‘‘random common cause refuter’’ is applied to this estimator
the results do not significantly vary (1,520), the same happens
with ‘‘data subset refuter’’ (1,531) which implies the result is
robust. In the placebo treatment refuter, the result for ASA is
0.00436 which is very close to 0. This also means the estimator
is robust (see Table 5). That is why based on the DoWhy
library, ASA is the most representative variable in the causal
inference model.

DISCUSSION

The main objective of this study was to propose a machine
learning-based algorithm to classify the patients with PD
from the healthy controls, using a portable RGB-D camera
(KinectreMotion capture system). These results are in
line with our attempt to explore other ways to assess the
gait variables using a low-cost system that can be used
during medical consultation in a developing country.
According to our previous results, this machine learning-
based algorithm will improve the data analytical and clinical
efforts to analyze disease-relevant information for physicians
and patients.

Correlations and Variable Exploration
As expected there is a positive strong correlation between
arm speed and arm swing magnitude which represents that
some of the normal dynamics of human gait is preserved
even in PD patients. Despite the correlation of magnitude
between both arms being weak and positive, this could be
explained by the limb movement asymmetry secondary to
the motor symptoms of the disease (increased rigidity and
bradykinesia) predominantly affecting only one body side
in the PD group. This pathological asymmetry between left
and right arm swing magnitudes is represented by the ASA
coefficient which is one of the earliest clinical manifestations of
PD (Mirelman et al., 2016).
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FIGURE 2 | Correlation matrix using gait variables.

Regarding the results of the non-PD group, controls exhibit a
similar speed in both upper limbs, which could be related to the
normal pattern of gait unaffected by the disease (see Figure 3).

Variable Selection and Dataset
Construction
Variables were selected according to different criteria into
three datasets. When the backward technique was applied
predominantly left variables (arm swing magnitude, step length,
and swing time) were selected, which could be related to the
prevalence of left-sided motor symptoms in our sample of PD
patients (17/30; 57%).

Also, the gait variables selected by the backward feature
selection model are related to the clinical changes expected in
PD and features needed to fulfill diagnostic criteria: PD patients
move their arms and legs more slowly (bradykinesia) and stiffy

(rigidity) than controls, for this reason, the magnitude of the
arm swing, the time of the leg swing and the step length differ
significantly from the healthy-controls.

Furthermore, the selection of both arm and leg variables
suggests alterations in the motor pattern of upper and lower
limbs. These complex changes in the gait dynamics indicate that
objective examination of gait should consider multiple motor
variables of each limb. This consideration is consistent with
clinical environments where the patient diagnosis and follow-up
are based on a full-body examination using the MDS-UPDRS
part III (Goetz et al., 2008; Postuma et al., 2015).

Machine Learning Algorithm
Our results show that it is possible to classify patients from
controls using different datasets processed by multiple machine
learning techniques with different accuracy levels.
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FIGURE 3 | Scatter plot using arm swing speed comparing controls and Parkinson’s disease patients: green curve represents the regression curve of the left and
right arms swing speed in Parkinson’s disease patients. The red curve represents the regression curve of the left and right arms swing speed in healthy subjects.

TABLE 4 | Confusion matrix results showing kappa, accuracy, false positive, and false negative rate for each machine learning model using the test dataset.

Kappa Accuracy False positive False negative

A B C A B C A B C A B C

Logistic regression 0.433 0.415 0.400 0.745 0.736 0.718 0.304 0.324 0.381 0.234 0.237 0.221
Support vector machine 0.487 0.572 0.347 0.766 0.802 0.706 0.301 0.204 0.259 0.432 0.323 0.373
Decision tree without processing 0.404 0.388 0.268 0.727 0.718 0.654 0.352 0.369 0.466 0.233 0.237 0.269
Decision tree pre-pruning 0.404 0.471 0.476 0.727 0.745 0.745 0.37 0.362 0.368 0.188 0.175 0.164
Decision tree post-pruning 0.449 0.388 0.268 0.681 0.718 0.654 0.429 0.369 0.466 0.25 0.237 0.269
Naïve Bayes 0.466 0.423 0.414 0.745 0.718 0.690 0.356 0.4 0.448 0.185 0.184 0.094
Random Forest 0.611 0.650 0.661 0.818 0.836 0.845 0.244 0.22 0.167 0.25 0.131 0.149

A = model using backward selected variables; B = model using expertise selected variables; C = model using all gait variables.

Although dataset C had the best performance, dataset B was
chosen for having a high accuracy with a low number of variables,
which facilitates the data acquisition and processing.

The clinician accuracy for the diagnosis of Parkinson’s disease
varies upon studies, however a systematic review showed that
clinical diagnosis for PD in non-experts is 73.8% (67.8%–79.6%);
for a movement disorder expert at first consult is 79.6%
(46%–95.1%) and 83.9% at follow-up (69.7%–92.6%). Also,
the accuracy for the UK Parkinson’s Disease Society Brain
Bank diagnostic criteria is 82.7% (62.6%–93%; Rizzo et al.,
2016) with a high sensibility (90%) but a low specificity
(30%–40%; Marsili et al., 2018). With an accuracy of 83.3%,
the selected random forest machine learning algorithm is

not far from the clinical reality in the ideal settings. These
selected variables are closely related to the PD diagnostic criteria
because they represent surrogate measures of the slowness
of movement (bradykinesia), asymmetry of arm swing, and
rigidity.

The Gait Is Intricate: The Causal Inference
Estimator
Although much is known about the gait pattern, asymmetry of
arm swing (ASA) is a clinical characteristic that has been widely
used in the last decade to describe the affected motor central
pattern in PD patients (Lewek et al., 2010; Huang et al., 2012;
Roggendorf et al., 2012; Mirelman et al., 2016). According to
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FIGURE 4 | Causal inference model. Dashed arrows show the causal relation identified by the model between leg and arms gait variables with the diagnosis of PD
(PD-Classifier). Continued lines show the causal relations identified by the model between arms and legs gait variables.

TABLE 5 | Causal inference model estimators and refuters.

Estimator Refuter

Random common Placebo treatment Data subset

Left arm swing magnitude −1.403 −1.397 0.011 1.415
Right arm swing magnitude −1.791 −1.732 0.045 −1.812
Arm swing asymmetry 1.537 1.521 0.005 1.531
Global Gait speed −0.637 −0.638 −0.021 −0.638
Left foot swing time −0.109 −0.103 −0.008 −0.110
Left foot step length −0.464 −0.464 0.010 −0.464
Right foot swing time −0.120 −0.124 −0.003 −0.111
Right foot step length −0.386 −0.390 −0.015 −0.389

our causal inference estimator, there is a relation between leg
variables and the symmetry of the arms which represents a new
opportunity in the research of these dynamics, particularly in
pathological conditions such as PD.

Finding Differences Between PD Patients
and Controls
As seen in the causal inference estimator, there are some
unobserved confounders and other variables that could explain
some of the changes secondary to PD, as seen in other
neurodegenerative diseases, its complexity, and inter-patient
variability difficulties to obtain higher accuracy levels. The
challenge of new methods of signal processing and machine
learning in clinical research is helping clinicians to achieve
clinically meaningful technology-based objective measures
(TOMs; Espay et al., 2016).

Related Work
Prior works were made using RBG-D cameras to classify PD
patients, the variables selected included stride length, age, gait
speed, stance time, step length, distance, cycle time, and swing
time. The model that had the best accuracy (82%) was Random
Forest. This includes a larger number of variables and not all of
them are related to the clinical reality, also no further analysis was
made (Urcuqui et al., 2018).

As reported in the literature other studies used RBG-D
cameras to classify PD patients, but they used other
methods. One of them used neural networks and cross-
validation using the variables of gait velocity and stride
length with an accuracy of 97.2% (Ťupa et al., 2015) or
another classification method (the Bayesian), with a maximum
accuracy of 94.1% using the stride length and age (Procházka
et al., 2015). Differences could be also due to different
preprocessing, filtering and exploration of the data. However,
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other models reported in the literature used only variables
from legs.

Other studies used foot pressure sensors and selected the
variables of stride time, stance time, swing time, and foot strike
profile to classify the controls from the PD patients with an
accuracy of 92.7% (Abdulhay et al., 2018). Similar accuracy
(92.6%) was found with a normalized multiple regression
and Random forest using stance time, stride length, time
of total stance, and cadence with the same type of device
(Wahid et al., 2015).

The arm swing analysis has been a point of interest in the
study of PD. Previous studies confirm that the arms swing
magnitude and speed are significantly reduced in the PD for
both limbs (Jaggy Castaño-Pino et al., 2019). On the other
hand, several studies have been made with wearable technology
(Inertial movement unit (IMU), accelerometers). An arm swing
asymmetry (ASA) can also be extracted with accelerometers,
it is calculated with the root mean square (RMS) differences
between arm movements. The ASA and RMS significantly
differ in PD patients. This could be used in future studies
(Rincón et al., 2020).

Advantages, Limitations, and Future Work
The KinectreMotion system is a portable RGB Camera that
can be used in different scenarios (Figure 1) and does not
require a specialized gait laboratory. For that reason, this
technology can be used as a complement to telemedicine in
places without specialized medicine to support the diagnosis
and management of patients’ PD. Our findings suggest
that in the future it could be considered to employ these
measures and algorithms to complement Parkinson’s disease
diagnosis as well as to adapt the algorithms to evaluate
disease progression, clinical subtypes, follow-up, response to
treatment and correlate with clinical rating scales such as MDS-
UPDRS.

Some limitations of the study were the sample size
which limited the training of the algorithms to create a
more accurate and robust model and only one dataset was
used for training the algorithms which could also limit
the results. Also, no gait speed matching procedure was
implemented, however, some spatio-temporal gait parameters
are speed-dependent which may have led to overrepresenting
some of the gait variables in the backward feature selection
model. Furthermore, some machine learning algorithms
described in previous studies for classification between PD
and healthy controls were not implemented such as artificial
neural networks (ANN) and K-nearest neighbor (K-NN).
The first was implemented in the first stages of the study,
however, their results were similar to simple statistical
methods with no machine learning and no further analysis
was performed. The latter is a different machine learning
algorithm because it does not save information, it cannot be
trained. These limitations will be considered in the development
of future studies.

Further studies are needed to explore the use of RGB-D
cameras and machine learning algorithms for follow-up and
treatment response and more data is needed to improve the

machine learning training which will allow to achieve higher
accuracy.

CONCLUSIONS

This study shows how machine learning techniques based
on objective measures using portable low-cost devices
(KinectreMotion) are useful to classify patients with Parkinson’s
disease. This proposed method can be used to evaluate patients
remotely and help clinicians make decisions regarding follow-up
and treatment.
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