
metabolites

H

OH

OH

Article

Neonatal Urine Metabolic Profiling and Development
of Childhood Asthma

Bo L. Chawes 1 , Giuseppe Giordano 2,3, Paola Pirillo 2,3, Daniela Rago 1,
Morten A. Rasmussen 1, Jakob Stokholm 1,4, Klaus Bønnelykke 1, Hans Bisgaard 1

and Eugenio Baraldi 2,3,*
1 COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital,

University of Copenhagen, 2820 Copenhagen, Denmark; chawes@copsac.com (B.L.C.);
daniela.rago@dbac.dk (D.R.); morten.arendt@dbac.dk (M.A.R.); stokholm@copsac.com (J.S.);
kb@copsac.com (K.B.); bisgaard@copsac.com (H.B.)

2 Women’s and Children’s Health Department, University of Padova, 35128 Padova, Italy;
giuseppe.giordano@unipd.it (G.G.); paola.pirillo@unipd.it (P.P.)

3 Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35127 Padova, Italy
4 Department of Pediatrics, Naestved Hospital, 4700 Naestved, Denmark
* Correspondence: eugenio.baraldi@unipd.it; Tel.: +39-049-821-3560

Received: 28 June 2019; Accepted: 12 September 2019; Published: 16 September 2019
����������
�������

Abstract: Urine metabolomics case-control studies of childhood asthma have demonstrated a
discriminative ability. Here, we investigated whether urine metabolic profiles from healthy neonates
were associated with the development of asthma in childhood. Untargeted metabolomics by
liquid chromatography-mass spectrometry was applied to urine samples collected at age 4 weeks
in 171 and 161 healthy neonates born from mothers with asthma from the COPSAC2000 and
COPSAC2010 cohorts, respectively, where persistent wheeze/asthma was prospectively diagnosed
using a symptom-based algorithm. Univariate and multivariate analyses were applied to investigate
differences in metabolic profiles between children who developed asthma and healthy children.
Univariate analysis showed 63 and 87 metabolites (q-value < 0.15) in COPSAC2000 and COPSAC2010,
respectively, which is promising for discriminating between asthmatic and healthy children. Of those,
14 metabolites were common among the two cohorts. Multivariate random forest and projection to
latent structures discriminant analyses confirmed the discriminatory capacity of the metabolic profiles
in both cohorts with estimated errors in prediction equal to 35% and AUCpred > 0.60. Database
search enabled annotation of three discriminative features: a glucoronidated compound (steroid),
3-hydroxytetradecanedioic acid (fatty acid), and taurochenodeoxycholate-3-sulfate (bile acid). The
urine metabolomics profiles from healthy neonates were associated with the development of childhood
asthma, but further research is needed to understand underlying metabolic pathways.
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1. Introduction

Childhood asthma is an inflammatory airway disorder, which has recently been increasing,
with the prevalence more than doubling in Westernized societies worldwide over the past decades [1].
Half of young children experience asthma-like symptoms [2] and one-fifth of preschoolers develop
recurrent asthma-like episodes [3], which is now the main reason for hospitalization, chronic medication
usage, and repeated contact with health care providers with an associated large public health care
expenditure [4]. Asthma is believed to originate earliest in the life course of genetically susceptible
individuals as a result of complex gene–environment interactions causing immune deregulation, which
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leads to initiation of chronic inflammatory processes [5] that are detectable prior to symptom onset [6,7].
The presence of a low-grade disease activity in early life before symptoms emerge implicates the
existence of biomarkers of perturbed biochemical pathways that may help understand the mechanisms
behind why some children will develop wheezing disorders and asthma during childhood. So far,
such biomarkers have not been identified.

Metabolomics is a high-dimensional method to assess the wide range of small-molecule
metabolites in a biological sample, which may provide a hypothesis-free biomarker profile and
simultaneously provides insight into perturbed metabolic pathways and underlying disease
pathology [8]. Metabolomics profiling shows the current state of the metabolism ongoing in the
biological system and is considered the omics platform most related to host phenotype as it represents
the net result of gene–environment interactions [9]. Metabolomics has successfully been applied
to asthma and studies have shown that both targeted and untargeted blood metabolomics profiles
are capable of classifying case status [10] and are associated with phenotypic traits such as lung
function [11]. In contrast to obtaining blood samples, urine is easy to collect in infants and young
children and is usable for metabolomics profiling. Previous urine metabolomics studies of childhood
asthma have demonstrated discriminative abilities in case-control settings [12,13] as well as an ability
to predict whether a child with early life wheezing will outgrow the disease or go on to develop
asthma [14]. However, no studies have investigated whether urine metabolomics profiles from healthy
neonates are associated with development of asthma during childhood.

In this study, we conducted untargeted metabolomics profiling based on liquid chromatography-
mass spectrometry of urine samples collected at age 4 weeks in children from the two independent
Copenhagen Prospective Studies on Asthma in Childhood (COPSAC2000 and COPSAC2010) birth
cohorts from Zealand, Denmark, to investigate the presence of asthma biomarkers and/or perturbed
metabolic pathways before symptoms debut. The COPSAC2000 is a high-risk cohort of 411 children
born to mothers with asthma [15], who at age 4 weeks received an oral dose of chloral hydrate prior
to neonatal lung function testing [16], whereas the COPSAC2010 is a population-based cohort of
700 children [17]. In order to make the results comparable among the cohorts, we only selected urine
samples for metabolomics analyses collected before intake of chloral hydrate from COPSAC2000 and
only urine samples collected from children born to mothers with asthma from COPSAC2010.

2. Results

2.1. Baseline Characteristics

In the COPSAC2000, 171 children had an available urine sample collected before sedation with
chloral hydrate. Of those 171 children, 20 (11.7%) developed persistent wheeze/asthma during their
first 6 years of life. In the COPSAC2010 cohort, 161 children born to mothers with asthma had an
available urine sample; 49 (30.4%) of those children developed persistent wheeze/asthma during their
first 6 years of life. We considered the difference in sampling age between the two cohorts negligible
(mean age of 35 days and range (22–76) days as 5th–95th percentile for the COPSAC2000 cohort,
and mean age of 36 days and range (24–88) days for COPSAC2010).

2.2. Urine Metabolomics Analysis

The urine samples were analyzed using ultra-performance liquid chromatography coupled to
quadrupole-time of flight mass spectrometry (UPLC-MS) operating in negative ionization mode. The
UPLC-MS analysis of the urine samples led to the generation of two datasets, one for the COPSAC2000
and another for the COPSAC2010, both composed of 1555 Rt_m/z variables. The software Progenesis
was used to process the UPLC-MS raw data (see Appendix A) and the obtained dataset was filtered,
normalized, and scaled prior to analysis (see metabolomics datasets in Table S1 in the Supplementary
Materials). A preliminary exploratory data analysis was performed by principal component analysis
on each group, i.e., healthy children and children developing persistent wheeze/asthma in both cohorts,
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to identify outliers. No outliers were detected on the basis of the DModX test and Hotelling’s T2 test
(significance level α = 0.05, see Figure S1 in the Supplementary Materials).

Thereafter, univariate analyses were conducted to assess the relationship between urine metabolic
features and persistent wheeze/asthma status using t-tests with a false discovery rate (FDR) applied to
the features showing a normal distribution (Shapiro–Wilk test p-value > 0.10) and the Mann–Whitney
test with FDR for non-normally distributed data. The FDR was performed according to Storey [18]
and features showing a q-value less than 0.15 were considered as characterizing children with versus
without development of persistent wheeze/asthma. The receiver operating characteristic (ROC) curve
analysis was used to characterize each feature by calculating the area under the curve (AUC) with a
95% confidence interval. A total of 63 relevant variables were selected in the COPSAC2000 dataset,
whereas 87 were selected in the COPSAC2010 dataset. In Tables 1 and 2, we report the statistics of the
27 features of the COPSAC2000 dataset and the 30 features of the COPSAC2010 dataset, which both
showed q-values < 0.15 for both the t-test and the Mann–Whitney test; all variables showed significant
AUC values (significance level α = 0.05).

Table 1. Univariate data analysis results for COPSAC2000 1.

Metabolite ID Higher in
asthma/wheeze 3 t-Test p-Value Mann–Whitney

Test p-Value AUC 4

Rt 2 Mass

2.38 425.0667 m/z N > Y 8.1 × 10-11 3.9 × 10-7 0.849
1.77 215.0312 m/z N > Y 1.7 × 10-9 1.2 × 10-7 0.864
1.77 102.0554 m/z N > Y 7.9 × 10-7 5.3 × 10-4 0.739
4.98 394.1348 m/z Y > N 1.2 × 10-5 1.0 × 10-3 0.726
2.77 278.1021 m/z Y > N 1.3 × 10-5 9.2 × 10-6 0.805
0.85 187.0604 m/z Y > N 3.3 × 10-5 8.1 × 10-4 0.731
3.87 506.2357 n 5 Y > N 3.8 × 10-5 2.6 × 10-3 0.707
1.92 232.0570 m/z Y > N 2.0 × 10-4 3.6 × 10-3 0.700
0.77 266.6361 n N > Y 3.1 × 10-4 1.9 × 10-4 0.757
0.77 615.2553 m/z N > Y 6.0 × 10-4 6.0 × 10-4 0.736
1.93 91.0519 n Y > N 6.1 × 10-4 4.3 × 10-3 0.696
2.63 240.0830 n N > Y 6.6 × 10-4 1.1 × 10-3 0.725
1.81 322.2205 n Y > N 8.0 × 10-4 3.4 × 10-3 0.701
4.95 520.1083 n N > Y 8.6 × 10-4 1.9 × 10-3 0.714
1.80 394.1729 n Y > N 9.4 × 10-4 1.0 × 10-3 0.726
0.77 614.2596 m/z N > Y 1.4 × 10-3 2.5 × 10-3 0.708
1.92 308.1753 n Y > N 1.4 × 10-3 8.2 × 10-3 0.682
4.95 472.0821 n N > Y 2.4 × 10-3 1.4 × 10-3 0.720
4.95 425.0693 m/z N > Y 2.9 × 10-3 5.5 × 10-3 0.691
1.80 417.1577 m/z Y > N 4.1 × 10-3 6.7 × 10-3 0.687
3.10 200.0651 m/z Y > N 4.4 × 10-3 5.0 × 10-3 0.693
1.90 277.1282 m/z Y > N 4.7 × 10-3 3.1 × 10-3 0.703
1.86 376.1704 n Y > N 5.8 × 10-3 1.1 × 10-3 0.725
1.94 249.1164 n Y > N 5.9 × 10-3 7.4 × 10-3 0.684
1.84 384.1464 m/z Y > N 1.5 × 10-2 6.5 × 10-3 0.687
1.93 238.1074 m/z Y > N 2.2 × 10-2 7.4 × 10-3 0.684
2.34 320.0695 n N > Y 2.6 × 10-2 5.6 × 10-3 0.691

1 COPSAC2000 is the Copenhagen Prospective Studies on Asthma in Childhood 2000 birth cohort. 2 Rt is retention
time. 3 Y > N indicates metabolites that show higher levels in the asthma group than in the non-asthma group,
whereas N > Y indicates metabolites showing higher levels in the non-asthma group than in the asthma group.
4 AUC is the area under the ROC curve. 5 The metabolite masses with “n” indicate the neutral mass derived from
the sum of relative intensity of some possible adducts, e.g., M+H, M+NH4, M+Na, and M+K, in the peak picking.
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Table 2. Univariate data analysis results for COPSAC2010 1.

Metabolite ID Higher in
asthma/wheeze 3 t-Test p-Value Mann–Whitney

Test p-Value AUC 4

Rt 2 Mass

0.83 197.0309 m/z N > Y 5.7 × 10-9 7.9 × 10-7 0.745
3.34 579.2516 n 5 Y > N 5.2 × 10-6 2.8 × 10-4 0.680
3.18 287.6108 m/z Y > N 8.9 × 10-6 3.0 × 10-5 0.707
0.75 526.1535 n Y > N 3.0 × 10-5 8.2 × 10-4 0.666
0.77 266.6361 n N > Y 4.8 × 10-5 1.0 × 10-3 0.663
0.97 113.0466 n Y > N 6.6 × 10-5 7.7 × 10-5 0.696
0.97 273.1696 m/z Y > N 2.9 × 10-4 1.3 × 10-3 0.659
0.75 524.1340 n Y > N 3.5 × 10-4 7.7 × 10-4 0.666
2.51 296.0547 m/z Y > N 3.7 × 10-4 7.2 × 10-4 0.668
2.42 507.2270 m/z N > Y 4.7 × 10-4 5.5 × 10-3 0.637
1.86 376.1704 n Y > N 5.2 × 10-4 7.6 × 10-3 0.632
1.82 310.1155 m/z Y > N 6.8 × 10-4 1.1 × 10-3 0.661
4.88 1022.5875 m/z N > Y 6.9 × 10-4 2.8 × 10-3 0.648
4.22 568.1558 m/z N > Y 7.1 × 10-4 3.0 × 10-3 0.647
6.82 298.0351 m/z N > Y 7.7 × 10-4 1.7 × 10-3 0.656
1.19 365.1172 m/z N > Y 1.1 × 10-3 4.5 × 10-3 0.641
4.88 938.6252 m/z N > Y 1.2 × 10-3 3.7 × 10-3 0.644
2.55 185.0551 m/z Y > N 1.2 × 10-3 5.9 × 10-3 0.636
1.78 159.0757 n N > Y 1.2 × 10-3 2.2 × 10-3 0.652
0.76 509.1502 m/z Y > N 1.4 × 10-3 7.5 × 10-3 0.633
6.84 268.1436 n N > Y 1.6 × 10-3 3.0 × 10-3 0.647
0.75 254.0712 m/z Y > N 2.4 × 10-3 9.5 × 10-3 0.628
4.10 399.0603 m/z Y > N 4.2 × 10-3 8.7 × 10-3 0.630
0.99 626.2139 m/z Y > N 4.8 × 10-3 7.6 × 10-3 0.632
0.76 561.2416 n Y > N 4.9 × 10-3 2.1 × 10-3 0.652
0.76 269.0584 m/z Y > N 5.4 × 10-3 8.7 × 10-3 0.630
2.25 90.0214 n N > Y 6.3 × 10-3 4.3 × 10-3 0.641
0.75 253.5653 m/z Y > N 1.1 × 10-2 7.2 × 10-3 0.633
4.87 633.7972 n N > Y 1.3 × 10-2 8.5 × 10-3 0.630
5.07 307.1007 m/z Y > N 1.4 × 10-2 5.7 × 10-3 0.637

1 COPSAC2010 is the Copenhagen Prospective Studies on Asthma in Childhood 2010 birth cohort. 2 Rt is retention
time. 3 Y > N indicates metabolites that show higher levels in the asthma group than in the non-asthma group,
whereas N > Y indicates metabolites showing higher levels in the non-asthma group than in the asthma group.
4 AUC is the area under the ROC curve. 5 The metabolite masses with “n” indicate the neutral mass derived from
the sum of relative intensity of some possible adducts, e.g., M+H, M+NH4, M+Na, and M+K, in the peak picking.

Of the features selected by univariate analyses in COPSAC2000 and COPSAC2010, 14 variables
were in common among the two datasets, i.e., discriminative of persistent wheeze/asthma development
in both cohorts. In Table 3, we report the statistics of the 14 features selected in both the datasets. The
complete results of the univariate data analysis are provided in Table S2 in the Supplementary Materials.

Projection to latent structures discriminant analysis based on variable influence on projection
selection (VIP-based PLS-DA) was thereafter applied to investigate if the correlation structure in the
metabolomics data was able to separate children who developed persistent wheeze/asthma from healthy
children. Specifically, a stability selection procedure based on VIP-based PLS-DA was applied [19];
a total of 100 subsamples composed of 75% of the observations for the persistent wheeze/asthma group
and an equal number of those for the healthy group were randomly selected from the samples. The
relevant discriminant features were identified as those that were selected in more than 50% of all the
models. The performance in prediction of each model was estimated by AUC of the prediction of the
part of the samples that were not selected for training the model (AUCpred). The stability selection
highlighted 11 discriminative features from the COPSAC2000 dataset and 35 discriminative features
from the COPSAC2010 dataset. In Table 4, we provide a list of these variables. Variable 3.34_579.2516n
was selected both by univariate and by multivariate data analysis in the COPSAC2010 cohort.
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Table 3. Univariate data analysis results for variables selected in both COPSAC 1 cohorts.

Metabolite ID Higher in
asthma/wheeze 3 COPSAC2000 4 COPSAC2010 4

Rt 2 Mass

0.83 197.0309 m/z N > Y 2.5 × 10-4 7.9 × 10-7

4.95 520.1083 n 5 N > Y 1.9 × 10-3 1.8 × 10-4

2.63 240.0830 n N > Y 1.1 × 10-3 5.9 × 10-4

2.62 323.1058 m/z N > Y 1.3 × 10-6 6.2 × 10-4

0.77 266.6361 n N > Y 1.9 × 10-4 1.0 × 10-3

4.95 425.0693 m/z N > Y 5.5 × 10-3 1.7 × 10-3

4.95 472.0821 n N > Y 1.4 × 10-3 3.3 × 10-3

2.34 320.0695 n N > Y 5.6 × 10-3 4.0 × 10-3

2.84 671.1053 m/z N > Y 1.3 × 10-4 8.1 × 10-3

2.84 503.0769 m/z N > Y 1.3 × 10-4 8.9 × 10-3

2.02 314.0735 m/z Y > N 9.4 × 10-4 6.9 × 10-4

5.07 480.2963 m/z Y > N 7.8 × 10-4 4.2 × 10-3

0.95 611.2039 m/z Y > N 8.2 × 10-4 4.1 × 10-3

1.86 376.1704 n Y > N 1.1 × 10-3 7.6 × 10-3

1 COPSAC is the Copenhagen Prospective Studies on Asthma in Childhood. 2 Rt is retention time. 3 Y > N indicates
metabolites that show higher levels in the asthma group than in the non-asthma group, whereas N > Y indicates
metabolites showing higher levels in the non-asthma group than in the asthma group. 4 Mann–Whitney test p-values
are given in the COPSAC2000 and COPSAC2010 columns. 5 The metabolite masses with “n” indicate the neutral
mass derived from the sum of relative intensity of some possible adducts, e.g., M+H, M+NH4, M+Na, and M+K,
in the peak picking.

Table 4. Variable selected by stability selection.

Dataset
Metabolite ID

N2

Rt 1 Mass

COPSAC2010 6.52 130.9831 m/z 77
COPSAC2010 6.46 164.9354 m/z 91
COPSAC2010 5.77 171.0055 m/z 52
COPSAC2010 0.83 197.0309 m/z 81
COPSAC2010 6.82 208.9162 m/z 60
COPSAC2010 6.75 239.0211 n 3 52
COPSAC2010 6.51 272.9581 m/z 91
COPSAC2010 6.47 278.9172 m/z 85
COPSAC2010 6.68 288.9358 m/z 81
COPSAC2010 3.80 303.6059 m/z 66
COPSAC2010 6.69 304.9131 m/z 75
COPSAC2010 6.69 273.9368 n 88
COPSAC2010 6.40 279.8984 n 74
COPSAC2010 6.52 327.0678 m/z 77
COPSAC2010 4.95 329.1580 n 54
COPSAC2010 6.65 357.0611 m/z 86
COPSAC2010 6.83 386.1231 n 56
COPSAC2010 6.65 372.0835 n 84
COPSAC2010 6.75 368.9785 n 70
COPSAC2010 6.69 434.8710 m/z 89
COPSAC2010 3.31 452.3010 m/z 72
COPSAC2010 6.62 472.2043 m/z 56
COPSAC2010 5.07 480.2963 m/z 84
COPSAC2010 2.51 534.1231 m/z 55
COPSAC2010 3.94 544.2579 m/z 55
COPSAC2010 4.95 520.1083 n 52
COPSAC2010 3.34 579.2516 n 57
COPSAC2010 0.94 595.2081 m/z 70
COPSAC2010 0.95 611.2039 m/z 70
COPSAC2010 6.65 305.0493 n 79
COPSAC2010 6.59 888.2750 m/z 84
COPSAC2010 6.40 891.1497 m/z 52
COPSAC2010 6.58 915.2940 m/z 70
COPSAC2010 2.84 1007.1621 m/z 56
COPSAC2010 2.84 1091.1767 m/z 55
COPSAC2000 1.77 215.0312 m/z 80
COPSAC2000 5.07 480.2963 m/z 50
COPSAC2000 2.84 503.0769 m/z 53
COPSAC2000 0.94 595.2081 m/z 63
COPSAC2000 0.51 655.0471 m/z 51
COPSAC2000 2.84 671.1053 m/z 59
COPSAC2000 2.83 839.1337 m/z 70
COPSAC2000 2.84 923.1478 m/z 69
COPSAC2000 2.84 1007.1621 m/z 83
COPSAC2000 2.84 1091.1767 m/z 74
COPSAC2000 2.83 1175.1912 m/z 79

1 Rt is retention time. 2 Number of sub-models where the variable was selected by projection to latent structures
discriminant analysis based on variable influence on projection selection (VIP-based PLS-DA). 3 The metabolite
masses with “n” indicate the neutral mass that derives from the sum of relative intensity of some possible adducts,
eg, M+H, M+NH4, M+Na, and M+K, in the peak picking.



Metabolites 2019, 9, 185 6 of 16

For the COPSAC2000 dataset, stability selection provided a model distribution characterized by a
median AUCpred of 0.68 (10th percentile equal to 0.51) (see Figure S2 in the Supplementary Materials),
whereas, for the COPSAC2010 dataset, the AUCpred was 0.63 (10th percentile equal to 0.54) (Figure 1).
All the features selected as relevant were merged to the subset of features selected by the univariate
data analyses. The confusion matrices obtained predicting the out-of-bag observations are reported in
Tables S3 and S4 in the Supplementary Materials.
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the projection to latent structures discriminant analysis based on variable influence on projection
selection (VIP-based PLS-DA) stability selection procedure for the COPSAC2010 dataset are reported,
represented by the black lines. Red, dashed lines indicate the 10th, 50th, and 90th percentiles.

The data were thereafter analyzed by random forest (RF) modeling [20] to assess if the metabolic
fingerprint can be used to classify children who have developed persistent wheeze/asthma as well as
healthy children. Since the asthma and the non-asthma group were not equally populated, we randomly
extracted from the two groups 500 subsets composed of a number of observations equal to 70% of
the less populated group. The extracted observations were used as training sets for RF, whereas
the observations that were not selected were used to test the 500 RFs obtaining the error out-of-bag
(errOOB). The RF built on the two datasets led to a median errOOB equal to 35% for both COPSAC2000
and COPSAC2010, according to the error in prediction estimated by the PLS-DA based models
(Figure 2). The performance, in prediction of the classification models, allowed us to affirm that the
metabolic fingerprints from urine samples of children aged 4 weeks contained information useful for
characterizing the two groups under investigation, i.e., children developing persistent wheeze/asthma
and healthy children.

2.3. Metabolite Annotation

To describe the relevant biology of the discriminative features for persistent wheeze/asthma status,
metabolite annotation was attempted for the 14 features selected in COPSAC2000 and COPSAC2010.
We searched our in-house database as well as the available online metabolite databases, the Human
Metabolome Database (HMDB) and the METLIN Metabolite and Chemical Entity Database, and studied
the fragmentation spectra, which led us to identify three relevant features. Two identified features
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in the COPSAC2010 cohort were higher in children developing persistent wheeze/asthma: the bile
acid taurochenodeoxycholate-3-sulfate (3.34 Rt 579.2516n, annotation at level 1, as defined by the
Chemical Analysis Working Group of the Metabolomics Standards Initiative [21]), and the fatty acid
3-hydroxytetradecanedioic acid (0.97 Rt 273.1696m/z, annotation at level 2). One feature in common
with the two cohorts was higher in the healthy children and was annotated as a glucoronidated steroid
compound (4.95 Rt 520.1083n, annotation at level 3) (see Appendix A).
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Figure 2. Random forest analysis of the COPSAC2010 dataset. Error-out-of bag (errOOB) versus the
number of trees of the 500 random forests built on the COPSAC2010 dataset. Black, dashed lines
indicate the 10th, 50th, and 90th percentiles of the errOOB. Red lines indicate the errOOB for the
non-asthma group, the green lines that of the asthma group, and the black lines the total errOOB for
each random forest. The total errOOB laid in the range of 0.28 to 0.39 after 300 trees. With more than
300 trees, the performance did not change.

3. Discussion

This pioneering urine metabolomics study of healthy neonates born to asthmatic mothers
showed that differential urine metabolite levels measured at age 4 weeks in two birth cohorts were
associated with development of asthma before school age. The metabolic profiles in the urine samples
discriminated children developing asthma from healthy children independently in both cohorts and
with 14 overlapping discriminating features. These findings suggest the presence of a perturbed
metabolism in early life heralding the onset of respiratory symptoms.

Although no previous study has investigated urinary metabolomics profiles at age 4 weeks in
relation to asthma development, other studies have shown that urine metabolomics profiles in the first
years of life predict development of recurrent wheeze and asthma [22,23], which is in line with our
findings. A recent longitudinal high-resolution 1H nuclear magnetic resonance (1H-NMR) spectroscopy
study by Chiu et al. [22] of 60 children showed that the metabolic profiles in urine samples collected at
ages 1–4 years was associated with asthma status by age 4. Dimethylamine, allantoin, guanidoacetic
acid, and 1-methylnicotinamide from the nicotinamide pathway, which is associated with oxidative
stress and smooth muscle cell contractility, were significantly associated with asthma development [22].
Another longitudinal 1H-NMR study by Turi et al. [23] of healthy infants and infants with respiratory
syncytial virus (RSV) and rhinovirus infection showed that their urine metabolic profile at enrollment
was associated with risk of recurrent wheezing through age three. They found that nicotinamide
and nicotinate metabolites discriminated infants with RSV from healthy infants and that alanine
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and 2-hydroxyisobutyric acid, a gut microbiome metabolite, were associated with development of
recurrent wheeze [23]. Interestingly, a case-control urine 1H-NMR study of 135 children aged 4 to 16
also found 1-methylnicotinamide and 2-hydroxyisobutyrate among other metabolites being able to
separate asthmatics from healthy children [12].

In our UPLC-MS study, we were able to annotate three of the discriminatory features, which were
the bile acid taurochenodeoxycholate-3-sulfate, the fatty acid 3-hydroxytetradecanedioic acid, and a
glucoronidated steroid compound, but we were unable to annotate the majority of the features that
were associated with development of persistent wheeze or asthma. The metabolite findings in the
longitudinal studies by Chiu et al. and Turi et al. [22,23] were not among our annotated metabolites,
but we could not determine whether our unknown discriminative features encompass these metabolites
or other metabolites in the same pathways. However, lack of replication of metabolites between our
study and their study could be caused by the young age of sampling in our study, the fact that we
sampled urine from healthy neonates prior to any respiratory symptoms, and that profiling was done
by UPLC-MS in negative ionization mode as opposed to 1H-NMR.

The bile acid metabolite taurochenodeoxycholate-3-sulfate is a sulfated bile salt formed in the
liver by conjugation of chenodeoxycholate with taurine, which was a level 1 annotated identified
metabolite that we found significantly higher in the urine of children developing asthma. Bile acids
are known to facilitate the excretion, absorption, and transport of fats and sterols in the intestine
and liver; they are essential for the absorption of the fat-soluble vitamins A, D, E, and K, and are
involved in the regulation of enzymes in the cholesterol homeostasis. Sulfation of bile acids increases
the aqueous solubility and results in increased renal excretion and decreased reabsorption from
the intestinal lumen [24], which could be speculated to lead to decreased absorption of vitamin
D and corresponding lower vitamin D blood levels, which have been associated with increased
risk of childhood wheezing illnesses [25]. Furthermore, conjugated, non-sulfated bile acids such
as tauroursodeoxycholic acid [26,27] and chenodeoxycholic acid [28] have, in murine models, been
shown to attenuate allergic airway inflammation by inhibiting Th2 cytokines. Previous human urine
metabolomics studies of asthma have not found bile acid metabolites associated with asthma status,
but a plasma UPLC-MS case-control study of 237 children (mean age 8 years) from the American
Project Viva birth cohort found that the bile constituent taurocholate significantly increased the risk of
asthma [29]. A study by Comhair et al. [30] has also shown increased level of plasma taurocholate
among asthmatics. In general, bile acids are emerging as regulators of the gut microbiome at the
highest taxonomic levels. Recent evidence suggests crosstalk between gastrointestinal microbiota and
the lung, as well as the existence of a gut-mediated lung immunity that could remotely contribute to
the pathogenesis of chronic airway diseases such as childhood asthma [31–33].

The fatty acid 3-hydroxytetradecanedioic, which we found to be significantly higher in healthy
neonates who developed persistent wheeze or asthma during their first six years of life, was annotated
at level 2, i.e., a putatively annotated compound. Very high urinary levels of this unusual
3-hydroxydicarboxylic acid have been reported in infants with inborn errors of metabolism [34,35],
but not in association with asthma. However, several targeted and untargeted urine and blood
metabolomics studies, reviewed by Kelly et al. [10] and Turi et al. [36] have shown that lipid
mediators and fatty acids are associated with asthma status, exemplified by McGeachie et al. [37]
in a targeted blood lipidomics study of 20 children showing that monoHETE, arachidonic acid, and
prostaglandin-E2 were associated with asthma control. Particularly, n-6 long-chained polyunsaturated
fatty acids (LCPUFAs) related to arachidonic acid in membrane phospholipids are known to
be implicated in airway inflammation and asthma pathogenesis via conversion to eicosanoids,
leukotrienes, and prostaglandins [38], whereas n-3 LCPUFAs can displace arachidonic acid and
dampen inflammation [39]. Thus, our findings in respect to 3-hydroxytetradecanedioic acid could
be speculated to be a reflection of a more general perturbed pro-inflammatory fatty acid metabolism.
However, that remains purely speculative, as the majority of the discriminative features could not be
annotated in our study.
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We also found a third significant discriminative feature at age 4 weeks that was higher in children
not developing persistent wheeze or asthma. Database search and MS/MS fragmentation experiments
on this feature only annotated the metabolite as a glucoronidated steroid compound, i.e., corresponding
to level 3 putatively characterized compound classes and, therefore, this finding should be interpreted
cautiously. Several metabolomics studies have shown that levels of endogenous steroids, such as
cortisone in plasma [29,40] and urocortison and urocortisol in urine [13] are higher in healthy children
compared to asthmatics, which is most likely caused by suppression of the hypothalamic–pituitary axis
by maintenance treatment with inhaled corticosteroids. However, this cannot explain our findings as
urine was sampled from healthy, asymptomatic four-week-old children free of any medical treatment.
Glucuronidation is a process that assists in renal excretion of substances as it increases water solubility
of the original substance. Therefore, it may be speculated that children developing persistent wheeze or
asthma with lower level of the glucoronidated steroid compound in their urine at age 4 weeks had higher
level of the original steroid substance in the blood, i.e., an increased stress response, which may have
increased their risk of developing systemic low-grade inflammation [41] and asthma-like symptoms.

It is a significant strength of our study that we were able to show that, in the metabolomics
profiles measured in urine samples from age 4 weeks, there were a metabolic fingerprints which were
significantly associated with development of persistent wheeze and asthma in two independent birth
cohorts with several overlapping features. However, from a clinical perspective, a prediction accuracy
of around 0.65 for the multivariate models is not very convincing. Still, it is not too bad considering
that the biological samples (urine) are not tissue specific for asthma and were collected years before
diagnosis. The study is strengthened by the use of similar endpoints of persistent wheeze/asthma in the
two birth cohorts strictly adhering to previously validated algorithm-based diagnostic procedures [42],
which the limits diagnostic heterogeneity of childhood asthma seen in general practice and the recall
bias inherent to using a parent history of doctor-diagnosed asthma. The generalizability of our findings
is limited by the fact that all the samples selected for metabolomics profiling were collected from
children born to mothers with a history of asthma.

Another strength of this study was the use of state-of-the-art UPLC-MS metabolic profiling.
Still, we were unable to annotate the majority of the persistent wheeze/asthma discriminative features,
which limits the biochemical insight into disease mechanisms obtained from the data. However,
metabolite annotation difficulties with LC-MS in terms of identification of biochemical structures is a
generic rather that study specific problem [43], and annotation of 3 of 14 common discriminating features
is not less than would be expected. Metabolite libraries and computer-based interpretation of mass
spectra data are rapidly improving, but exact metabolite annotation is a complicated procedure due to
the complex patterns of fragmentations [44]. Thus, we were mainly able to discover a combination
of unidentified features in the urine of children at 4 weeks of age, from which it was possible to
discriminate between children developing persistent wheeze/asthma and children not developing such
traits. Regardless of the fact that the biological natures of these features are mostly unknown, this is an
important finding, as it pinpoints the existence of a perturbed metabolism earliest in the life course,
which directs primary preventive initiatives such as dietary supplements to the pregnancy and early
postnatal period.

4. Materials and Methods

4.1. Study Populations

The COPSAC2000 is a high-risk cohort including 411 children born to mothers with asthma. The
symptom-free children were enrolled at age 4 weeks excluding children with gestational age < 36 weeks,
any congenital abnormality, and any respiratory symptoms or treatment prior to enrollment. At the visit
at age 4 weeks, the healthy neonates were sedated with an oral dose of chloral hydrate 90 mg/kg prior
to lung function testing, with the raised volume rapid thoracoabdominal compression technique [16].
The children subsequently attended six monthly scheduled visits to the COPSAC research clinic
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until age 7, as well as immediately upon onset of any respiratory symptom [15]. Urine samples
of 171 healthy neonates were collected before oral chloral hydrate for sedation and submitted to
metabolomics analysis.

The COPSAC2010 is a population-based cohort of 738 women and their 700 children. The women
were enrolled at 24 weeks of pregnancy, excluding women with any endocrine, heart, or kidney
disorder or a vitamin D intake above 600 IU/d. The children were seen at scheduled visits at the
COPSAC clinic at age 1 week; 1, 3, and 6 months, half-yearly till age 3; and yearly from ages 3–6,
as well as during episodes with respiratory symptoms [17]. Two randomized controlled trials of
fish oil and high-dose vitamin D during 3rd trimester pregnancy with asthma/persistent wheeze as
primary endpoint were embedded in COPSAC2010 in a 2 × 2 factorial design [45,46]. A subgroup of
161 healthy neonates with high-risk of asthma, being born to mothers with asthma, was selected for
metabolomics investigation.

The Local Ethics Committee (H-B-2008-093) and the Danish Data Protection Agency (2015-41-3696)
approved the study. Both parents gave oral and written informed consent before enrolment.

4.2. Persistent Wheeze and Asthma Diagnosis

Parents were instructed to record their child’s troublesome lung symptoms, i.e., significant cough
or wheeze or dyspnea, in a diary filled from birth as a dichotomized daily score (yes/no). Upon onset
of symptoms, the parents were further requested to bring their child to the research unit for a clinical
examination by the COPSAC pediatricians and verification of the diary recordings. The COPSAC
pediatricians were solely responsible for diagnosis and treatment of asthma in the cohorts instead of
their general practitioners.

Persistent wheeze (0–3 y)/asthma (>3 y) was diagnosed based on a previously validated
quantitative symptom-based algorithm [42,47] requiring all of the following criteria: (1) five episodes
of diary-verified troublesome lung symptoms within six months, each lasting at least three consecutive
days; (2) symptoms typical of asthma, including exercise-induced symptoms, prolonged nocturnal
cough, and persistent cough outside common cold; (3) need for intermittent rescue use of inhaled
β2-agonist; and (4) response to a 3 month course of inhaled corticosteroids (ICS) and relapse upon
ended treatment, which resulted in prescription of a 6 months course of ICS and additional 12 month
courses at subsequent relapses.

The primary endpoint for the urine metabolomics analyses was development of persistent
wheeze/asthma in the first 6 years of life.

4.3. Urine Collection and Sample Preparation

Urine samples were collected during scheduled visits to the COPSAC clinic at age 4 weeks into a
sterile plastic bag adherent to the skin. The urine samples were immediately transferred to 3.6 mL Nunc
tubes, and the aliquots were stored without addition of any preservatives at −80 ◦C until analysis [6].

The samples were shipped on dry ice to the Mass Spectrometry Laboratory of the Women’s and
Children’s Health Department of Padova University Hospital. All urine samples were analyzed at
the same time using UPLC coupled to quadrupole-time of flight mass spectrometry (Acquity coupled
to Synapt G2; Waters). Firstly, urine samples were slowly thawed, in order to reduce thermal shock,
which may alter the metabolic composition of the samples; their temperature were raised from −80 ◦C
to −20 ◦C, then from −20 ◦C to +4 ◦C, and finally from +4 ◦C to ambient temperature (around +20 ◦C).
Then, each sample was stirred and centrifuged at 3600× g for 10 min in order to make each sample more
homogeneous and separate any solid particulate. Following centrifugation, 100 µL of the supernatant
was transferred into a test tube and 200 µL of a solution of acetonitrile (CH3CN) and H2O in 90:10 ratio
with 0.1% formic acid (FA) was added; thus, diluting the sample by a ratio of 1:3. After mixing the
solution, 100 µL of the diluted sample was pipetted into a 384 well plate for the analysis in positive
ionization mode, and another 100 µL was pipetted into a second 384 well plate for analysis in a negative
ionization mode.
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In order to assess the reproducibility and accuracy during the analysis, quality control samples
(QC) and standards solution samples (Mix) were used. The QCs were prepared mixing together
an aliquot of each sample and then making a 1:3 dilution (CH3CN:H2O, 0.1% FA). The standards
solution consisted of a mix of nine compounds, where the exact masses and retention times were
known (sulfaguanidine, scetaminophen, saffeine, hippurate, leucine enkephalin, sulfadimethoxine,
verapamil, terfenadine, cholic acid). The QC and Mix samples were injected at regular intervals during
the sequence, together with blank samples (CH3CN:H2O, 0.1% FA), to determine specific ions from the
mobile phase and to see possible contaminants.

For all transfers of liquids, an Eppendorf micropipette was used to minimize contamination.
The samples were injected randomly to prevent any spurious classification derived from the samples
position in the sequence.

4.4. UPLC-MS Analysis

The well plates were put in the auto-sampler of the UPLC, which was kept at a temperature of
6 ◦C. A Waters Acquity BEH HILIC, with a 2.1 mm wide and a 100 mm long column packed with
1.7 µm beads, was used for normal stationary phase injection. The temperature of the column was
kept at 50 ◦C and the mobile phase flow rate was set at 0.5 mL/min.

The gradient mobile phase consisted of H2O with 0.1% FA and 10 mM of ammonium acetate
(CH3COONH4) for the eluent A and H2O with CH3CN in a 0.5:99.5 ratio with 0.1% FA and CH3COONH4

1 mM for the eluent B. Each sample run lasted 12 min and consisted of an isocratic phase of 99% B for
1 min, a linear decrease to 80% B in 4.5 min, a linear decrease to 60% B in 0.5 min, a linear decrease to
5% B in 0.1 min, an isocratic phase of 5% B for 1.49 min, a linear increase to 99% B in 3.5 min. For each
run, 5 µL of sample were injected.

Mass spectrometry and exact mass acquisition was performed with the quadrupole-time-of-flight
mass spectrometer operating at negative-ion (ESI-) electro-spray ionization mode. We limited the
analysis to metabolites falling in the mass range of 20 to 1200 amu. The capillary voltage was set at
1.5 KV. The desolvation gas flow was set at 600 L/h with the temperature kept at 350 ◦C. The cone gas
flow was set at 20 L/h with the temperature kept at 110 ◦C.

To further reduce analytical variability, in accordance with an in-house protocol, sample
distribution in the plate and the sequence of sample injection in the UPLC-MS were randomized,
and five-sixths of the fluid resulting from the addition of eluents to the sample was excluded from the
ionization process (splitting). Splitting samples prevents the risk of smudging the internal surfaces of
the spectrometer itself, thus reducing its sensitivity. The analytical timeframe of all the analyses was
within a month.

4.5. Data Processing and Pre-Treatment

The UPLC-MS data were processed by the software Progenesis V2.3 (Nonlinear Dynamics-Waters).
The parameters used for data extraction were optimized through the preliminary analysis processing
of the QC samples. As a result, the so called Rt_m/z variables (where Rt is the retention time and m/z
is the mass to charge ratio of the chemical compound) were generated.

Variables with more than 95% of missing values in the blank samples or with a ratio between the
5th percentile measured in the QCs and the 95th percentile measured in the blank samples greater
than 5 were included. Moreover, variables with a coefficient of variation in the QCs greater than 20%
were excluded.

Missing data were imputed by generating a random number between zero and the minimum
value measured for the variable. Probabilistic quotient normalization and square root transformation
followed by mean centering and Pareto scaling were applied in order to take into account dilution
effects and to reduce the scale effects of the variables (see Figure S3 in the Supplementary Materials).
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4.6. Statistical Data Analysis

The relationships between the measured variables and the outcome of asthma were investigated
using different methods in order to discover the most interesting variables able to characterize the
urines of the subjects developing asthma with respect to the urines of the group that did not develop
asthma. Specifically, t-test with FDR was applied to the variables showing a normal distribution in each
group on the basis of the Shapiro–Wilk test (significance level of 0.10), whereas the Mann–Whitney test
with FDR was applied to all datasets. The ROC curve analysis was used to characterize the strength in
discrimination of each variable. The FDR was performed according to Storey [18] and the significance
level for the q-value was set to 0.15.

To investigate the correlation structure related to the differences between the two groups, a stability
selection procedure based on random sampling and VIP-based PLS-DA was implemented. The idea
underlying stability selection is that real differences should be present consistently and, therefore,
should be found even under perturbation of the data by sub-sampling. A subset of observations was
randomly extracted and used to train a VIP-based PLS-DA model. In VIP-based PLS-DA, variables are
selected excluding the variables showing a VIP score under a specified threshold that is calculated
maximizing the cross-validated R2 obtained by 7 fold cross-validation. The procedure is repeated a
large number of times, and variables are considered relevant on the basis of the number of VIP-based
PLS-DA models that use those variables. Specifically, in both cohorts, a total of 100 subsamples
composed of 75% of the observations for the persistent wheeze/asthma group and an equal number of
those for the healthy group were randomly extracted from the collected samples, and then VIP-based
PLS-DA was applied to each subsample, obtaining a set of 100 discriminant models. The relevant
discriminant variables were identified as those that were selected in more than 50% of all the models.
The predictive performance of each model was estimated by means of the analysis of the outcomes
of the predictions of which samples would be excluded during sampling and expressed in terms of
AUCpred. The class membership was determined applying linear discriminant analysis to the scores
of the PLS-DA model.

In the case of RF, since the asthma and the non-asthma group were not equally populated,
500 subsamples were randomly extracted from the collected samples and RF was applied to each
subsample. Specifically, 28 observations for the COPSAC2000 dataset (14 observations for the asthma
group and 14 for the non-asthma group) and 68 observations for the COPSAC2010 dataset (34
observations for the asthma group and 34 for the non-asthma group) were randomly extracted to
train 500 RFs. The out-of-bag error, i.e., the error calculated predicting the observations that were not
selected as training sets, of each RF (500 trees, 40 candidate variables at each split) was considered an
estimate of the error in prediction.

All analyses were implemented by the R 3.5.2 platform (R Foundation for Statistical Computing)
using user-defined R-functions and the package “randomForest” for RF.

5. Conclusions

This exploratory study showed that in two independent birth cohorts, there were differential
metabolite levels detected in urine samples between newborns that will develop asthma and those that
will not; however, further research is needed to assess whether metabolic profiling of urine samples
can accurately predict future asthma in a clinical setting.
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Table S1: Metabolomics datasets, Table S2: Full univariate analyses, Table S3: COPSAC2000 confusion matrix,
Table S4: COPSAC2010 confusion matrix.
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Appendix A

Levels used for metabolite annotation according to Sumner et al. Metabolomics 2007, 3,
211–221.

Level 1 “Identified metabolites” Two orthogonal analytical techniques applied to the analysis of
both the metabolite of interest and to a chemical reference standard of suspected structural equivalence,
with all analyses performed under identical analytical conditions within the same laboratory.

Level 2 “Putatively annotated compounds” As for levels 3 and 4, including spectral (NMR and/or
MS) similarity with public or commercial libraries.

Level 3 “Putatively characterized compound classes” As for level 4, plus spectral and/or
physicochemical properties consistent with a particular class of organic compounds.

Level 4 “Unknown” A discernible spectral signal (NMR, MS or other) that can be reproducibly
detected and quantified.

Parameters used for data extraction by Progenesis 2.3
Import the Data

# Filter was set 0.25 on POS and NEG acquisition
# Adducts

# POS (M+H, M+Na, M+K, M+H-H2O, M+NH4, M+CH3OH+H)
# NEG (M-H, M+Na-2H, M-H2O-H, M-NH4, M+CH3CO2)

Automatic alignment
Sensitivity was set to 3
Compounds Identify
Search to identity compounds using Progenesis on Home Database

# Filter 10 ppm for mass
# Filter 0.5 min for Rt
# Filter 20 ppm for mass fragment

Search to identity compounds using METLIN, HMDB, as the databases

# Filter 10 ppm for mass
# Filter 20 ppm for mass fragment

All the compounds found were manually controlled on raw data.
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