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A B S T R A C T   

Background and objective: Systemic autoinflammatory diseases (SAIDs) are characterized by widespread inflam
mation, but for most of them there is a lack of specific biomarkers for accurate diagnosis. Although a number of 
machine learning algorithms have been used to analyze SAID datasets, aiding in the discovery of novel bio
markers, there is a growing recognition of the importance of SAID timeseries clustering, as it can capture the 
temporal dynamics of gene expression patterns. 
Methodology: This paper proposes a novel clustering methodology to efficiently associate three-dimensional data. 
The algorithm utilizes competitive learning to create a self-organizing neural network and adjust neuron posi
tions in time-dependent and high dimensional feature space in order to assign them as clustering centers. The 
quantitative evaluation of the clustering was based on well-known clustering indices. Furthermore, a differential 
expression analysis and classification pipeline was employed to assess the capability of the proposed method
ology to extract more accurate pathway-specific genes from its clusters. For that, a comparative analysis was also 
conducted against a heuristic timeseries clustering method. 
Results: The proposed methodology achieved better overall clustering indices scores and classification metrics 
using genes derived from its clusters. Notable cases include a threefold increase in the Calinski-Harabasz clus
tering index, a twofold improvement in the Davies–Bouldin clustering index and a ∼ 60% increase in the clas
sification specificity score. 
Conclusion: A novel clustering methodology was developed and applied on several gene expression timeseries 
datasets from systemic autoinflammatory diseases, and its ability to efficiently produce well separated clusters 
compared to existing heuristic methods was demonstrated.   

1. Introduction 

Systemic autoinflammatory diseases (SAIDs) refer to a collection of 
uncommon disorders that can affect individuals of any age. These con
ditions are characterized by widespread inflammation [1]. The physical 
symptoms of SAIDs primarily involve fever, skin rashes, joint pain, and 
swelling. The dysregulation of the innate immune system, often caused 
by genetic mutations, plays a significant role in these disorders [2,3]. 
Approximately 40–60% of patients with typical SAID symptoms face 
challenges in receiving a definitive diagnosis [4]. The diagnosis process 
usually involves a clinical evaluation, ruling out other potential 

disorders. Consequently, delays in diagnosis and inadequate treatment 
decisions are common for individuals with SAID-related conditions. One 
notable distinction between SAIDs and autoimmune diseases is the lack 
of specific biomarkers for diagnosing most of the SAIDs. Unlike auto
immune diseases where autoantibodies serve as diagnostic tools, SAIDs 
currently lack such defining markers. This further adds to the 
complexity of diagnosing SAIDs and underscores the need for continued 
research and advancements in the field to improve diagnostic accuracy 
and facilitate timely interventions for affected individuals. 

Various computational techniques have been employed for the 
identification of biomarkers in SAIDs. These techniques leverage the 
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power of computational analysis and data processing to identify pat
terns, relationships, and potential markers that can aid in the diagnosis 
and understanding of SAIDs. In recent years, omics technologies, such as 
transcriptomics [5,6] and proteomics [7–11] have contributed to SAID 
biomarker discovery. These techniques generate large-scale molecular 
data that can be analyzed computationally to identify differentially 
expressed genes, proteins, or metabolites associated with SAIDs. Ma
chine learning (ML) algorithms have also been utilized to analyze 
different SAID datasets. These computational methods can process large 
and complex datasets, extracting meaningful patterns and relationships 
that may contribute to the understanding and diagnosis of SAIDs. An 
important application of ML in SAID biomarker identification is feature 
selection [12,13]. With high-dimensional datasets, including genomic or 
omics data, it is crucial to identify the most informative features or 
variables associated with SAIDs. Such algorithms can evaluate the 
relevance and contribution of each feature and select a subset of features 
that are most discriminatory between SAID and non-SAID samples. ML 
can also be applied to identify potential novel biomarkers by leveraging 
unsupervised learning techniques [14,15]. These methods, such as 
clustering or dimensionality reduction algorithms like principal 
component analysis, can group samples based on shared characteristics 
or identify hidden patterns within the data. By exploring the resulting 
clusters or patterns, previously unrecognized subtypes, or molecular 
signatures of SAIDs can be uncovered, potentially leading to the dis
covery of new biomarkers. 

While clustering techniques have been applied to SAIDs datasets, the 
research can be greatly improved with timeseries clustering techniques, 
considering SAID patients’ gene expression data across multiple time
points. SAIDs are dynamic conditions characterized by temporal varia
tions in gene expression patterns, thus capturing the corresponding 
temporal dynamics is crucial for a comprehensive understanding of the 
disease progression and treatment response. Timeseries clustering could 
analyze gene expression profiles over time and identify distinct clusters 
which reflect different stages or responses within SAID patients. The 
existing literature offers a scarce selection of publicly available tools for 
clustering gene expression timeseries data. One such tool is TimeClust 
[16], which focuses on clustering genes according to their temporal 
expression profiles. Additionally, Clust [17] is a gene clustering software 
that aims to extract optimal co-expressed gene sets. However, these tools 
are primarily designed for gene-level clustering and do not specifically 
address the clustering of multiple patients utilizing the different time
points. A heuristic approach has been employed in [14] to cluster 
timeseries gene expression data. The authors proposed a two-step 
methodology involving the utilization of a two-phase self-organizing 
map (SOM) to cluster timeseries data, considering each timepoint 
independently. However, we contend that this sequential application of 
SOMs across different timepoints introduces significant biases that may 
compromise the accuracy and comprehensiveness of the clustering re
sults. Consequently, our objective is to establish a robust and unbiased 
methodology that surpasses these limitations. To this end, we have 
developed an innovative algorithm that capitalizes on the integration of 
the temporal dimension, aiming to overcome the aforementioned biases 
and enhance the overall clustering process. 

Here, we present a novel algorithm designed for clustering 3D data 
(Clust3D), such as SAIDs gene expression timeseries. Our algorithm 
enables the clustering of patients based on their gene expression profiles 
at different timepoints. By grouping patients according to the similarity 
of their gene profile changes over time, this methodology provides a 
robust foundation for exploratory analysis. Notably, to the best of our 
knowledge, there is currently no publicly available tool or clustering 
algorithm specifically tailored for the simultaneous clustering of SAID 
patients across multiple time points. This work fills this gap by 
employing a self-adjusting neural network approach to effectively 
cluster SAID patients with time-related gene expressions. The aim of this 
study is to provide a novel computational framework that addresses the 
three-dimensional matrix structure and compare its clustering 

capabilities with the existing literature. This computational framework 
differentiates Clust3D from other time-addressing methods, like spatial- 
temporal clustering [18], where the spatial and temporal information is 
incorporated in the same two-dimensional matrix [19]. Hence, the dis
tinguishing feature of this clustering methodology lies in its capability 
for efficient multi-timepoint and multi-dimensional clustering. 

The subsequent sections first describe the design and implementa
tion of the Clust3D algorithm. Then, a comparative analysis is performed 
between Clust3D, and the heuristic approach employed in [14]. The 
evaluation of the clustering outcomes from both methodologies is 
segregated into two distinct sections. Firstly, the clustering outputs are 
assessed by calculating various clustering indices, enabling a quantita
tive assessment. Secondly, a comprehensive workflow for differential 
expression (DE) analysis is employed to extract potential 
pathway-specific genes from the clusters. Additionally, a subsequent 
binary classification task is undertaken, to distinguish between disease 
and healthy samples. By leveraging this pipeline, the clustering perfor
mance of each methodology is evaluated based on classification metrics, 
employing the genes extracted from their respective clustermaps as 
classification features. Finally, in the last section, some prominent 
findings and remarks are discussed regarding the quantitative and 
qualitative analysis of the clustermaps of each methodology. 

2. Materials and methods 

2.1. Timeseries gene expression data 

Clust3D was tested on three publicly available timeseries datasets 
from the Gene Expression Omnibus (GEO) [20], containing gene 
expression data from systemic autoinflammatory disease (SAID) pa
tients. Specifically, GSE80060 [21] provides gene expression data of the 
whole blood of systemic juvenile idiopathic arthritis (SJIA) patients 
treated with canakinumab, or placebo and age matched healthy samples 
(148 disease samples and 22 healthy samples). This dataset contains two 
different time points corresponding to pre and post treatment. 
GSE97075 [22] provides gene expression data of hyperimmunoglobulin 
D syndrome (HIDS) patients with periodic fever syndrome treated with 
canakinumab (30 disease samples and 15 healthy samples). This dataset 
contains six time points corresponding to different treatment stages. 
Finally, GSE9863 [23] provides gene expression data for Kawasaki pa
tients (60 disease samples and no healthy ones). It contains three 
different time points corresponding to different stages of the disease. To 
our knowledge, these are the only publicly available SAID timeseries 
datasets during the validation process of the proposed method 
(November 2023). 

Clust3D works for timeseries data. As such, only the disease samples 
from each dataset are being clustered and not the healthy samples, since 
the datasets don’t include temporal information about the healthy 
samples. Therefore, 148 samples (74 patients) and 54,675 genes were 
considered from GSE80060, 30 samples (5 patients) and 47,323 genes 
from GSE97075 and 60 samples (20 patients) and 37,632 genes 
fromGSE9863. Table 1 shows the number of timepoints, patients, GEO 
Sample Accessions (GSMs), and genes for each dataset. 

Table 1 
Number of timepoints, patients, GSMs, and genes eligible for clustering for each 
dataset.  

Dataset No. of 
timepoints 
(T) 

No. of 
patients 
(P) 

No. of 
GSMs 
(S) 

No. of genes 
(G)  

GSE80060  2  74  148  54,675 
GSE97075  6  5  30  47,323 
GSE9863  3  20  60  37,632  
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2.2. Design and implementation 

The Clust3D framework is divided into five modules: input files, data 
preprocessing, neuron initialization, neural network training and clus
tering. The overall workflow is described below, while Clust3D’s mod
ules are shown in Fig. 1. Clust3D is implemented in Python using the 
external libraries of NumPy [24], pandas [25], scikit-learn [26] and 
matplotlib [27]. 

2.2.1. Input files 
Two input files have to be provided to the Clust3D algorithm. The 

first one is the user-processed GEO Series Matrix File, which contains the 
GSMs at all timepoints. This is a G × S matrix, where G is the number of 
genes and S is the number of GSMs. The second one is the user-created 
correlation file, in which the patient labels and their corresponding 
GSMs at the different timepoints are specified. This is a P × T matrix, 
where P is the number of patients and T the number of timepoints. 

2.2.2. Data preprocessing module 
Clust3D creates the main 3D data matrix, based on the two previous 

files. This matrix contains all the information, retaining both the tem
poral and spatial dimensions for all patients. Contrary to trivial data 
formatting where each sample is represented as a vector, in Clust3D each 
sample (patient) is represented as a 2D matrix, with the time dimension 
(timepoints) being represented as rows and the spatial dimension 
(genes) as columns. The final size of the matrix is P × T × G (Fig. 2), 
where P is the number of patients, T is the number of timepoints and G is 
the number of genes. 

Following its creation, a default 0 - 1 scale normalization and a user- 
selected dimensionality reduction method is applied to the 3D matrix for 
efficient training. In Clust3D a variety of dimensionality reduction 
techniques is provided, with a Principal Component Analysis (PCA) with 
two components being the default, for the best noise-reduction and 
visualization. Additionally, Clust3D offers an automated selection of the 
number of PCA components using the mathematical elbow rule [28]. 
More specifically, the explained variance is calculated for a large num
ber of components, and the optimal cut-off number is selected. This is 
the elbow point at approximately 45◦ to the x axis, on the normalized 
PCA explained variance plot. The PCA is performed once on the entirety 
of the dataset, which has been transformed to an S x G matrix for 
computing purposes. Due to this matrix containing all the timepoints, 
each timepoint has its features reduced (G’). This constitutes as a regular 
PCA application, applying its feature reducing effect on every timepoint. 
Following the PCA application, the matrix is transformed back to its 
original 3D shape (P x T x G’), with reduced features. No reduction in the 
time dimension is performed. 

2.2.3. Neuron initialization module 
Like in many well-established clustering algorithms, in Clust3D the 

user can specify the number of neurons (number of clusters) beforehand. 
Moreover, Clust3D provides the functionality of automatically selecting 
the optimal number of neurons, based on the elbow rule on the sum of 
squared error (SSE) plot. This is the algorithm’s default behavior. 

Self-organizing maps require neuron initialization for their training. 
Grid-like neuron initialization is not feasible with multiple timepoints, 
and as such a different approach has to be implemented. Clust3D offers 
the choice of random initialization of the neurons as 2D matrices, but 
also a data point-specific initialization. In the latter, it randomly selects 
existing data points and calculates their average in-between Euclidean 
distance. The combination with the highest average distance is selected 
as the chosen data points to initialize the neurons. This way, Clust3D 
initializes the neurons by utilizing the largest possible span in the time- 
related, high dimensionality space. The number of different combina
tions to be calculated can be dictated by the user, with higher numbers 
resulting in the minimization of the stochasticity and higher consistency. 

2.2.4. Neural network training module 
Regarding the training of the neural network, competitive learning 

[29] is employed. The Euclidean distance is first computed between an 
input sample and all the neurons. Then, the neuron that has the smallest 
distance to the sample is declared as the best matching unit (BMU) and 
its weights along with its nearest neighbor neurons (self-organizing) are 
re-adjusted to closer mimic the input sample (Fig. 3). The novelty here is 
the introduction of the matrix norms as distance concepts. Conventional 
distance metrics like the Euclidean, are typically calculated between 

Fig. 1. The modules of Clust3D.  

Fig. 2. Algebraic representation of the 3D data matrix. Indices t, g and p add up 
to T, G and P, respectively. Each curly bracket represents a patient. 
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vectors. In our case, where the data points are matrices, the distance 
between two data points is defined as the mathematical norm of the 
matrix of their differences. As such, Clust3D introduces the capability to 
train the neural network given the input samples and the neurons as 
matrices and not just as vectors, containing both the temporal and the 
spatial information. Thus, clustering can be implemented directly on the 
patients, given the different timepoints altogether, without the need for 
per phase clustering, as in [14]. 

The update function for the neurons is defined as: 

Wj(i+ 1) = Wj(i)+U
(
Wj,Wq, i

)
y(i)

[
X − Wq

]
, (1)  

where Wj(i+1) is the matrix of neuron with index j at time (i+1), with i 
being the current iteration, X is the matrix of the input sample, Wq is the 
BMU, and y is the learning rate. The BMU is the neuron with the least 
distance to the input matrix, which is calculated using the Frobenius 
norm of the matrix difference of the input matrix (X) and each neuron 
(Wj): 

⃦
⃦X − Wj

⃦
⃦

F = ‖A‖F =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

k=1

∑n

l=1
|Akl|

2

√

, (2)  

where m and n correspond to the dimensions of matrix A. The learning 
rate follows an exponential reduction: 

y = yoexp
(
− i
t1

)

, (3)  

where yo is the initial learning rate and t1 is a user defined constant 
which controls the exponential decrease of the learning rate. U

(
Wj,Wq,

i
)

is the neighborhood function, which dictates the cooperation between 
neurons. It decreases exponentially and includes a reducing Gaussian 
distance function [14]: 

U = exp

⎛

⎜
⎜
⎜
⎝

− djq
2

2 (σ0 exp
(

− ilog(σ0)
t2

)

)
2

⎞

⎟
⎟
⎟
⎠
, (4)  

where σ0 is the standard deviation of the initial Euclidean distances of 
the randomly initiated neurons, t2 is a user defined constant which 

controls the exponential decrease of the neighborhood function and 
lastly, djq is the Euclidean distance between a neighbor neuron and the 
BMU, which is calculated using the Frobenius norm of the neuron 
matrices difference, as in (2): 

djq =
⃦
⃦Wj − Wq

⃦
⃦

F = ‖D‖F =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

k=1

∑n

l=1
|Dkl|

2

√

, (5)  

where m and n correspond to the dimensions of matrix D, which are the 
same as matrix A. 

2.2.5. Clustering module 
Lastly, after the neurons’ algebraic adjustment in the multi- 

dimensional space, the Euclidean distances between them and the 
data points are calculated as in (2), to assign the cluster memberships 
based on the minimum distances. The calculation of Euclidean distances 
involves computing the straight-line distances between each neuron and 
the data points in the high-dimensional feature space. This distance 
metric allows for measuring the proximity or similarity between the 
neurons and the data points, helping to identify the closest matching 
neuron for each data point. By assigning cluster memberships based on 
the minimum distances, the algorithm groups data points together with 
the neurons that exhibit the least dissimilarity. 

3. Experiments 

This section is divided into two subsections. 3.1 details the imple
mentation of a comparative method and 3.2 specifies the clustering 
evaluation metrics. In 3.2 firstly, the clustering indices and their 
implementations are described (3.2.1) and then, the DE and classifica
tion analysis is elaborated (3.2.2). 

3.1. Comparative method 

Due to the fact that TimeClust [16] and Clust [17] cluster genes and 
not patients, while no other algorithm exists in the literature to cluster 
3D datasets, a related method had to be applied in order to be compared 
with Clust3D. Therefore, we utilized the heuristic approach proposed in 
[14]. The authors devised a two-step technique to cluster timeseries data 
by applying a two-phase self-organizing map (SOM). In the first phase, 
they divided a three-timepoint dataset into three single-timepoint 
datasets and clustered each one using SOMs. This way, they acquired 
a vector of clustering labels for each patient, with each element corre
sponding to a particular timepoint. At phase two, they used a final SOM 
on the P × L matrix containing the clustering labels, where P is the 
number of patients and L is the number of timepoints. Hence, they could 
heuristically cluster patients with multiple timepoint data. 

Both the SOMbrero [30] and KMEANS [31] algorithms were chosen 
to compare the above two-step approach with Clust3D. For the GSE9863 
dataset, the final clustermaps of [14] were used as SOMbrero’s output, 
as the approach is exactly the same. For the other two datasets, SOM
brero’s initial neuron grid was selected to be large enough (3× 3) to 
ensure the automated membership convergence to fewer clusters. The 
KMEANS algorithm requires the user to predefine the number of clus
ters. The optimal number is selected based on the optimization of all 
three clustering indices presented in Section 3.2.1. Subsequently, for 
every dataset, the best possible clustermap from KMEANS is identified. 
Prior to clustering and evaluating all datasets and algorithms, a PCA 
with two principal components was utilized for this study, as it was the 
default method for feature reduction in [14]. 

3.2. Evaluation procedure 

The clustermaps of Clust3D (implementation with the Clust3D al
gorithm) and the comparative method (implementation with the SOM
brero and KMEANS algorithms) were evaluated through a twofold 

Fig. 3. Simplified example of Clust3D’s neuron network training. All distances 
(‖A‖F , ‖D‖F) detailed in 2.2.4 are shown. In this example, for the input sample 
(X), the BMU (Wq) is identified and then updated with (1) (red arrow). The 
remaining neighbor neuron (W2) is updated as well with (1) (yellow arrows). 
This simplified example refers to only one input sample (X) and one iteration. 
The overall process is repeated for every input sample and every iteration. 
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assessment. Firstly, a comparative analysis was conducted employing 
the calculation of clustering indices. Secondly, a differential expression 
(DE) analysis workflow was used to extract potential pathway-specific 
genes from the three algorithms’ clusters. A subsequent binary classifi
cation problem was also conducted between disease samples and 
healthy samples. Using this pipeline, each algorithm’s clustering was 
assessed based on classification metrics, employing as features the genes 
extracted from their corresponding clusters. 

3.2.1. Clustering indices 
Traditional clustering indices work by calculating distances between 

vector data points. In our case, with the introduction of the time 
dimension, some modifications as to how these metrics are applied on 
matrices instead of vectors had to be implemented. To be thorough, we 
opted to study a variety of metrics, based on cluster variance, distance 
and similarity. Therefore, the Calinski-Harabasz index (CHI) [32], the 
Davies–Bouldin index (DBI) [33] and the Silhouette score (SS) [34] were 
used. For the CHI and the DBI, the source code of scikit’s implementa
tion [26] of those two indices was used with the appropriate alterations. 
For the SS, the corresponding mathematical formula was implemented 
in Python with the appropriate adjustments. Every clustering derived 
from this study is assessed with these clustering indices. 

3.2.1.1. Calinski-Harabasz index. The CHI or the Variance Ratio Crite
rion is the score defined as the ratio of the sum of the between-cluster 
dispersion and the within-cluster dispersion. A higher index signifies 
dense and well-separated clusters. In mathematical notation the CHI is 
defined as: 

∑C

q=1
nq
∑

(mq − M)
2

∑C

q=1

∑
(Dq − mq)

2

(P − C)
∑C

q=1

∑
(Dq − mq)

2
(C − 1)

, (6)  

where C is the number of clusters, P is the total number of data points 
(patients), q is the cluster index, nq is the number of data points inside 
the cluster with index q, M is the overall mean 3D matrix of the whole 
dataset, mq is the mean matrix of the cluster with index q and Dq is a 3D 
matrix with the data belonging to the cluster with index q. This metric 
can be applied as is in our case, but there is a difference as to how two of 
the factors are calculated. The first one is the 

∑
(mq − M)

2 factor, in 
which the summation is done on all timepoint vectors, instead of just 
one. The second is the 

∑
(Dq − mq)

2 factor, in which the mq matrix is 
subtracted from all matrices inside Dq instead of just a single subtraction. 

3.2.1.2. Davies–Bouldin index. The DBI is defined as the average simi
larity measure of each cluster with its most similar cluster, with the 
similarity being the ratio of within-cluster distances, to between-cluster 
distances. Lower values indicate better clustering. In mathematical no
tation the DBI is defined as: 

1
C
∑C

q=1
maxq∕=j(

∑C

q=1

1
U
∑U

u

⃦
⃦Wu − mq

⃦
⃦

F
⃦
⃦mq − mj∕=q

⃦
⃦

F

), (7)  

where C is the number of clusters, q is the cluster index, U is the number 
of data points in the cluster with index q, u is the data point index, mq is 
the mean matrix of the cluster with index q, Wu is the data point with 
index u inside the cluster with index q, mj is the mean matrix of the 
cluster with index j ∕= q and F symbolizes the Frobenius norm. The dif
ference compared to the conventional implementation, is that the 
calculation of the pairwise distances of data points/centroids 
(
⃦
⃦Wu − mq

⃦
⃦

F) and centroids/centroids (
⃦
⃦mq − mj

⃦
⃦

F) is based on the 
Frobenius norm using (2) and (5). 

3.2.1.3. Silhouette score. The SS is used to evaluate the quality of clus
ters by measuring how similar a data point is to its own cluster, 
compared to the other clusters. The silhouette score ranges from − 1 to 
1, where a score of − 1 indicates that the data point is assigned to the 
wrong cluster, 0 indicates that the data point is on the border between 
two clusters, and 1 indicates that the data point is well-matched to its 
own cluster. The SS is calculated for each data point in the dataset and 
represents the degree of cohesion and separation between clusters. In 
mathematical notation the SS is defined for every data point as: 

b − a
max(b, a)

, (8)  

where a is the mean distance between the data point and all other points 
in the same cluster and b is the mean distance between the data point 
and all other points in the next nearest cluster. More specifically, a is 
defined as: 

1
U

∑U

u
‖W − Wu‖F, (9)  

where W is the data point, U is the number of data points in the same 
cluster as W, u is the data point index, Wu is a data point with index u in 
the same cluster as W and F symbolizes the Frobenius norm. b is defined 
as: 

1
R
∑R

r
‖W − Wr‖F, (10)  

where R is the number of data points in the nearest cluster, r is the data 
point index and Wr is a data point with index r in the nearest cluster. The 
final SS of the whole clustering is the average SS of all data points. As per 
the DBI, the difference compared to the conventional implementation, is 
that the calculation of the pairwise distances of data points is based on 
the Frobenius norm using (2) and (5). 

3.2.2. Differential expression analysis and classification 
A pipeline consisting of a DE analysis and a classification step (Fig. 4) 

was designed to evaluate the robustness of Clust3D and the comparative 
method (implementation with KMEANS and SOMbrero), regarding their 
clustering outputs. The aim is to verify the good statistical separation of 
the derived clusters, by extracting cluster-differentiated genes that result 
in good classification metrics between disease and healthy samples. To 
extract the cluster-differentiated genes, R’s DESeq2 algorithm [35] was 
used. DESeq2 accepts two groups of data as input. As such, for each 
cluster, a differential expression analysis is performed between the 
samples that belong to that particular cluster and all the samples from 
the rest of the clusters (Fig. 4). Thus, the ranked genes based on their 
p-adjusted values were extracted for each cluster. For simplicity and 
direct comparison, we selected only the top gene from each cluster, as 
these genes contribute the most to the mathematical distance between 
the clusters. As Fig. 4 shows, for every dataset, the DESeq2 algorithm ran 
n times, where n is the number of clusters, resulting in n top genes. 

Classification was set up as a binary problem between disease and 
healthy samples, using the previously extracted top genes as the only 
classification features. Due to the fact that every sample (patient) has 
multiple gene counts vectors (one for each timepoint), every vector was 
regarded as a separate disease sample in the context of this classifica
tion. More specifically, for the GSE80060 dataset 148 disease samples 
and 22 healthy samples were considered. Likewise, for the GSE97075 
dataset, 30 disease samples and 15 healthy samples were used. GSE9863 
contains 60 disease samples but no healthy ones. Thus, as in [14], the 
samples from GSE47683 [36] were used instead, which refer to a 
different disease (67 renal-transplant patients), but on the same exper
imental platform (GPL6271). As sophisticated classification estimators, 
the Random Forest (RF) and the Gradient Boosting (GB) classifiers were 
selected. Additionally, the Support Vector Machine (SVM) and the 
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Logistic Regression (LR) were also implemented. All classifiers were 
applied with their default parameter settings [24], except for SVM which 
was utilized with a polynomial kernel. The accuracy, sensitivity, speci
ficity and Area Under the Curve (AUC) were chosen as the classification 
metrics. Finally, a five-fold stratified cross validation was implemented 
to address the class imbalance of the datasets. 

4. Results 

4.1. Clustermaps 

The clustering analysis for the GSE80060 dataset resulted in four 
clusters for Clust3D, five clusters for SOMbrero and four clusters for 
KMEANS (Table S1 in Appendix). The clustermaps of Clust3D and 
KMEANS were almost identical except for three samples (2513, 3212 
and 413). Likewise, the clustering analysis for the GSE97075 dataset 
resulted in three clusters for Clust3D, four clusters for SOMbrero and 
two clusters for KMEANS (Table S3 in Appendix). Even though this 
dataset contains very few samples, all the clustermaps were unique. 
Finally, the clustering analysis for the GSE9863 dataset resulted in four 
clusters for Clust3D, four clusters for SOMbrero [14] and in two clusters 
for KMEANS (Table S5 in Appendix). Similarly in this case, all the 
clustermaps were unique. 

To provide a visual assessment of the cluster memberships consid
ering all timepoints at once, scatter plots of the data points were created. 
To achieve this, the first principal component (PC1) was used at all 
timepoints as the axes. It should be noted, that even though the first 
principal component contributes the most to the explained variance and 
the scatter plot are indicative of that, the second principal component is 
not taken into consideration when plotting the scatter plots. For the 
GSE9863 dataset, Fig. 5 shows the scatter plots for all clustering algo
rithms, using PC1 in timepoints T1, T2 and T3. For the GSE80060 
dataset, Fig. F1 in Appendix depicts the scatter plots for all clustering 
algorithms, using PC1 in timepoints T1 and T2. Finally, for the 
GSE97075 dataset, the visualization of the clustermaps is impractical 
due to the large number of timepoints (Table 1). 

4.2. Clustering indices 

Table 2 shows the clustering indices for the three datasets. Due to 
these indices reflecting a different aspect of clustering assessment 
(variance, distance, and similarity) the best result of each index is bol
ded. Fig. 6 shows the silhouette scores for each data point (patient) for 
all datasets and clustering algorithms. It offers a visual measure of 
confidence that each data point belongs to its designated cluster. 

4.3. DE and classification    

Tables 3–5 provide the classification metrics when using the top 
features (i.e., genes, as described in Section 3.2.1.1) from each algo
rithms’ DE analysis. For the GSE80060 dataset, Table 3 shows the results 
using the top four features from Clust3D, the top five features from 
SOMbrero, and the top four features from KMEANS. Table S2 in Ap
pendix shows the extracted features from each algorithm’s DE analysis, 
along with their p-adjusted values. Likewise, Table 4 shows the results 
for the GSE97075 dataset using the top three features from Clust3D, the 
top four features from SOMbrero, and the top feature from KMEANS. 
Table S4 in Appendix shows the extracted features with their p-adjusted 
values. Due to DE scheme (Fig. 4) and the fact that KMEANS’ clustering 
resulted in just two clusters, the same gene probe (ILMN_2066060) 
ranked first in both clusters. Finally, for the GSE9863 dataset, Table 5 
shows the classification metrics when using the top four features from 
Clust3D, the top four features from SOMbrero, and the top five features 
from KMEANS. Table S6 in Appendix shows the extracted features and 
their p-adjusted values. 

5. Discussion 

We developed a novel clustering methodology that accepts 3D data 
as input. We tested it on three publicly available datasets and demon
strated its ability to produce well separated clusters. This assessment 
was made both through clustering indices and a DE - classification 
pipeline. 

We used the Calinski-Harabasz index, the Davies–Bouldin index and 
the Silhouette score to evaluate the clustering output of Clust3D, 
compared to that of SOMbrero and KMEANS utilizing the. heuristic 2- 
step clustering framework. Since no clustering metrics exist for time- 
related clustering, modifications to those indices had to be made to 
address the inclusion of the temporal dimension, by substituting the 
calculation of vector distances with the Frobenius norm of the matrices. 
We acknowledge that such algebraic modifications can have an impact 
on the indices’ results, and most likely differ confidence-wise from 
values that we are accustomed to in the general literature. However, due 
to the fact that every methodology is being assessed with the exact same 
metrics, there is no doubt about the improvement that Clust3D 
contributes. 

In GSE80060, SOMbrero’s results were subpar compared to Clust3D 
and KMEANS. Also, the clustermaps of Clust3D and KMEANS were 
almost identical, therefore the derived indices were very similar, how
ever with a slight edge in favor of Clust3D. Fig. 6 shows the similarity in 
SS scores between Clust3D and KMEANS and their improvement over 
SOMbrero. In GSE97075, Clust3D achieved a CHI score that was more 
than threefold higher than those of SOMbrero and KMEANS and a BDI 

Fig. 4. The DE - classification pipeline.  
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Fig. 5. Scatter plots of the data points (patients) in the GSE9863 dataset for the three clustering methods (Clust3D, SOMbrero and KMEANS). The axes consist of the 
first principal component of each data point at every timepoint (T1, T2 and T3). The colors differentiate the cluster members. Higher color saturation indicates a 
closer to the reader locus. 
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score more than twice as good. Contrary to the DBI and the CHI, the 
improvement of Clust3D in SS score was not that apparent (Fig. 6). 
Finally, in GSE9863, Clust3D achieved a more than twofold increase in 
CHI score, a > 60% increase in DB score, and it was the only algorithm 
that managed a positive SS score (Table 2). Interestingly, as the number 
of timepoints in the datasets under examination increases, so does the 
percentage improvement in the clustering indices of Clust3D in com
parison to the other algorithms. These results demonstrate a favorable 
correlation between Clust3D’s better index performance and an increase 
in timepoints. Based on variance, distance, and similarity metrics, our 
findings affirm that Clust3D offers a substantial clustering improvement 
in light of the examined datasets. 

We also achieved improved clustering, in the context of the utilized 
DE- classification pipeline (Tables 3–5, Fig. 6). The classification based 
on Clust3D’s analysis managed to achieve higher classification metrics 
in all datasets, compared to the metrics resulted from SOMbrero’s and 

Table 2 
Clustering indices for the three datasets. The arrows indicate what is the optimal 
score (higher or lower). The bold numbers refer to the best result of each index.  

GSE80060 

Algorithm CHI ↑ DBI ↓ SS ↑ 

Clust3D  81.17  0.32  0.55 
SOMbrero  25.47  0.92  -0.12 
KMEANS  77.62  0.35  0.54 
GSE97075 
Clust3D  7.61  0.22  0.17 
SOMbrero  2.04  0.51  -0.11 
KMEANS  2.30  0.57  0.14 
GSE9863 
Clust3D  8.95  0.61  0.26 
SOMbrero  3.50  0.98  -0.02 
KMEANS  2.50  1.63  -0.01  

Fig. 6. Silhouette scores for every data point (patient) of each dataset for all clustering tools (Clust3D, SOMbrero and KMEANS). The higher the score, the higher the 
confidence of a correct cluster membership. Dotted lines represent the mean SS scores (Table 3) for each algorithm. Higher mean scores indicate better overall 
cluster separation. 
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KMEANS’ analyses. This indicates the better efficacy of our clustering 
algorithm to extract pathway-specific genes for further clinical analysis. 
The DE analysis was setup in such a way to further evaluate the quality 

of the clustering, by being applied between subgroups (clusters) of only 
the disease populations. Thereby, this study did not delve into the bio
logical interpretability of the extracted features. 

For the high sample sized GSE80060 dataset, we observed a > 5% 
increase in accuracy and a significant improvement in specificity 
(> 60%) for the RF and GB classifiers (Table 3). Fig. 7a shows the 
improvement in the AUC scores. While SVM did result in a similar 
percentage increase, the overall metrics were lower. LR resulted in the 
same non-satisfactory metrics (zero specificity) for all clustering pipe
lines. This result most likely stems from the lack of linear feature de
pendency. It is worth mentioning that even though the difference in 
clustering between Clust3D and KMEANS lies in just three samples, the 
different genes extracted from the DE analysis were responsible for the 
considerably improved classification metrics. These genes were sub
stantially more potent in avoiding false positives compared to the genes 
extracted from SOMbrero’s and KMEANS’ analyses. 

For the low sample sized GSE97075 dataset, the classification based 
on Clust3D’s analysis resulted in a > 26% higher accuracy, a > 20% 
higher sensitivity and a > 21% higher specificity (Table 4), for the RF 
and GB classifiers. Regardless of the low sample size and the stratified 
nature of the cross validation, which yielded higher standard deviations, 
Clust3D achieved better results in this context too. Fig. 7b shows the 
improvement in the AUC scores. The results from the SVM and LR were 
too inconsistent to extract robust conclusions. We suspect that this is a 
consequence of the adequate sample size. 

Lastly, in the case of the large sample sized GSE9863 dataset, 
Clust3D’s analysis once again outperformed the other methods, 
achieving higher classification metrics (for all classifiers), and even 
managing perfect sensitivity scores (Table 5). Fig. 7c shows the 
improvement in the AUC scores. Fig. 5 depicts the scatter plots of the 
members/samples for all clustering algorithms. Clust3D was able to 
create by far the most distinct and well-defined clusters across the three 
dimensions. 

It is worth noting that there is a lack of correlation between the 

Table 3 
Classification metrics (mean and standard deviation) of the GSE80060 dataset 
analysis, based on the derived clusters of Clust3D, SOMbrero and KMEANS.  

Clust3D (4 clusters) 

Classifier Acc Sens Spec 

GB 0.96 (0.04) 0.97 (0.04) 0.91 (0.11) 
RF 0.96 (0.03) 0.98 (0.02) 0.83 (0.15) 
SVM 0.91 (0.05) 0.95 (0.06) 0.67 (0.32) 
LR 0.81 (0.01) 1.00 (0.00) 0.00 (0.00) 
SOMbrero (5 clusters) 
Classifier Acc Sens Spec 
GB 0.88 (0.08) 0.96 (0.08) 0.37 (0.12) 
RF 0.89 (0.05) 0.97 (0.06) 0.37 (0.12) 
SVM 0.85 (0.02) 0.95 (0.03) 0.13 (0.11) 
LR 0.81 (0.01) 1.00 (0.00) 0.00 (0.00) 
KMEANS (4 clusters) 
Classifier Acc Sens Spec 
GB 0.91 (0.04) 0.96 (0.03) 0.57 (0.24) 
RF 0.89 (0.02) 0.96 (0.01) 0.45 (0.25) 
SVM 0.89 (0.02) 0.96 (0.04) 0.38 (0.34) 
LR 0.81 (0.01) 1.00 (0.00) 0.00 (0.00)  

Table 4 
Classification metrics (mean and standard deviation) of the GSE97075 dataset 
analysis, based on the derived clusters of Clust3D, SOMbrero and KMEANS.  

Clust3D (3 clusters) 

Classifier Acc Sens Spec 

GB 0.84 (0.05) 0.93 (0.08) 0.67 (0.22) 
RF 0.87 (0.04) 0.93 (0.08) 0.73 (0.25) 
SVM 0.69 (0.13) 0.73 (0.25) 0.60 (0.25) 
LR 0.67 (0.0) 1.00 (0.00) 0.00 (0.00) 
SOMbrero (4 clusters) 
Classifier Acc Sens Spec 
GB 0.68 (0.20) 0.77 (0.17) 0.53 (0.34) 
RF 0.69 (0.04) 0.73 (0.08) 0.60 (0.13) 
SVM 0.67 (0.12) 0.78 (0.13) 0.47 (0.16) 
LR 0.73 (0.09) 0.97 (0.07) 0.27 (0.13) 
KMEANS (2 clusters) 
Classifier Acc Sens Spec 
GB 0.60 (0.05) 0.60 (0.17) 0.60 (0.33) 
RF 0.60 (0.05) 0.60 (0.17) 0.60 (0.33) 
SVM 0.67 (0.0) 1.00 (0.00) 0.00 (0.00) 
LR 0.67 (0.0) 1.00 (0.00) 0.00 (0.00)  

Table 5 
Classification metrics (mean and standard deviation) of the GSE9863 dataset 
analysis, based on the derived clusters of Clust3D, SOMbrero and KMEANS.  

Clust3D (4 clusters) 

Classifier Acc Sens Spec 

GB 0.99 (0.02) 1.00 (0.00) 0.99 (0.03) 
RF 0.99 (0.02) 1.00 (0.00) 0.99 (0.03) 
SVM 0.99 (0.02) 0.98 (0.03) 1.00 (0.00) 
LR 0.99 (0.02) 1.00 (0.00) 0.98 (0.03) 
SOMbrero (4 clusters) 
Classifier Acc Sens Spec 
GB 0.97 (0.03) 0.98 (0.03) 0.95 (0.06) 
RF 0.98 (0.03) 0.98 (0.03) 0.97 (0.06) 
SVM 0.97 (0.03) 0.97 (0.04) 0.97 (0.04) 
LR 0.98 (0.02) 0.98 (0.03) 0.99 (0.03) 
KMEANS (5 clusters) 
Classifier Acc Sens Spec 
GB 0.91 (0.06) 0.90 (0.06) 0.93 (0.08) 
RF 0.91 (0.04) 0.92 (0.05) 0.91 (0.09) 
SVM 0.76 (0.05 0.97 (0.04) 0.57 (0.11) 
LR 0.76 (0.09) 0.87 (0.13) 0.66 (0.22)  

Fig. 7. Classification AUC scores based on the outputs from the three clustering 
algorithms (Clust3D, SOMbrero and KMEANS) for all datasets: (a) GSE80060, 
(b) GSE97075, and (c) GSE9863. In orange the scores from the GB classification 
estimator are depicted while in blue those from RF. 
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classification metrics obtained from the sets of features extracted using 
different algorithms and their corresponding p-adjusted values. Even 
though there are features extracted from SOMbrero’s and KMEANS’ 
clusters that have lower p-adjusted values than some of Clust3D’s 
extracted features (Tables S2, S4 and S6), in no case did they result in 
higher classification metrics (Tables 3–5). Although these values reflect 
the statistical significance, they do not inherently capture the biological 
importance of the identified features. From the obtained results we can 
deduce that the approach of clustering patients based on their gene 
profile changes over time and the subsequent extraction of features that 
differentiate the temporal dynamics can potentially uncover key vari
ables that represent complex biological interactions or pathway-level 
changes. These variables are likely to hold finer biological relevance 
and contribute to the improved classification performance observed in 
our study. In contrast, a per-timepoint clustering as in [14] is dictated by 
the gene expressions of each timepoint and not the temporal expression 
profile as a dynamic system. This can introduce bias related to the 
expression of genes at a single timepoint, contributing to seemingly 
higher statistical confidence when extracting the associated genes. 
Examining both the clustering indices (Table 2, Figs. 4–5) and the DE – 
classification pipeline results (Tables 3–5, Fig. 6), we make the case for a 
robust and consistent clustering algorithm, capable of clustering effi
ciently high-dimensional timeseries data, better than existing heuristic 
methods [14,30,31]. 

Clustering three-dimensional data using mainstream algorithms 
without heuristic approaches is achievable with the incorporation of a 
preprocessing step, that mainly involves the flattening or decomposition 
of one of the dimensions. Furthermore, innovative methods have been 
proposed that implement a third dimension into the clustering analysis 
using SOMs (3D-SOM). These methods utilize 3D neuron mapping to 
extend the capabilities of the SOM algorithm in relation to the structure 
arrangement of its output neurons. However, those clustering ap
proaches are applied to two dimensional datasets [37,38]. On the con
trary, this study proposes a novel way to directly cluster 3D data, 
exploiting the entire data structure. A clustering technique that takes 
into consideration the spatial and temporal aspects of a dataset, is the 
spatial-temporal clustering. This technique is employed to detect clus
ters or groups within datasets, characterized by their close spatial 
proximity and similar temporal patterns. This method proves valuable 
for analyzing datasets encompassing both spatial and temporal di
mensions, such as environmental monitoring, crime, traffic, and epide
miological data [18]. Nevertheless, they typically use a two-dimensional 
matrix as input, usually corresponding to spatial coordinates (e.g. lati
tude and longitude) and temporal information (e.g. timepoints) [19]. 
Subsequently, such frameworks cannot address multiple samples (i.e. 
patients) with multiple features (i.e. genes) at different time intervals 
(timepoints). In order to implement the comparative method, SOMbrero 
and KMEANS were employed. SOMbrero was selected for its direct 
comparability [14], whereas KMEANS was chosen for its 
well-established status. The study’s findings indicated that employing 
clustering with Clust3D yielded superior clustermaps and classification 
metrics compared to the comparative approach, which introduced bia
ses by conducting ordinary clustering per timepoint. This inherent bias 
in per-timepoint clustering underscored the necessity for Clust3D. 
Consequently, the utilization of cutting-edge algorithms still would not 
address this issue, due to this bias being inherent in the heuristic method 
and not in the algorithms that implement it. 

This study was primarily focused on autoinflammatory gene 
expression datasets. Nevertheless, Clust3D’s neural network training 
design makes it applicable for clustering gene expressions timeseries 
from other diseases and even complex data structures with temporal 
dimensions, other than gene expressions. Potential applications of 
Clust3D could include exploratory analysis on clinical timeseries data 
from patients with infectious diseases (like COVID-19) or chronic dis
orders, and even biomarker identification studies by utilizing Clust3D’s 
clustermaps alongside more disease-targeted DE analyses. Furthermore, 

population and epidemiological studies which heavily rely on timeseries 
cohorts, could benefit on a quality control basis, from the efficient and 
time-addressing clustering of Clust3D. 

Nonetheless, it is important to acknowledge and address the limita
tions of Clust3D. First, the calculations utilize the Euclidean distance. 
Even though in this study it is applicable due to the applied PCA, more 
sophisticated datasets may require different distance metrics to address 
a higher number of features. Second, although this study tries to remain 
true to the mathematical equations of the clustering indices while also 
exploring a variety of evaluation concepts, the lack of well-established 
metrics in the literature for such a tool is apparent. Third, dimensional 
reduction of high-dimensional data such as gene expressions is a 
recurrent obstacle in the field of bioinformatics. While a reasonable 
effort was made in Clust3D to provide efficient techniques, still it is a 
very challenging task to capture the total explained variance of a high- 
dimensional dataset, which would be ideal in order to differentiate pa
tients’ profiles across timepoints. Lastly, another limitation is the 
inability of Clust3D to produce a fixed neuron grid in 3D space for the 
best clustering convergence. Whilst Clust3D employs resourceful tech
niques for optimizing the neuron initialization process (optimal neuron 
positions based on Euclidean distance dispersion), stochasticity still re
mains in the clustering. 

Future work will focus on overcoming such limitations, improving 
existing features, and implement new modules. The incorporation of 
these modules will delve into the intricate connections within the three- 
dimensional data, such as variations across different timepoints, thereby 
establishing a stronger foundation. Finally, considering that this study 
provides a general computational framework, the capabilities and the 
benefits of Clust3D will be evaluated by using it extensively on a variety 
of datasets with intricate dimensions. 
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