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Abstract: Mathematical modelling is a widely used technique for describing the temporal behaviour of biological systems. One
of the most challenging topics in computational systems biology is the calibration of non-linear models; i.e. the estimation of
their unknown parameters. The state-of-the-art methods in this field are the frequentist and Bayesian approaches. For both of
them, the performance and accuracy of results greatly depend on the sampling technique employed. Here, the authors test a
novel Bayesian procedure for parameter estimation, called conditional robust calibration (CRC), comparing two different
sampling techniques: uniform and logarithmic Latin hypercube sampling. CRC is an iterative algorithm based on parameter
space sampling and on the estimation of parameter density functions. They apply CRC with both sampling strategies to the
three ordinary differential equations (ODEs) models of increasing complexity. They obtain a more precise and reliable solution
through logarithmically spaced samples.

1 Introduction
In systems biology, a key issue is to understand the dynamic
interactions occurring within and between cells, which determine
their structure and basic functions [1, 2]. Since most aspects of a
biological system are not directly accessible to experimental
observation, mathematical modelling is widely employed to
formalise the dynamic and temporal evolution of system variables
and to make predictions about biological mechanisms [3, 4].

In this study, we consider biological systems modelled with
deterministic ordinary differential equations (ODEs) [5]. These
models have a set of unknown kinetic parameters which cannot be
measured experimentally. Thus, one of the challenging tasks of
model building is model calibration; i.e. the inverse problem of
estimating those parameters from available experimental data [6].

The state-of-the-art methods for parameter estimation are
classified in frequentist and Bayesian methodologies. Both
approaches are based on the concept of the probability density of
observing the data given certain parameter values [7]. However,
the frequentist methods aim at maximising the likelihood function
through an optimisation algorithm while the Bayesian compute the
posterior distribution using sampling based techniques [8, 9]. In
both classes of algorithms, sampling is a fundamental element for
dealing with parameter uncertainty. In order to avoid local optima,
the frequentist approach employs bootstrapping from the available
experimental replicates and Latin hypercube sampling (LHS) in
order to start the estimation from different and independent
parameter samples [10]. On the other hand, Bayesian methods
sample directly from a prior distribution and accept only those
samples that are in a region of high probability. Thus, in this class
of methods, the sampler is of primary importance to guarantee the
convergence to the desired posterior distribution. Samples should
be dense and properly distributed in order to ensure a wide and
appropriate exploration of the parameter space [11]. Currently,
different sampling techniques are available, including multivariate
uniform or logarithmic distribution, LHS and its variations,
Markov Chain Monte Carlo and sequential Monte Carlo methods
[12–15].

In this paper, we aim to understand the performances of two
sampling strategies, namely uniform and logarithmic LHS, in a
new Bayesian procedure called conditional robust calibration

(CRC), presented in [16, 17]. CRC is an iterative algorithm that
samples the parameter space and returns in output the probability
density functions (pdfs) of parameters. Each pdf is estimated on the
region of the parameter space that best reproduces the experimental
dataset. CRC is applied to calibrate three ODE models with
different characteristics; i.e. the well-known Lotka Volterra model
[12], the erythroprotein receptor (EpoR) model [18] and the
multiple myeloma (MM) model [19]. The comparison of CRC
results between logarithmic and uniform sampling show that, while
the logarithmic LHS successfully estimated unknown parameter
values, the uniform LHS returned less reliable and precise results
in all studied models.

2 Methods
2.1 Mathematical model

Mathematically, ODE models are represented as follows:

ẋ(θ, t) = f (x(θ, t), u(t), θ), x(0) = x0, (1)

y(γ, t) = g(x(t), u(t), γ), (2)

where x ∈ ℝn is the vector of state variables with initial conditions
x0, u ∈ ℝs is the vector of control variables and y ∈ ℝm is the
vector of output variables; i.e. the concentrations of measured
states or a function of them. Note that θ ∈ Θ, where Θ is a subset
of the positive orthant, ℝ > 0

t  is the vector of dynamical model
parameters. Vector γ ∈ ℝh contains scaling and offset parameters.
The function f ( ⋅ ):ℝn × s × t → ℝn specifies the model while
g( ⋅ ):ℝn × s × h → ℝm is the observation function for mapping the
state variables to the observed quantities. By setting p = {θ, γ, x0},
P ∈ ℝq = t + h + n, all model parameters are known. Each parameter
pi, i = 1, . . . , q, is usually characterised by an interval of validity,
due to its physical or biological meaning. Let pn, i denote the
nominal value of pi. Then, the lower and upper boundaries of
parameter pi can be written, respectively, as bℓ, i = cℓ, i × pn, i and
bu, i = cu, i × pn, i, where cℓ, i > 0 and cu, i > 0 are multiplicative
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coefficients. Thus, the parameter space ℙ results from the Cartesian
product ℙ := ∏i = 1

q [bℓ, i, bu, i].

2.2 Experimental dataset

Since mathematical models represent an in silico explanation of
experimental data, the observables predicted by a model have to be
in agreement with the experimental dataset. Let denote with
Y

∗ = [y1
∗, . . . , ym

∗ ] the matrix of available data. Supposing that
experimental data are collected at different time points
tk ∈ [t1, . . . , t f ], each yj

∗, j = 1, . . . , m is a time series vector of the
form yj

∗ = [yj, 1
∗ , . . . , yj, k

∗ , . . . , yj, f
∗ ]. The jth observable measured at

the kth time point can be divided as yj
∗(tk) = yj

∼(tk) + ν(t), where
yj

∼(tk) is the nominal unknown value and ν(t) is the corresponding
measurement error, usually assumed to be normally distributed.

2.3 Calibration method

To compare the performances of uniform and logarithmic sampling
when using CRC, we estimate the parameters of three different
ODE models. Here, we briefly describe the main steps of CRC,
whose details are fully explained in [16]. Fig. 1 shows the CRC
workflow. 

2.3.1 Initialisation of input parameters: First of all, it is
necessary to initialise the input parameters of the procedure. They
are U

1 and L
1 which are, respectively, the upper and lower

boundaries of the parameter vector range and NS which is the
number of parameter samples to generate at each iteration.

2.3.2 Parameter space sampling: The parameter vector is
considered a random variable, denoted as P. The purpose of CRC
is to identify a sufficient number of parameter realisations that
approximate the posterior distribution f P Y

∗(p). Therefore, the
parameter space ℙ is sampled in order to generate NS realisations

of the parameter vector. Thus, the choice of NS depends on the
cardinality of ℙ. The higher the number of parameters to estimate,
the higher NS should be set in order to guarantee a wide exploration
and coverage of the parameter space.

LHS is chosen as the sampling technique in order to spread the
sample points more evenly across all possible values. To generate
Latin hypercube samples in a q-dimensional space, a unit
hypercube C

q = [0, 1]q is first divided into NS intervals with an
equal length of 1/NS along each axis. This creates NS equally
probable intervals,
[0, 1/NS), [ 1/NS , 2/NS ), . . . , [ (NS − 1)/NS , 1), for each
dimension. Thus, LHS can be represented as a NS − by − q sample
matrix, which contains one sample in each row and in each
column. Each column corresponds to a variable and it is a random
permutation of the intervals while each row is a sample point [11].
Afterwards, the LHS matrix needs to be centred around the
nominal parameter values and between the defined lower and upper
boundaries.

In this study, we assume that, in one case, parameters are
uniformly distributed among their intervals while, in another case,
they are logarithmically distributed. Let denote with LHS(Ns, q) the
matrix that contains the NS samples generated. Under the
hypothesis of uniform distribution, the matrix PS of the generated
parameter samples is computed as

PS = pn × [Lz + (Uz − L
z) × LHS(NS, q)], (3)

where pn is the nominal parameter vector, Uz and Lz are the lower
and upper boundaries of the sampling interval at the zth iteration.
On the contrary, when using logarithmic sampling, PS is calculated
as

PS = pn × elb
z

+ (ub
z

− lb
z
) × LHS(NS, q), (4)

where lb
z = log(Lz) and ub

z = log(Uz) are the lower and upper
boundaries transformed to the logarithmic space. At each iteration,
the sampling interval is shrinked according to the following
formula:

U
z(Lz) =

U
1(L1), if z = 1

U
(z − 1)(L(z − 1)) + kU, 1(kL, 1)

kU, 2(kL, 2)
, if z > 1

(5)

where kU, 1, kL, 1, kU, 2, kL, 2 are input parameters chosen by the user.
Since U

z and L
z are multiplied with the nominal parameter

vector pn, they determine the percentage variation of pn at each
iteration. This means that the interval where the parameter samples
are selected for each iteration can be defined as follows:
[pn × L

z, pn × U
z]. Thus, given that each iteration gets closer to a

solution of the parameter values, the tuning parameters kU, 1, kL, 1,
kU, 2, kL, 2 should be chosen in order to shrink the percentage
variation of pn with respect to the previous iteration.

2.3.3 Model simulation and computation of distance functions
(DFs): For each sample p ∈ PS, the ODE model is integrated in
order to compute the in silico dataset Y. Then Y is compared with
Y

∗ by computing a DF for each output variable. The DF is defined
in two ways

NNDF j = ∑
k = 1

f

yj(tk) − yjk
∗ , j = 1, . . . , m . (6)

NDF j =
1
k

∑
k = 1

f
yj(tk) − yjk

∗

yjk
∗ , j = 1, . . . , m . (7)

Fig. 1  Main steps of CRC
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As P is a random variable, each vector yj can be seen as a
transformation from the random variable P and, consequently, each
DF j is a transformation from the random variable yj. Let denote
with d f j a realisation of the random variable DF j and with
f DF j

(d f j) the pdf of DF j. Each f DF j
(d f j), ∀ j = 1, . . . , m is

estimated using a kernel density approach [20]. The pdfs of the
DFs are good indicators to infer the ability of the sampling
technique to find parameter values that correctly calibrate the
mathematical model under investigation. The higher is the area
under each f DF j

(d f j) in a region close to zero and the higher is the
percentage of parameter vectors identified by the LHS that are able
to make the observables of the mathematical model close to the
experimental data.

2.3.4 Thresholds calculation: In this step, a set of thresholds
εj

z ≥ 0, j = 1, . . . , m is defined. They correspond to the
minimum accepted level of agreement between simulated and
experimental data, for each output variable. Thus, CRC selects
only those DF values that belong to the low tail of the
corresponding pdf. The rationale that the user has to follow to fix
the threshold values is explained in Section 2.3.5. Then, all DF tails
are intersected among each other obtaining the following set:
Δ = {⋂ j = 1

m
d f j(yj, yj

∗) :d f j yj, yj
∗ ≤ ϵj

z, ∀ j = 1, . . . , m}. In the
parameter space, the accepted DF values correspond to a set of
parameter samples having as joint conditional distribution f P Δ(p).

2.3.5 Parameter conditional densities estimation: For each
parameter, the corresponding conditional density f Pi Δ(pi) is
estimated using a kernel density approach. Concretely, the input
data for the estimation of f Pi Δ(pi), ∀ j = 1, . . . , m are the subset
of the parameter vectors generated through the LHS for which
d f j yj, yj

∗ ≤ ϵj
z, ∀ j = 1, . . . , m. As a consequence, the lower are

the values of the thresholds and the fewer are the available
parameter vectors to estimate the conditional densities of each
parameter. In order to have a reliable and stable estimation of these
pdfs, at least 1000 parameter samples are required [20]. For this
reason, each threshold ϵj

z is chosen in order to guarantee at least
1000 samples in d f j yj, yj

∗  under ϵj
z, ∀ j = 1, . . . , m; i.e.

Δ ≥ 1000. Finally, for each parameter the corresponding mode
value pmode, i is selected. Multiple sets of thresholds can meet the
requirements, but the purpose is to find the lowest possible values
because it means that the distance between simulated and
experimental data is minimum. If it is necessary to perform another
iteration of CRC, the nominal value of every parameter is set equal
to the mode value of f Pi Δ(pi); i.e. pn, i = pmode, i, ∀ i = 1, . . . , q and
the sampling interval is updated by changing Uz and Lz according
to (5). It is important to underline that at the next iteration the
interval where PS is selected can be wider or tighter than the
previous one because the lower and upper boundaries are
multiplied by the mode value of each parameter.

The procedure stops when the desired level of agreement
between simulated and experimental data is met. For instance, in
case of in silico data whose source of error is known, CRC is
performed until each threshold is slightly over the difference
between nominal and noisy data, in order to avoid noise fitting.

3 Results
In this section, we compare the performances of CRC with uniform
and logarithmic sampling approach when calibrating three different
ODE models. All computational analyses were run using Matlab
(R2014), on a Intel Core i7-4700HQ CPU, 2.4 GHz, 16 GB
Memory, Ubuntu 16.04 LTS (64bit).

3.1 Lotka-Volterra model (M1)

We apply CRC to the Lotka-Volterra ODE model. The model
describes the interaction between the prey species x, and predator
species y, through parameters a and b

ẋ(a, t) = a × x(t) − x(t) × y(t), x(0) = 1,

ẏ(b, t) = b × x(t) × y(t) − y(t), y(0) = 0.5,

w(a, b, t) = [x(t), y(t)] .

(8)

Observables of the model are both x and y while the parameter
space is ℙ ∈ ℝ > 0

2 . Both nominal values of parameters are set to 1.
In silico data are generated as in [12]; i.e. sampling eight values at
the specified time points and adding Gaussian noise N 0, (0.52)
(see Table 1). 

We calculate the distance between the nominal and noisy
dataset according to (6) and we obtain the following values: 3.09
for species x and 2.6 for species y. Accordingly, they represent the
minimum accepted level of agreement between simulated and
experimental data. Since the purpose of this paper is the
comprehension of the role of the sampling approach in the
performances and efficiency of CRC, the tuning parameters are set
in the same way when both the techniques are applied. Therefore,
we perform six iterations of the entire CRC procedure setting
U

1 = 10, L1 = 0.1 and shrinking Uz and Lz according to (5), setting
kU, 1 = kL, 1 = 1 and kU, 2 = kL, 2 = 2. In this way, we progressively
shrink the percentage variation of the parameter vector,
approaching 0 at the limit. Table 2 shows the mode vector of the
parameters obtained at the end of each iteration of CRC and also
the interval where the parameter samples are selected. Each
interval depends on the mode vector in output from the previous
iteration and on U

z and L
z. We generate NS = 104 parameter

samples for each iteration. Table 3 summarises the resulting
thresholds for both uniform and logarithmic sampling approach
and it also shows the cardinality of the set Δ. As explained in
Section 2.3.5, each threshold is chosen in order to guarantee at
least 1000 samples in the set of intersection between DF tails, for a
reliable estimation of the conditional parameter pdfs.

According to the workflow depicted in Fig. 1, at the end of each
iteration we estimate the conditional densities f Pi Δ for both
parameters a and b. The evolution of the domains of the two
conditional densities f a Δ and f b Δ are shown in Fig. 2. 

Thus, the scatter plots are the accepted parameter samples from
the first until the final iteration of CRC. Fig. 3 shows the time
behaviour of output variables generated with the parameter
samples accepted in the last iteration. When using logarithmic
LHS, the final mode values are 1.06 for parameter a and 1.06 for
parameter b while CRC with uniform LHS estimates a equal to
2.07 and b equal to 6.51.

Table 1 Model M1: in silico noisy dataset used for calibration
Time points, min x y
1.1 1.8823 0.5214
2.4 1.5510 1.2471
3.9 0.4007 0.9858
5.6 0.0454 0.2924
7.5 1.8881 0.6133
9.6 0.1839 1.3163
11.9 −0.1940 0.8171
14.4 1.6015 1.7212
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3.2 EpoR model (M2)

We apply CRC to the EpoR model. In this model, an external
ligand L activates, via two steps, an enzyme E that catalyses a
substrate S. These reactions generate a product P that generally
cannot be measured directly. For this reason the dynamical
behaviour of P is the purpose of model prediction. Since the
concentration over time of P is unknown, it is supposed to have

available experimental data for the substrate S and the inactive
form of enzyme E. The following equations, (9), (10) and (11),
model the kinetics, the initial conditions and the observables of the
EpoR model, respectively. The star symbol upon a variable
distinguishes its active form from the inactive one

Table 2 Model M1: mode vector obtained at the end of each CRC iteration, specified by z (first column of the table), and
interval where the samples of PS are selected

Uniform Logarithmic
z pmode [pmode × L

z, pmode × U
z] pmode [pmode × L

z, pmode × U
z]

1 a = 0.52 [0.1,10] a = 0.37 [0.1,10]
b = 6.03 [0.1,10] b = 0.96 [0.1,10]

2 a = 1.14 [0.63,6.3] a = 0.81 [0.2,2.03]
b = 6.13 [3.37,33.71] b = 1.26 [0.53,5.28]

3 a = 1.16 [0.9,3.77] a = 0.84 [0.63,2.63]
b = 6.27 [4.86,20.38] b = 1.11 [0.98,4.1]

4 a = 1.85 [1.64,3.93] a = 0.98 [0.75,1.79]
b = 5.99 [5.32,12.73] b = 1.07 [0.95,2.27]

5 a = 1.90 [1.79,2.97] a = 1.01 [0.95,1.58]
b = 6.49 [6.12,10.14] b = 1.07 [1,1.67]

6 a = 2.07 [2.01,2.65] a = 1.06 [1.03,1.36]
b = 6.51 [6.33,8.34] b = 1.06 [1.03,1.36]

 

Table 3 Model M1: threshold schedule used at each iteration of CRC and the resulting cardinality of Δ
Uniform Logarithmic

Iteration(z) ϵx
z ϵy

z Δ ϵx
z ϵy

z Δ

1 7.7 15 1010 7.3 6 1071
2 7.7 15 1008 5.8 4 1012
3 7.7 15 1038 5 3.4 1122
4 7.4 13.3 1002 4 3 1038
5 6.8 13.3 1022 3.4 2.7 1035
6 6.3 13.3 1170 3.1 2.7 1535

 

Fig. 2  Model M1: scatter plots of both model parameters
(a) Uniform sampling,
(b) Logarithmic sampling
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Fig. 3  Model M1: blue lines are the temporal behaviour of the output variables when the parameters a and b are set equal to the mode values of the last
iteration of CRC; red dots are the in silico data; grey regions are the confidence bandwidths when parameters vary from the 2.5th and the 97.5th percentile of
their corresponding final conditional densities
(a, b) Uniform sampling,
(c, d) Logarithmic sampling
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E˙ = − k1 × E × L

E˙
∗

= k1 × E × L − k2 × E
∗

E˙
∗ ∗

= k2 × E
∗

S˙ = − k3 × E
∗ ∗ × S

P˙ = k3 × E
∗ ∗ × S

(9)

E(0) = initE

E
∗(0) = 0

E
∗ ∗ (0) = 0

S(0) = initS

P(0) = 0

(10)

y1(ti) = scaleE × E(ti)

y2(ti) = scaleS × S(ti)
(11)

The EpoR model has three kinetic parameters that appear in (9),
named k1, k2 and k3. Moreover, two other parameters of the model
are the initial conditions of the inactive enzyme E and of the
substrate S, denoted as initE and initS, respectively. Finally, the last
two model parameters are scale factors of the output variables y1

and y2 called scaleE and scaleS, respectively. Differently from the
previous example (M1 model), in the EpoR model the purpose is to
estimate not only the kinetic parameters but also the initial
conditions and the scale factors of the output variables. Indeed for
this model, the initial conditions of the two state variables are
unknown as well as the scale factors of the output variables. Let us
denote the overall parameter vector to estimate with
p = [k1, k2, k3, initE, initS, scaleE, scaleS], p ∈ ℝ > 0

7 . The nominal
parameter vector is pn = [0.1, 0.1, 0.1, 10, 5, 4, 2] and the noisy and
noiseless in silico dataset used for model calibration are reported in
Table 4. 

We apply CRC using two different sampling approaches:
uniformly and logarithmically spaced samples. As explained in
Section 2, the application of CRC implies the setting of different
tuning parameters. First, we fix the number of generated samples at
each iteration equal to NS = 105. Then, the boundaries of the
sampling interval, L

z and U
z, evolve according to the values

reported in Table 5 as the iteration number passes from 1 to 9. 
These values are obtained by setting kU, 1 = kL, 1 = 0, kU, 2 = 2 and
kL, 2 = 0.5 for the first seven iterations and kU, 1 = kL, 1 = 1,
kU, 2 = kL, 2 = 2 for the eighth and ninth iterations. As already
explained in Section 2.3.2, the values of Lz and Uz in Table 5 are
the percentage variation of the mode vector pmode and they are used
to compute the sampling interval at each iteration. Using (6), we
calculate the error between noisy and noiseless data points for both
the output variables. These errors, 12.78 for y1 and 5.6 for y2,
represent the objective values for the thresholds of CRC in order to
assert its success. From Table 5 it is possible to see that after nine
iterations of CRC, ϵ1

9 and ϵ2
9 are very similar to the target values

reported above, only when logarithmically spaced sampling is
applied. On the other hand, ϵ1

9 and ϵ2
9 are too far from the target

ones when uniform sampling is used. This demonstrates that the
application of CRC combined with logarithmic sampling estimates
a parameter vector that guarantees the desired level of agreement
between simulated and experimental data.

Table 6 reports the mean value, the variance and the mode of
the conditional densities of each parameter estimated at the end of
each iteration of CRC when uniform and logarithmic sampling are
applied, respectively. Thus, the mode parameter vectors resulting in
output from the last iteration of CRC are
pmode = [0.1143, 0.0191, 0.0758, 34.9329, 2.9954, 1.1224, 3.3674]
and
pmode = [534420, 563730, 678010, 6.6177, 3.1323, 6.2581, 3.3459]
for the logarithmic and uniform sampling, respectively. Figs. 4–6
show the scatter plots of the accepted parameter values at the end
of each iteration of CRC, once the threshold values are set. 

Table 4 Model M2: noisy and noiseless dataset used for parameter estimation through CRC
Time, min Noisy dataset Noiseless dataset

y1 y2 y1 y2

0 39.24 10.24 40 10
3.33 — 10.61 — 9.4909
6.66 — 7.23 — 6.9968
10 21.89 5.47 14.7152 3.5448
13.33 — 1.43 — 1.2052
16.66 — 0.53 — 0.2768
20 3.08 1.08 5.4134 0.0446
23.33 — 0.38 — 0.0054
26.66 — 0.11 — 5.0042 × 10−4

30 0.12 0.08 1.9915 3.8284 × 10−5

40 1.37 — 0.732 —
 

Table 5 Model M2: CRC tuning parameters
Uniform Logarithmic

Iteration(z) L
z

U
z ϵ1

z ϵ2
z ϵ1

z ϵ2
z

1 0.01 100 200 300 51.0 31.0
2 0.02 50 400 500 50.0 31.0
3 0.04 25 130 180 46.0 30.9
4 0.08 12.5 45.0 53.0 40.0 30.3
5 0.16 6.25 33.2 28.7 33.5 29.1
6 0.32 3.125 31.5 28.1 25.0 27.5
7 0.64 1.5625 30.1 28.0 15.5 22.0
8 0.82 1.2813 27.7 27.3 13.4 10.0
9 0.91 1.1406 27.7 27.3 13.0 5.75
The first column lists the iteration number z, the second and the third ones the boundaries of the sampling intervals and the rest of the columns report the resulting thresholds for both
the output variables when uniformly and logarithmically spaced sampling is applied, respectively.
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This is an alternative and effective way to visualise the
distributions of parameters, whose main features are summarised in
Table 6. Fig. 7 shows the time behaviour of the two output
variables when both sampling strategies are applied and the
parameter vector of the model is set equal to the corresponding
mode vector reported above. Moreover, we also plot the confidence
bands (grey regions) of the observables y1 and y2 when parameter
values vary between the 2.5th and 97.5th percentile of their
corresponding conditional pdfs. In order to verify if this calibration
process is robust against independent realisations, we perform ten
realisations of the entire procedure explained above.

3.3 Multiple myeloma model (M3)

In this section, we describe the calibration of the ODE model
presented in [19], which investigates the mechanisms of the p38
MAPK isoforms in Multiple Myeloma (MM). The model has 40
ODEs and 53 kinetic parameters while the experimental data used
for parameter estimation are reverse phase protein array (RPPA)
data [21]. RPPA was used to analyse MM cell lines, measuring in
total 153 proteins in 80 samples at six different time points (0, 5,
10, 30, 60, 90 min). The 16 proteins both present in the model and
in the dataset represent model observables. Since RPPA data are
normalised with respect to the initial concentration value, initial
conditions of proteins in the ODEs are all set to 1. For this reason,

parameters to estimate are only the kinetic ones; i.e. ℙ ∈ ℝ > 0
53 .

Equations of the model and the corresponding RPPA dataset are
reported in Supplementary Materials.

Tuning parameters of CRC are set in the same way in both
cases of uniform and logarithmic LHS. Sixteen normalised DFs are
computed according to (7) and six iterations of CRC are run. We
define U

1 = 10 and L
1 = 0.1 and then we shrink the sampling

interval as in model M1. We initialise the other parameters as
follows: NS = 106 and pn, i = 1, ∀i = 1, . . . , 53. We perform ten
independent realisations of the procedure in order to test the
stability and reliability of results.

Table 7 summarises the thresholds used in both sampling
techniques at the different iterations. Fig. 8 compares the evolution
of the conditional density of parameter k2, chosen as an example, in
the two cases. 

In Supplementary Materials means, modes and variances of all
parameters during the iterations are reported. Fig. 9 shows the time
behaviour of output variables generated with the parameter
samples accepted in the last iteration, respectively, with
logarithmic and uniform sampling. 

4 Discussion and conclusion
In [16], the authors presented CRC, a novel Bayesian procedure for
parameter estimation of ODE models. In Section 2, the main steps

Table 6 Model M2: mean values, variances and modes for each one of the conditional estimated densities of the seven
parameters

Uniform Logarithmic
Parameter Iteration Mean value Variance Mode Mean value Variance Mode
k1 1 49.7290 28.9609 47.2136 11.6207 19.9535 0.1676

2 1175.8 684.1150 1195.1 1.4223 1.9153 0.1057
3 1489.7 8648 13,687 0.5564 0.6338 0.0955
4 861,500 49,062 787,600 0.3016 0.2861 0.0928
5 252,280 139,190 226,530 0.1828 0.1280 0.0925
6 391,760 183,120 476,180 0.1254 0.0490 0.0976
7 524,440 125,540 515,750 0.1058 0.0183 0.1024
8 540,940 688,040 521,970 0.1096 0.0122 0.1042
9 535,160 345,400 534,420 0.1092 0.0062 0.1143

k2 1 50.1379 28.8361 50.0661 11.3579 18.8793 0.1031
2 1250 725.1931 1344.1 0.7662 1.1162 0.0248
3 16,804 9721 18,070 0.1360 0.1512 0.0128
4 113,370 64,590 103,060 0.0480 0.0425 0.0095
5 329,270 181,910 252,480 0.0237 0.0161 0.0086
6 436,220 204,810 480,790 0.0145 0.0065 0.0106
7 529,100 127,830 520,070 0.0124 0.0025 0.0143
8 546,420 688,560 546,070 0.0156 0.0017 0.0171
9 560,090 36,606 563,730 0.0183 0.0009 0.0191

k3 1 50.2296 28.8879 52.4291 8.7008 17.8986 0.1031
2 1324.9 758.2055 1423.3 0.8074 1.1006 0.0422
3 18,017 10,287 19,339 0.2615 0.2676 0.0327
4 121,480 69,621 105,810 0.1316 0.1108 0.0292
5 337,600 186,520 303,990 0.0758 0.0497 0.0296
6 523,450 245,120 537,010 0.0514 0.0223 0.0415
7 592,050 143,260 598,680 0.0491 0.0098 0.0569
8 628,680 79,859 642,390 0.0623 0.0068 0.0678
9 659,140 42,881 678,010 0.0728 0.0033 0.0758

initE 1 22.6627 24.8233 2.7915 16.6944 22.0296 1.3032
2 321 34.6861 0.0039 15.6962 16.4395 1.9840
3 22 24 3 15.8885 13.4175 3.8127
4 10.3727 9.1662 2.6501 18.3333 12.9594 6.6465
5 7.3006 4.0041 3.9394 19.8313 10.6221 10.9966
6 6.7829 2.5373 4.6579 21.4556 7.0448 20.2614
7 6.3909 0.5098 6.5185 25.1709 3.8984 28.8037
8 6.5604 0.7176 5.8516 30.1755 2.9611 32.2857
9 6.5416 0.0890 6.6177 33.9041 1.5291 34.9329
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of CRC are briefly summarised with specific attention to the
introduced innovations. One of the key points of CRC is the
sampling of the parameter space which is completely overturned
compared to other Bayesian algorithms. Thus, in CRC the number

of samples is an input parameter which remains unchanged in all
the iterations. Other substantial innovations are the definition of as
many DFs as the number of observables of the model and the
corresponding intersection of all the DFs tails.

 
Uniform Logarithmic

Parameter Iteration Mean value Variance Mode Mean value Variance Mode
initS 1 22.5516 24.7948 2.7552 15.6737 22.0031 0.5592

2 31.6295 34.3431 4.0123 6.1501 6.8975 0.7217
3 22.8575 24.6608 3.0272 4.5241 4.5694 0.7536
4 8.5900 9.0537 1.2937 3.0397 2.4375 0.9278
5 3.5322 1.9527 1.8958 2.3863 1.4694 1.1437
6 3.2603 1.2380 2.1938 1.9944 0.8117 1.6620
7 3.0610 0.2181 3.1696 2.0976 0.3166 2.3654
8 3.1393 0.3199 2.8206 2.7230 0.1935 2.8951
9 3.0815 0.0817 3.1323 2.9790 0.1756 2.9554

s1 1 22.5673 24.5414 2.7896 19.6923 23.2733 1.7029
2 31.5443 34.7847 3.8333 14.2438 18.3015 1.4727
3 21.3923 23.4380 2.7350 6.9718 7.9647 1.3845
4 10.0299 8.8134 2.5722 4.0516 3.8055 1.3002
5 6.9566 3.8456 3.7233 2.6284 1.7600 1.3185
6 6.3775 2.3999 4.3986 2.0039 0.7726 1.4515
7 6.0312 0.4802 6.1260 1.5910 0.2682 1.3950
8 6.1679 0.6745 5.5367 1.3388 0.1368 1.2086
9 6.1897 0.0834 6.2581 1.1705 0.0535 1.1224

s2 1 22.8189 25.0087 2.8391 16.3713 22.4893 0.6056
2 32.2900 35.2887 4.1628 6.7946 7.4791 0.8120
3 23.9120 25.9322 3.2004 5.0803 5.1099 0.8483
4 9.0155 9.5794 1.3909 3.4347 2.7596 1.0551
5 3.7739 2.0848 2.0165 2.7124 1.6798 1.3281
6 3.4703 1.3127 2.3428 2.3114 0.9483 1.9099
7 3.2667 0.2354 3.3859 2.4076 0.3647 2.6942
8 3.3562 0.3414 3.0139 3.0965 0.2210 3.2922
9 3.2900 0.0878 3.3459 3.3867 0.2018 3.3674

 

Fig. 4  Model M2: scatter plots of the three kinetic model parameters k1, k2 and k3. Circles in the graphs represent clouds of accepted parameter values at the
end of each iteration of CRC
(a) Application of CRC with logarithmically spaced sampling,
(b) Application of CRC with uniformly spaced sampling
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The purpose of this study is to apply CRC with two different
sampling approaches in order to test which performs better and to
understand the influence of the sampling process in this algorithm.
We apply CRC using LHS with uniformly and logarithmically
spaced samples. Even if the practice of applying different sampling
strategies is common in the field of the Bayesian algorithms, the
comparison we provide in this paper has never been performed
before since CRC is a novel algorithm. We choose three ODE
models with a parameter space and the corresponding space of
state variables of increasing dimension. They are the Lotka-
Volterra model, the EpoR model and the MM model.

Tables 3, 5 and 7 prove that the logarithmic sampling is able to
reach lower thresholds than the uniform ones, almost for all the
output variables in all the tested models. Indeed, for the Lotka-
Volterra model, the thresholds obtained at the sixth iteration with
logarithmic sampling are as close as possible to the target ones,
meaning that through logarithmic sampling it is possible to
calibrate the ODE model also preventing overfitting. Logarithmic
sampling generates more dense samples in the interval (0; 1].
Similarly, in the EpoR model, after nine iterations of CRC with
logarithmic sampling, the resulting thresholds get very close to the
target ones. As regards the MM model, since the nominal
parameter vector is not known from [19], we cannot calculate the
target values of the error. However, after six iterations of CRC with
logarithmic sampling the maximum error between simulated and
experimental data is only of the 16% (see Table 7). On the other
hand, the application of CRC combined with uniform sampling

leads to threshold values that are on average higher than those
obtained through the logarithmic ones. In the Lotka-Volterra
model, thresholds after six iterations are too distant from 3.09 and
2.6. Moreover, scatter plots in Fig. 2 confirm results of Table 3: it
is clear how with the uniform sampling the accepted samples at
each iteration evolve towards a region of the parameter space that
does not correspond to the nominal values of kinetic parameters a
and b. Conversely, the scatter plots of logarithmic sampling in
Fig. 2b show how the red dots lie in a region that is exactly in the
neighbourhood of the nominal point (1;1). Additionally, as shown
in Fig. 3 only the logarithmic ones adequately fit the noisy data,
following the typical oscillating behaviour of the prey-predator
model. On the other hand, at many time points, the behaviour
depicted in Fig. 3a and b is too far from in silico data. Similar
observations are valid also for the EpoR model. Fig. 7 clearly
shows that, since the threshold values obtained with uniform
sampling are too far from the target ones, the time behaviour of
output variables does not fit the experimental data. On the contrary,
logarithmic sampling is able to adequately reproduce the correct
time behaviour of y1 and y2, even if the resulting estimated
parameter vector is an alternative parametrisation of the model. As
regards the MM model instead, both sampling strategies produce
acceptable time behaviour of output variables, as is shown in
Fig. 9, since the maximum percentage error with the uniform
sampling is of the 22%. However, the confidence bands in Fig. 9b
are rather higher than those in Fig. 9a. This is due to the fact that,
for most of the kinetic parameters, the corresponding conditional

Fig. 5  Model M2: scatter plots of the two initial condition parameters
initE and initS. Circles in the graphs represent clouds of accepted parameter
values at the end of each iteration of CRC
(a) Application of CRC with logarithmically spaced sampling,
(b) Application of CRC with uniformly spaced sampling

 

Fig. 6  Model M2: scatter plots of the two scale factors parameters scaleE

and scaleS. Circles in the graphs represent clouds of accepted parameter
values at the end of each iteration of CRC
(a) Application of CRC with logarithmically spaced sampling,
(b) Application of CRC with uniformly spaced sampling
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pdf, estimated in the last iteration of CRC, is tighter when
logarithmic sampling is performed, as shown in Fig. 8. Moreover,
in order to make a comparison of the computational cost of the two
sampling techniques, we measure the time to perform each
iteration of CRC, as reported in Table 8. In all examples, the
logarithmic sampling has a minor computational burden compared
to the uniform sampling, whose simulation time also increases with
the model dimension. In conclusion, it is possible to state that
logarithmic sampling performs better and has a reduced
computational cost when calibrating a model using CRC. It is the
best sampling technique when it is necessary to perturb the
parameter space over different orders of magnitude. This is due to
the intrinsic property of the logarithmic distribution that generates

the same number of samples in different orders of magnitude [22].
The logarithmic sampling is able to generate more dense samples
around the mode vector returned by the previous iteration of CRC,
which is the most likely point in the parameter space at a given
iteration.
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Fig. 7  Model M2: blue lines are the time behaviour of output variables y1 and y2 when the parameters are set equal to the mode in output from the last
iteration of CRC; red dots are the noisy in silico data used to calibrate the model; grey regions are the temporal behaviour bandwidths when the model
parameters vary between the 2.5th and 97.5th percentile of their corresponding conditional pdfs
(a) Time behaviour of y1 when CRC is applied with logarithmically spaced sampling,
(b) Time behaviour of y1 when CRC is applied with uniformly spaced sampling,
(c) Time behaviour of y2 when CRC is applied with logarithmically spaced sampling,
(d) Time behaviour of y2 when CRC is applied with uniformly spaced sampling
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Table 7 Model M3: threshold schedule when both uniform and logarithmic LHS sampling are applied
Iteration

1 2 3 4 5 6
Uniform Logarithmic Uniform Logarithmic Uniform Logarithmic Uniform Logarithmic Uniform Logarithmic Uniform Logarithmic

x4 0.45 0.6 0.3 0.3 0.3 0.2 0.2 0.1 0.14 0.05 0.08 0.05
x6 0.5 0.7 0.4 0.4 0.4 0.3 0.4 0.2 0.2 0.1 0.15 0.08
x10 0.5 0.7 0.4 0.4 0.4 0.3 0.4 0.2 0.2 0.1 0.18 0.06
x14 0.4 0.7 0.4 0.4 0.35 0.3 0.15 0.15 0.12 0.13 0.1 0.09
x16 0.5 0.8 0.4 0.5 0.4 0.3 0.4 0.2 0.2 0.1 0.2 0.06
x18 0.25 0.3 0.2 0.2 0.2 0.15 0.2 0.12 0.1 0.095 0.1 0.088
x20 0.35 0.5 0.25 0.3 0.2 0.2 0.2 0.13 0.1 0.1 0.1 0.088
x22 0.45 0.7 0.3 0.4 0.25 0.2 0.15 0.15 0.1 0.1 0.08 0.08
x24 0.4 0.7 0.4 0.4 0.35 0.3 0.3 0.2 0.15 0.1 0.15 0.08
x26 0.35 0.6 0.35 0.4 0.35 0.2 0.25 0.1 0.17 0.05 0.08 0.04
x28 0.35 0.5 0.25 0.3 0.2 0.2 0.15 0.15 0.12 0.1 0.07 0.08
x32 0.45 0.6 0.3 0.3 0.2 0.2 0.25 0.15 0.2 0.12 0.1 0.12
x33 0.8 1 0.7 0.7 0.45 0.5 0.45 0.3 0.4 0.2 0.22 0.15
x34 0.9 0.8 0.7 0.6 0.55 0.5 0.55 0.35 0.2 0.2 0.18 0.15
x38 0.4 0.6 0.3 0.4 0.2 0.25 0.2 0.2 0.14 0.18 0.14 0.16
x40 0.5 0.7 0.35 0.4 0.3 0.3 0.35 0.2 0.2 0.15 0.1 0.12

 

Fig. 8  Model M3: evolution of the conditional pdfs of parameter k2 in all iterations, when using, respectively, logarithmic and uniform LHS
(a) Logarithmic sampling,
(b) Uniform sampling
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Fig. 9  Model M3: results of CRC with logarithmic and uniform LHS; red dots are the RPPA data; blue lines are the time behaviour of output variables when
parameter values are equal to mode values of the last iteration (see Supplementary Materials); grey area covers the possible temporal behaviours of
observables when parameters vary between the 2.5th and 97.5th percentile of their corresponding conditional pdfs. MSE is the mean squared error between
the simulation of the model and the data
(a) Logarithmic sampling,
(b) Uniform sampling
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Table 8 Time to perform each iteration of CRC in the three models
M1 M2 M3

Iteration(z) Uniform Logarithmic Uniform Logarithmic Uniform Logarithmic
1 431 s 288 s 798 s 449 s 360 min 110 min
2 323 s 213 s 835 s 305 s 720 min 80 min
3 300 s 251 s 856 s 245 s 1 d 70 min
4 268 s 225 s 750 s 223 s 2 d 60 min
5 260 s 216 s 674 s 210 s 3 d 60 min
6 245 s 202 s 693 s 195 s 3 d 60 min
7 — — 685 s 217 s — —
8 — — 650 s 310 s — —
9 — — 645 s 360 s — —
Time is expressed in seconds (s), minutes (min) or days (d).
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