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A Novel Information-Theoretic 
Approach for Variable Clustering 
and Predictive Modeling Using 
Dirichlet Process Mixtures
Yun Chen1 & Hui Yang2

In the era of big data, there are increasing interests on clustering variables for the minimization of 
data redundancy and the maximization of variable relevancy. Existing clustering methods, however, 
depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence 
among variables poses significant challenges on the traditional framework of predictive modeling. In 
the present work, we reformulate the problem of variable clustering from an information theoretic 
perspective that does not require the assumption of data structure for the identification of nonlinear 
interdependence among variables. Specifically, we propose the use of mutual information to 
characterize and measure nonlinear correlation structures among variables. Further, we develop 
Dirichlet process (DP) models to cluster variables based on the mutual-information measures among 
variables. Finally, orthonormalized variables in each cluster are integrated with group elastic-net 
model to improve the performance of predictive modeling. Both simulation and real-world case studies 
showed that the proposed methodology not only effectively reveals the nonlinear interdependence 
structures among variables but also outperforms traditional variable clustering algorithms such as 
hierarchical clustering.

Predictive modeling extracts useful information and patterns from the data to drive decisions or actions. For 
example, insurance companies have gathered a vast amount of data in their data warehouses1. The objective of 
the predictive model is not only to improve the pricing or marketing process, but also to analyze profitability, 
fraud, catastrophe, and other insurance operations. In the 21st century, wireless sensing, electronic health records, 
and health Internet of Things are increasingly adopted to assist in the process of clinical decision making2–4. 
This amount of information from multiple sources provides numerous variables for the contemplated predictive 
model.

When a predictive model involves large amounts of variables (i.e., explanatory or response variables), 
researchers are confronted with the need to reduce the number of variables in order to build the compact model. 
To some extent, the variables are unknown to be redundant or relevant to the objective of predictive models but 
rather need to be tested with real-world data. In addition, when there is an enormous amount of variables, it 
becomes difficult to find out the relationship between variables. If the model building involves too many variables, 
it will impact the model compactness and efficiency. There is also a possibility to increase the model sensitivity 
to noises and overfit the data with many variables. The model parameters are not stable when variables are highly 
correlated. It is even more difficult to explain the physical meanings of the predictive model when there are 
many variables. Finally, model building with a large amount of variables is computationally expensive and could 
take indefinite time for the exhaustive search. An intermediate approach to the exhaustive search may also be 
time-consuming and some combinations of variables could be overseen.

Data clustering is an unsupervised method to group data samples into homogeneous clusters, while variable 
clustering is to detect subsets of homogeneous variables and then cluster them into the same group, in which 
variables have stronger interrelations to each other than to those in other groups. As shown in Fig. 1a, data clus-
tering groups data samples into clusters and each sample has two values, e.g., (0.26, −​0.09) in the 2-dimensional 
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space, where X-axis is the value of variable 1, and Y-axis is the value of variable 2. Data samples are clustered based 
on the similarity measure, e.g., Euclidean distance. However, variable clustering is different from data clustering. 
Figure 1b illustrates the clustering results of 15 variables, each of which has 1000 data samples. For example, the 
variable v15 represents a series of 1000 samples. Notably, each point in Fig. 1b is a variable instead of a data 
sample.

Variable clustering uncovers natural groups of objects (variables, features, or factors) in a multivariate data-
set. The hierarchical clustering (HC)5, a generic clustering procedure, sequentially merges pairs of clusters that 
share common characteristics based on similarity measures. HC procedures generate a nested set of partitions, 
also called hierarchy. The choice of the similarity measure plays an important role in the clustering process 
because it indirectly defines the structure of the clusters. This choice is not only guided by problems to solve, 
but also restricted to commonly used measures, such as the Euclidean distance or Pearson’s correlation coeffi-
cient. However, nonlinear interdependence among variables cannot be adequately captured by linear correlation. 
Further, we cannot relocate the variables once the merge is done for two closest clusters, because HC is not a 
dynamic approach. There is no adaptive step for two variables to make modifications in the later stage if they are 
‘incorrectly’ clustered at the early stage.

In this paper, we develop a new methodology of information theoretic approach for variable clustering and 
predictive modeling. The proposed approach investigates both redundancy and relevancy among variables. 
Specifically, nonlinear interdependence structures are measured among variables. Further, we introduced non-
parametric Dirichlet process to cluster embedded variables with their probability distributions. Finally, ortho-
normalized variables were integrated with group elastic net models to improve the performances of predictive 
models. Both simulation and real-world case studies demonstrate that the proposed methodology not only out-
performs traditional variable clustering algorithms such as hierarchical clustering, but also effectively identi-
fies nonlinear interdependence structures among variables and further improves the performance of predictive 
modeling.

Research Background
Clustering Analysis.  When “clustering” is used in the literature, it is referred to be “data clustering” for most 
of the time. The approach of data clustering groups data samples into homogeneous subsets, in which data sam-
ples are closer to each other in the same cluster than to other clusters. As shown in Fig. 2, data clustering is more 
concerned about the samples that are rows (i.e., …s s s, , , N1 2 s

) in the table format of a dataset but variable cluster-
ing focus on the variables in the columns (i.e., v1, v2, …​, vN). The variables, v1, v2, …​, vN, are also known as features 
or factors, where = …v v v v( , , , )i i i N i

T
1 2 s

, = …i N1, 2, , , N is the number of variables and Ns is the number of 

Cluster 1 
Cluster 2

Cluster 3

(a) (b)

Figure 1.  (a) Data clustering with each point representing a data sample; (b) Variable clustering with each point 
representing a variable.

Figure 2.  Data in the table form, where variables are in columns and samples are in rows. 
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samples respectively. The samples, …s s s, , , N1 2 s
, are also called nodes in the network or words in the text, where 

sj =​ (vj1, vj2, …​, vjN)T, j =​ 1, 2, …​, Ns. It may be noted that big data often brings a large number of variables that can 
be bigger than the number of samples, i.e., N > Ns. Complex interdependence structures among variables signifi-
cantly challenge the traditional framework of predictive modeling. As such, variable clustering to delineate homo-
geneous groups of variables is urgently needed.

In recent years, community detection in network analysis receives increasing interests in data clustering. 
Network-based methods cluster nodes with strong connections into a community. For example, mixed mem-
bership stochastic blockmodels (MMSB)6 were proposed to discover complex network structure in a variety of 
applications, e.g., large-scale protein interaction network and social network. The MMSB develops a novel class 
of latent variable models for relational data, and assumes each variable belongs to multiple communities/clusters 
rather than a single community/cluster. Joint Gamma process Poisson factorization (J-GPPF)7 was developed to 
jointly model sparse networks with large size and side information. Infinite edge partition model8 was introduced 
to not only study overlapping communities and inter-community interactions but also predict missing edges. 
However, community detection groups nodes that represent data samples (e.g., proteins), rather than variables, 
into communities by considering the unweighted or weighted edges between nodes.

In addition, topic models are widely used for data clustering in the field of text mining. Topic models are statis-
tical models for discovering topics that occur in a collection of documents with a large number of words (i.e., data 
samples in rows of table-form data in Fig. 2). Latent Dirichlet allocation (LDA)9 was first introduced as an unsu-
pervised model to cluster documents in the topic space. LDA assumes the topic distribution to have a Dirichlet 
prior and maximizes the likelihood (or posterior probability) of the document collection. It may also be noted 
that supervised topic models with side information (e.g., document categories or review rating scores) were pro-
posed to find latent topics and provide more predictive power than regression on unsupervised LDA features. For 
example, supervised latent Dirichlet allocation (sLDA)10 introduced the real-valued document rating as regres-
sion response and jointly modeled the documents and response by maximizing the joint likelihood. Maximum 
entropy discrimination LDA (MedLDA)11,12 proposed a unified constrained optimization framework that solves 
problems of dimensionality reduction and max-margin classification using features in the reduced-dimension 
space. Topic models formulate statistical models based on the intuition that specific words would appear more 
or less frequently in the document for a given topic. However, variable clustering does not hold this intuition. As 
such, topic models address special clustering problems in text mining that are different from other general data 
clustering or variable clustering problems.

Moreover, many previous approaches group a dataset into co-clusters (or biclusters), which are subsets of data 
samples exhibit similar behaviors across a subset of variables, or vice versa. Co-clustering approaches have been 
widely used in a variety of applications such as biological gene expression data13 and text mining14,15. Notably, a 
simultaneous co-clustering and learning (SCOAL)16 framework was proposed to generalize co-clustering and 
construct predictive models simultaneously. The SCOAL co-cluster the entire dataset into subsets of samples and 
variables such that each subset can be well characterized by a predictive model. However, the whole data set is 
divided into multiple subsets that capture incomplete data information. These subsets are then used to construct 
multiple predictive models rather than one model. In addition, nonlinear correlations among variables were not 
fully utilized in traditional co-clustering approaches. Instead, nonlinear predictive models were usually intro-
duced to account for data nonlinearity, which also brings a large number of parameters.

Hierarchical Clustering.  Variable clustering is the task to group homogeneous variables into the same cate-
gory, in which variables have stronger interrelations than to those in other groups. Variable clustering considers 
the interdependence structure among variables, e.g., correlation. The Pearson’s correlation17 between variables v1 
and v2  is

ρ
σ σ

µ µ

σ σ
= =

− −v v v vEcov( , ) [( )( )]

(1)
v v

v v

v v

v v

1 2 1 2

1 2
1 2

1 2

1 2

where cov(v1, v2) is the covariance between v1 and v2, σv1
 and σv2

 are variances of v1 and v2, µv1 and µv2
 are means 

of v1 and v2 , E is the expectation. However, the Pearson’s correlation only measures the linear relationship 
between variables v1 and v2.

In the literature, Pearson’s correlation was integrated with hierarchical clustering (HC) for variable clustering5.  
There are two ways to perform HC procedures - the agglomerative way and the divisive way. For example, agglom-
erative HC defines each variable as a singleton cluster in the first step. Then, two closest clusters with smallest 
dissimilarity measure are merged into one cluster. The merging process recursively moves up along the hierarchy 
until the stopping criterion is satisfied, e.g., the maximum number of clusters or the maximum group-average 
(GA) dissimilarity. The criterion of group average measures the average intergroup dissimilarity between two 
clusters, i.e.,

∑ ∑=
∈ ∈

D C C
N N

D( , ) 1

(2)v v
v vGA m n

C C C Cm n i m j n
i j

where NCm
 and NCn

 are the sizes of cluster Cm and Cn, Dv vi j
 is the dissimilarity between variables vi and vj, which 

is usually calculated as ρ−1 v vi j
.

Here, a motivating example is shown to evaluate the performance of HC with Pearson’s correlation for variable 
clustering. Two clusters of variables are generated as follows:
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= = =v v v v v v vCluster 1: { , sin( ), , };1 2 1 3 1 4 1
4

= = = .v v v v v v vCluster 2: { , sin( ), , }5 6 5 7 5 8 5
4

where v1 and v5 are independent standard normal variables. In the cluster 1, variable v1 has linear correlation with 
variable v2 and nonlinear correlation with variables v3 and v4. The cluster 2 has the similar situation. Figure 3a 
shows the correlation matrix of these eight variables. The red color represents a high correlation, while the blue 
color indicates no interrelationships. It may be noted that the correlation matrix effectively detects the linear cor-
relation between variables v1 and v2, v5 and v6. However, nonlinear correlations are not well captured. Figure 3b 
shows the hierarchical clustering results based on the Pearson’s correlation. Variables v1, v2 and v4 are clustered in 
the same cluster, and variables v5, v6 and v8 are clustered in another cluster. However, hierarchical clustering failed 
to cluster variable v3 into Cluster 1, and variable v7 into Cluster 2. This is mainly due to the fact that nonlinear 
correlations among variables are not fully considered. Very little work has been done to cluster a large number 
of variables with complex structures of nonlinear interdependences. Thus, we propose a new methodology that 
integrates information theoretic approach with Dirichlet process mixtures for variable clustering and predictive 
modeling.

Research Methodology.  In this section, we will first characterize nonlinear correlation (i.e., mutual infor-
mation) among variables and then embed variables in the lower-dimensional space. Second, we introduce the 
nonparametric Dirichlet process (DP) to derive self-organizing clusters of homogeneous variables with specific 
consideration of nonlinear interdependence. Finally, we orthonormalize variables in each cluster and then inte-
grate them with group elastic-net model to improve the performance of predictive modeling.

Mutual Information based Embedding of Variables.  First, mutual information is characterized and 
quantified among variables. Traditionally, such interrelationships are estimated with linear methods such as 
Pearson’s correlation. As aforementioned, Pearson’s correlation, a second-order quantity, evaluates merely lin-
ear dependency among data and is limited in the ability to represent the variable-to-variable dissimilarities. 
Therefore, we propose to characterize the variable-to-variable dissimilarity matrix using mutual information and 
further embed variables into low-dimensional feature vectors that preserve the dissimilarity distances among 
variables.

Mutual information18 quantifies both linear and nonlinear interdependence between two variables vi and vj, 
i.e., ith and jth columns in Fig. 2. Although there are various measures that capture nonlinear correlations among 
variables, mutual information has the advantage to equitably quantify statistical associations between two vari-
ables that is insensitive to the form of the underlying function19, where equitability means that the statistic gives 
similar scores to equally noisy relationships of different types20. In other words, mutual information has an attrac-
tive feature to provide an equitable measure of association between two variables that is insensitive to the form of 
the underlying function19. It may be noted that mutual information was introduced to cluster nonlinear structures 
among data samples (e.g., feature vectors of a gene, a company and a movie) by formulating a tradeoff function 
among average similarity and information carried by the cluster identities21. However, this information-theoretic 
approach considers nonlinear correlation structures among data samples, rather than variables, by introducing 
mutual information as a similarity measure. Moreover, the number of clusters was pre-defined in order to solve 
the tradeoff function.

The mutual information is defined as:

∑ ∑=







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Figure 3.  Illustration of Pearson’s correlation (a) and hierarchical clustering (b).
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where p(vik, vjl) is the joint probability distribution, p(vik) and p(vjl) are marginal probabilities. Figure 4 shows the 
practical implementation to compute the mutual information with the scatter plot of two variables vi and vj, and 
the marginal histogram for each variable. Marginal probabilities p(vik) and p(vjl) are computed as the number of 
points in vik and vjl divided by the total number of points in the 2-dimensional space. While the joint probability 
p(vik, vjl) is computed as the number of points in box (vik, vjl) divided by the total number of points in the space. In 
practice, large box size will lead to an accurate estimation of average probability, but a flat estimation of joint 
probability p(vik, vjl). As such, this will underestimate the mutual information MI(vi, vj). In contrast, small box size 
estimates the joint probability p(vik, vjl) in small scales but brings significant variations, which overestimate the 
mutual information MI(vi, vj). In the present investigation, we choose the number of bins as N /2S

21, where NS is 
the sample size.

Once the mutual information is computed for each pair of variables, the dissimilarity matrix among variables 
will be generated. It may be noted that the mutual information is inversely proportional to the dissimilarity. 
Therefore, we define δij =​ 1/MI(vi, vj) as the dissimilarity measure between ith and jth variables in N ×​ N dis-
similarity matrix Δ​. Further, an embedding algorithm is developed to transform the dissimilarity matrix into 
low-dimensional feature vectors that preserve the variable-to-variable dissimilarity matrix. Let yi and yj denote 
the ith and jth feature vectors. The objective function is formulated as:

∑ δ− − ∈
<

‖ ‖y y Ni jmin ( ); , [1, ]
(4)i j

i j ij

where ||·|| is the Euclidean norm. The Gram matrix B is firstly reconstructed from the dissimilarity matrix Δ​ in 
order to solve this optimization problem:

= − ∆B H H1
2 (5)

(2)

where H =​ I −​ N−111T is the centering matrix, I is the identity matrix with size N and 1 is a column vector with N 
ones. The Δ​(2) is a squared matrix and each element in Δ​(2) is δij

2. Then the element bij in matrix B is:
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Due to the property of Gram matrix, it is defined as the scalar product B =​ YYT, where the matrix Y minimizes 
the aforementioned objective function. It is known that Gram matrix B is decomposed as:

Λ Λ Λ= =B V V V V (7)T T

where V is a matrix of eigenvectors and Λ​ is a diagonal matrix of eigenvalues. Then, the matrix of feature vectors 
is obtained as: Λ= … =y y yY V[ , , , ]N1 2 . As such, each variable is embedded as a feature vector in the 
low-dimensional network that preserves the dissimilarity matrix.

Dirichlet Process for Variable Clustering.  Furthermore, we propose to cluster low-dimensional feature 
vectors that are embedded from variables. Although K-Means clustering is the most popular algorithm for data 

Figure 4.  An illustration for the computation of mutual information. 
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clustering22, it has several drawbacks. First, it is a parametric model and the number of clusters needs to be prede-
fined. For clusters that are not well separated, this may not be straightforward. Second, K-Means algorithm needs 
to recalculate the objective function for assigning a cluster label to a new variable. Third, the results of K-Means 
clustering are not unique due to the recalculation of objective function. Therefore, we introduced the nonpar-
ametric Dirichlet process (DP) models to cluster variables23,24. DP models partition the vector space into local 
clusters, and assign cluster labels for new observations according to the assignment probability derived from the 
mean and covariance of each cluster, with each one following a multivariate Gaussian distribution.

The Chinese Restaurant Process (CRP) is an effective representation of DP, which visualizes the clustering 
effects more explicitly. Figure 5 shows the algorithm and illustration of CRP. Suppose a restaurant has potentially 
infinite many tables k =​ 1, 2, …​, and each table has value θk drawn from base probability measure G0. Customers 
are indexed by n =​ 1, 2, …​, N as they arrive, while indicator variables cn =​ k denotes that the nth customer choose 
to sit at the kth table. The tables are chosen according to the following random process:

1.	 The first customer always chooses the first table.
2.	 The nth customer chooses an existing kth table with probability mk/(n −​ 1 +​ α), and a new table with prob-

ability α​/(n −​ 1 +​ α).

where α >​ 0 is a concentration parameter, and mk denotes the number of customers seated at the kth table. From 
the conditional probability distribution above, we can see that a customer is more likely to sit at a table if there are 
already many people sitting there. However, a customer will sit at a new table with the probability proportional to α.

This CRP provides an effective representation for the inference in Dirichlet process mixture models (DPMM). 
In DPMM, the distribution of indicator variables c1, c2, …​, cN given mixing proportions π =​ (π1, π2, …​, πK) is 
multinomial

∏π π… =
=

p c c c( , , , )
(8)N

k

K

k
m

1 2
1

k

where δ= ∑ =m c k( , )k i
N

i1  is the number of data points in kth cluster and ∑ =m Nk . Since the Dirichlet distribu-
tion is conjugate to the multinomial, we can assume mixing proportions π for K clusters have a Dirichlet prior

∏π α π π π α α α α
π= …



 …



 =

Γ

Γ α

α−
~

( )
p p Dir

K K( ) ( , , , ) , , ( )

(9)
K

K

K
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Then, integrating out the mixing proportions gives:

∫ ∏π π πα α
α

α
α
α

… = =
Γ

Γ +
Γ +

Γ=
cp c c c p p d

N
K m

K( , , , ) ( ) ( ) ( )
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( / )
( / ) (10)N

k

K
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1

If the total number of clusters K is finite, then the probability of nth data point belongs to kth cluster given all 
other data points and concentration parameter α is

Figure 5.  Algorithm and illustration of Chinese Restaurant Process. 
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where c−n denotes all indices except n, and m−n,k =​ ∑​i ≠ nδ(ci, k) is the number of data points in the kth cluster for 
assigning the first (n −​ 1) data points. If K is infinite as K →​ ∞​, we can update the posterior indicator distribution 
using Gibbs sampling as:
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The distribution for a new variable y* within a mixture cluster follows normal distribution

µ µ| = Σ Σ⁎ ⁎ ~yp c k N( , , ) ( , ) (13)k k k k

where the parameters μk and Σ​k are the mean and the covariance for cluster k. As a result, the weight for each 
cluster is obtained as
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Due to the nonparametric nature of DP, the shape as well as the number of clusters need not be known a priori. 
Therefore, DP clusters are derived from characteristics inherent to data.

Predictive Modeling with Clustered Variables.  Although the Dirichlet process clusters variables into 
different groups, the variables in each group are similar to each other and thus bring the redundant information. 
It is necessary to delineate the structure of latent variables hidden in each cluster. As such, homogeneous variables 
in each cluster are orthonormalized before predictive modeling. Assume we have K clusters and there are Mk  
variables, i.e., …v v v, , ,k k kM1 2 k

, in the k-th cluster. Then, the redundant information within original variables 
…v v v( , , , )k k kM1 2 k

 is minimized by transforming them into the orthonormal set of new variables 
…w w w( , , , )k k kM1 2 k

 in each cluster using the Gram-Schmidt orthonormalization (GSO). The procedure begins 
by normalizing vk1,

= =x v w x
x

;
(15)k k k

k

k
1 1 1

1

1

where wk1 is the normalized variable of vk1. Then, we orthogonalize and normalize the second vector vk2 as,

= − =x v v w w w x
x

, ;
(16)k k k k k k

k

k
2 2 2 1 1 2

2

2

where wk2 is the second orthonormalized vector. The process is recursively updated to get the m-th orthogonal 
vector xkm

∑= − =
=

−
x v v w w w x

x
, ;

(17)km km
i

m

km ki ki km
km

km1

1

where wkm is the m-th orthonormalized vector. Further, we leverage orthonormalized variables in each cluster to 
develop a group elastic-net model25, which achieves the model sparsity by the group-level and individual-level 
selection of features. The elastic net criterion is defined as:

β β β βλ λ = − + λ + λzL w( , , ) (18)1 2
2

2
2

1 1

where λ​1 and λ​2 are non-negative real values. The elastic net estimator β̂ is to minimize the equation

β β= λ λ
β

ˆ Largmin{ ( , , )}
(19)

1 2

Solving β̂ is equivalent to the optimization problem

β β

β βγ γ λ
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. . − + ≤
β
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(1 ) (20)

2
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2

where γ = λ
λ + λ

2

1 2
 and λ is the tuning parameter.
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To develop the group elastic-net model for logistic regression, we define hβ(w, i) as the probability for zi being 
a success (i.e., zi =​ 1) and thus 1 −​ hβ(w, i) is the probability for zi being a failure (i.e., zi =​ 0), where 
β β β β= …( , , )K M

T
0 11 K

 is the coefficient vector. Then we have

β
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The likelihood function given observations (w(i), zi) is
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Taking the logarithm for equation, we have
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Therefore, we derive the group elastic-net model as:
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where γ and λ are penalization parameters, the logistic function hβ(w, i) is used in the likelihood function 
because of the binary responses. The proposed approach will be evaluated and validated using experimental studies.  
The details are shown in the next section.

Experimental Materials and Results
In this section, we evaluate and validate the proposed methodology using both simulation and real-world case 
studies.

Simulation Study.  First, a simulation study is shown to evaluate the performance of the proposed method-
ology for variable clustering. We simulate four clusters of variables in Table 1 as follows.

Figure 6a shows the matrices of Pearson’s correlations among variables that are computed from the simulation 
data set. Notably, the linear correlation in Fig. 6a cannot fully identify the nonlinear interdependence among 
simulated variables. Figure 6b shows that the HC cannot delineate the cluster structure of variables. This is mainly 
due to the fact that Pearson’s correlation is limited in the ability to detect nonlinear interdependence structures 
among variables.

Figure 7a shows the mutual information based correlation matrix among variables that are computed from 
the simulated data set. The red color represents a higher nonlinear correlation, while the blue color indicates no 
interrelationships. Figure 7a shows significant nonlinear correlation within the simulated clusters. Also, varia-
bles from different clusters have little interrelationship. If we use Dirichlet process to cluster variables based on 
low-dimensional vectors embedded from the dissimilarity matrix of mutual information, four clusters of varia-
bles are distinctly separated in the space (see Fig. 7b). The simulation study shows that Dirichlet process models 
effectively cluster these 20 variables into 4 groups and identifies the underlying cluster structures of variables.

Cluster # 1st variable 2nd variable 3rd variable 4th variable 5th variable

1 v1 v2 =​ |v1| =v v3 1
2 =v v4 1

3 =v v5 1
4

2 v6 v7 =​ |v6| =v v8 6
2 =v v9 6

3 =v v10 6
4

3 v11 v12 =​ v11(t +​ 3) v13 =​ v11(t +​ 5) v14 =​ v11(t +​ 7) v15 =​ v11(t +​ 9)

4 v16 v17 =​ v16(t +​ 10) v18 =​ v16(t +​ 20) v19 =​ v16(t +​ 30) v20 =​ v16(t +​ 40)

Table 1.   Four cluster of simulated variables. Where v1 and v6 are independent standard normal variables, v11 
is a nonlinear variable sampled from logistic map v11(n +​ 1) =​ 3.8v11(n)(1 −​ v11(n)), v16 is a second-order 
autoregressive variable that is nonlinearly coupled with xLorenz, = . − − . −v v vn n n( ) 1 095 ( 1) 0 4 ( 2)16 16 16  
ε+ . + . x0 7 0 3n Lorenz

2 , where εn  is Gaussian noise, xLorenz is the x-component of a Lorenz system: 
′ = − ′ = − − ′ = −x y x y x z y z xy z10( ), (28 ) , 8

3
 with time step 0.01. Each variable has a sample size of 

1000.
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Real-world Case Study.  In the previous work, we characterized and represented 3-dimensional vectorcar-
diogram (VCG) signals using a sparse basis function model26. This sparse representation not only reduces large 
amounts of data to a limited number of model parameters, but also preserves the signal information. As opposed 
to the original data, this present paper will utilize parameters in basis function models as explanatory variables to 
further predict the myocardial infarctions. VCG signals are represented by L superposed basis functions in order 
to capture intrinsic characteristics of cardiac electrical activity as:

∑θ ω ω ψ ϕ σ ε= + − +
=

t t( ) (( )/ )
(26)j

L

j j j j0
1

where ϕ j  and σj are shifting and scaling factors, ψj(·) are basis functions, and ωj are weight factors, respec-
tively. The objective is to optimize the sparse representation of 3D VCG signals:

∑ ω ϕ σ ψθ ω ω ψ ϕ σ








− − −






=

‖ ‖t t Largmin ( ) (( )/ ) , { , , , , }
(27)j

L

j j j j0
1

2

In order to identify a compact set of basis functions that minimize the representation error, the number of 
basis functions L is minimized and basis functions ψ are optimally placed. Model parameters ω, ϕ, σ are adap-
tively estimated by “best matching” projections of VCG signals onto a dictionary of nonlinear basis functions. The 
optimization algorithms of a sparse basis function representation for spatiotemporal VCG signals were detailed 
in our previous work26.

In this present study, model parameters, i.e., weight, shifting, scaling factors and residuals, are extracted from 
the sparse basis function representation of VCG signals, and then are further utilized as explanatory variables for 
the identification of cardiac disorders (i.e., myocardial infarctions). The parameter set is {ω3×L, φ3×L, σ3×L} for L 
basis functions because there are 3 channels of signals in 3-lead VCG. Our previous study26 showed that modeling 
performance is greater than 99.9% goodness-of-fit with a parsimonious set of 20 basis functions for a variety of 

Figure 6.  (a) Matrix of Pearson’s correlation; (b) Hierarchical clustering of simulated variables.

Figure 7.  (a) Mutual information based dissimilarity matrix; (b) Dirichlet process clustering of simulated 
variables.
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cardiac conditions. Hence, a total of 180 model parameters is adaptively estimated from the 3D VCG trajectory. 
In addition, we add other parameters in this present investigation, the overall feature matrix is:

ω ϕ σ ω= × × × × × ×F RSS RR{ , } (28)3 20, 3 20, 3 20, 3 20, 3 1 1 1

where |ω|3×20 are absolute values of weights, describing amplitudes of each basis function and indicating local 
strengths of a heartbeat. The residual sum of squares RSS3×1 measure the discrepancy between model representa-
tion and VCG signals in each channel. The heart rate RR1×1 characterizes temporal beat-to-beat variations of car-
diac electrical activity. Therefore, these 244 parameter-based features are used to represent the details of original 
VCG signals. Notably, the high-dimensional VCG signals are reduced into a parsimonious set of model parame-
ters using the sparse representation without losing clinically important information.

A total of 388 (79 controls and 309 infarctions) 3-lead VCG signals, available in the PhysioNet Database27, are 
used in this investigation. These signals were digitized at 1 kHz sampling rate with a 16-bit resolution over a range 
of 16.384 mV. Our previous study showed that most of model-driven parameters (146 over 244 features) are sta-
tistically significant between healthy controls and diseased conditions, i.e., Kolmogorov-Smirnov (K-S) statistics 
are greater than critical value 0.1728. In addition, weight factors yield larger K-S statistics than other parametric 
features. However, the “curse of dimensionality” as well as the overfitting problems come out with a large number 
of predictors for the predictive modeling. Therefore, the lasso-penalized logistic regression model was utilized 
to shrink the number of predictors and further identify cardiac disorders (i.e., myocardial infarctions) in our 
previous study28.

Nonetheless, our previous study28 focused on the relevancy between predictor and response variables, without 
specifically considering nonlinear interdependence structures among predictor variables. Prior research showed 
that the collinearity (i.e., large correlation between variables) leads to stability problems in predictive models 
(i.e., increased variances of estimation)29. The present paper further investigates the nonlinear correlations 
between variables and then identifies the cluster structures of variables for improving the predictive performance. 
Figure 8a shows the visualization of information-based dissimilarity matrix measured among variables. It may 
be noted that six groups of variables have stronger nonlinear relationships, i.e., ω3×20 and |ω|3×20 as the weights 
and absolute weights of X, Y and Z-axis directions. However, few, if any, previous work has explicitly considered 
such relationships among variables in the process of predictive modeling. Moreover, weight factors ω3×20 also 
have strong nonlinear correlation with the variables of absolute weights |ω|3×20. Without taking these nonlinear 
interrelationships into account, predictive models are sensitive to extraneous noises and are limited in the ability 
to provide an effective prediction of myocardial infarctions.

Figure 8b shows the nonparametric Dirichlet process for variable clustering of model-based parametric fea-
tures. As shown in Fig. 8b, the Dirichlet process cluster all the variables into five groups based on the embedding 
features from the variable-to-variable dissimilarity matrix of mutual information. Three clusters are shown to be 
significant, i.e., weight and absolute weight variables of X, Y and Z-axis respectively. As a result, homogeneous 
variables are clustered into subset communities. It may be noted that the result of variable clustering is consistent 
with the prior knowledge and the variable-to-variable dissimilarity matrix of mutual information.

Figure 9 shows the results of variable clustering by our proposed algorithm and the information-based clus-
tering. Note that there are 244 variables represented as color markers, and each marker with the same color rep-
resents the same cluster. Each row denotes a type of variables. For example, the first row of 20 markers is weight 
factors ωX1:20 in the X-dimension of VCG signals. Figure 9a shows the clustering results for MI-DP clustering 
(also see Fig. 8b), while Fig. 9b shows the clustering results for the information-based clustering. It may be noted 
that information-based clustering was designed to cluster data samples rather than variables. We modified the 
original algorithm in ref. 21 for variable clustering. Because information-based clustering21 needs to predefine 
the number of clusters, we therefore use the same number of clusters identified by our proposed algorithm. Note 
that Fig. 9 shows there are slight differences in clustering results by MI-DP and information-based clustering. 
Figure 9b shows that a small portion of Y weights is not accurately clustered by information-based clustering. In 

Figure 8.  (a) Dissimilarity matrix based on mutual information measured between variables; (b) Dirichlet 
process clustering of model-based parametric features.
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addition, some variables such as shifting and scaling factors, and residuals are grouped together and cannot be 
well separated. As such, information-based clustering yields slightly inferior performance of predictive modeling 
in comparison with the proposed MI-DP approach (also see Fig. 10).

Figure 10 shows the comparison of prediction performances of different clustering procedures in the 
real-world case study. “Without clustering” represents the results from the lasso-penalized logistic regression 
model in our previous study28. “HC clustering” denotes the hierarchical clustering with linear correlation meas-
ured between variables. “Information clustering” is the information-based clustering from the literature21. 
“MI-DP clustering” is the proposed information theoretic approach for variable clustering using mutual infor-
mation and Dirichlet Process Mixtures. As shown in Fig. 10, MI-DP clustering yields better performance than 
“Without clustering”. Note that MI-DP clustering improves the predictive accuracy from 89.50% to 95.84%, the 
sensitivity is improved from 94.33% to 97.56%, and the specificity is increased from 84.80% to 93.78%. In addi-
tion, MI-DP clustering yields smaller standard deviations of performance metrics (i.e., accuracy, sensitivity, and 
specificity) than “without clustering”. Similarly, the results of MI-DP clustering are better than “HC clustering” 
(i.e., accuracy 93.07%, sensitivity 96.05% and specificity 90.18%) and “Information clustering” (i.e., accuracy 
95.38%, sensitivity 97.02% and specificity 93.33%). Experimental results showed that MI-DP clustering effectively 
delineates the nonlinear correlation structures among variables and further derive homogeneous groups of vari-
ables, thereby improving the prediction performance.

Discussion and Conclusions
Advanced sensing and real-time data acquisition bring the proliferation of big data. This provides an unprec-
edented opportunity to move forward data-driven knowledge discovery. However, it is common that big data 
involves large amounts of variables with complex interdependence structures, which brings significant challenges 
on traditional modeling strategies. To tackle these challenges, variable selection and variable clustering are widely 
used in the literature. Nonetheless, variable selection focuses primarily on the relevancy between predictors and 

Figure 9.  The results of variable clustering by (a) MI-DP clustering and (b) Information-based clustering with 
color coding.

Figure 10.  The comparison of averages and standard deviation of prediction performances in the 
real-world case study. “Without clustering”: lasso-penalized logistic regression model; “HC clustering”: 
group elastic-net model with hierarchical clustering using linear correlation measured between variables; 
“Information clustering”: information-based clustering21; “MI-DP clustering”: group elastic-net model with 
variable clustering using mutual information and Dirichlet Process Mixtures.
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response variables, but does not explicitly consider the redundancy among variables. The variable clustering, on 
the other hand, focuses on the linear relevancy between variables. There is a need to develop new methodologies 
to improve the effectiveness and efficiency of variable clustering and predictive analytics.

The computational complexity of MI-DP clustering consists of three components, namely measure of mutual 
information, low-dimensional embedding, and DP variable clustering. First, mutual information is measured 
among N(N −​ 1)/2 pairs of variables. The computational complexity for one pair of variables is o((# of bins) )2 , i.e., 

No( /2)S . Hence, the complexity is approximately −N N No( ( 1)/4)S . Second, the complexity of 
low-dimensional embedding is shown to be N No( ) in the literature30. Third, the Dirichlet process allocates each 
variable to a cluster with a computational complexity of o(N). In the present case studies, there are not significant 
challenges in computational complexity. However, it is worth mentioning that a new research direction is to 
design efficient algorithms to compute the pairwise mutual information (MI) between all pairs of variables, which 
will significantly improve the performance of MI-DP approach for big data applications.

This paper presents a new information-theoretic approach for variable clustering and predictive modeling 
using Dirichlet process mixtures. This new methodology investigates both redundancy and relevancy among 
variables for improving the performance of predictive modeling. Both simulation and real-world case stud-
ies demonstrate that the proposed MI-DP clustering algorithm not only outperforms traditional methods  
(i.e., lasso-penalized variable selection and classical hierarchal clustering), but also identifies nonlinear interde-
pendence structures among variables and further improves the performance of predictive modeling. The new 
methodology of MI-DP variable clustering is generally applicable for predictive modeling in many disciplines that 
involve a large number of highly-redundant variables. In the future work, we will also consider the integration of 
our proposed MI-DP clustering algorithm with co-clustering approach to investigate the nonlinear interdepend-
ence among subsets of both samples and variables.

References
1.	 Verhoef, P. C. & Donkers, B. Predicting customer potential value an application in the insurance industry. Decision Support Systems 

32, 189–199 (2001).
2.	 Chen, Y. & Yang, H. Sparse Modeling and Recursive Prediction of Space-time Dynamics in Stochastic Sensor Network. IEEE 

Transactions on Automation Science and Engineering 13, 215–226 (2016).
3.	 Chen, Y. & Yang, H. Heterogeneous postsurgical data analytics for predictive modeling of mortality risks in intensive care units 

(Proceedings of 2014 IEEE Engineering in Medicine and Biology Society Conference (EMBC), 2014).
4.	 Yang, H. & Kundakcioglu, E. Healthcare Intelligence: Turning Data into Knowledge. Intelligent Systems, IEEE 29, 54–68 (2014).
5.	 Ward, J. H. Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association 58, 236–244 

(1963).
6.	 Airoldi, E. M., Blei, D. M., Fienberg, S. E. & Xing, E. P. Mixed Membership Stochastic Blockmodels. Journal of Machine Learning 

Research 9, 1981–2014 (2008).
7.	 Acharya, A. et al. In ECML PKDD (eds Appice, A. et al.) 283–299 (2015).
8.	 Zhou, M. Infinite Edge Partition Models for Overlapping Community Detection and Link Prediction. In Proceedings of AISTATS 38 

(2015).
9.	 Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent Dirichlet Allocation. Journal of Machine Learning Research 3, 993–1022 (2003).

10.	 Blei, D. M. & McAuliffe, J. D. Supervised topic models. Advances in Neural Information Processing Systems (NIPS), 121–128 (2007).
11.	 Zhu, J., Ahmed, A. & Xing, E. P. MedLDA: Maximum Margin Supervised Topic Models. Journal of Machine Learning Research 13, 

2237–2278 (2012).
12.	 Zhu, J., Chen, N., Perkins, H. & Zhang, B. Gibbs Max-Margin Topic Models with Fast Sampling Algorithms. In Proceedings of ICML 

28 (2013).
13.	 Cheng, Y. & Church, G. M. Biclustering of Expression Data. In Proceedings of ISMB 8, 93–103 (2000).
14.	 Dhillon, I. S. Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of ACM SIGKDD, 

269–274 (2001).
15.	 Dhillon, I. S., Mallela, S. & Modha, D. S. Information-theoretic co-clustering. In Proceedings of ACM SIGKDD, 83–89 (2003).
16.	 Deodhar, M. & Ghosh, J. SCOAL: A Framework for Simultaneous Co-Clustering and Learning from Complex Data. ACM 

Transactions on Knowledge Discovery from Data 4, 11–31 (2010).
17.	 Pearson, K. Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London 58, 240–242 

(1895).
18.	 Fraser, A. M. & Swinney, H. L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33, 1134–1140 

(1986).
19.	 Kinney, J. B. & Atwal, G. S. Equitability, mutual information, and the maximal information coefficient. PNAS 111, 3354–3359 (2014).
20.	 Reshef, D. N. et al. Detecting Novel Associations in Large Data Sets. Science 334, 1518–1524 (2011).
21.	 Slonim, N., Atwal, G. S., Tkačik, G. & Bialek, W. Information-based clustering. PNAS 102, 18297–18302 (2005).
22.	 Jain, A. K. Data clustering: 50 years beyond K-means. Pattern Recognition Letters 31, 651–666 (2010).
23.	 Le, T. Q., Cheng, C., Sangasoongsong, A., Wongdhamma, W. & Bukkapatnam, S. T. S. Wireless wearable multisensory suite and 

real-time prediction of obstructive sleep apnea episodes. IEEE Journal of Translational Engineering in Health and Medicine 1, 
2700109 (2013).

24.	 Blei, D. M. & Jordan, M. I. Variational inference for Dirichlet process mixtures. Bayesian Analysis 1, 121–144 (2006).
25.	 Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Statist. Soc. B 67, 301–320 (2005).
26.	 Liu, G. & Yang, H. Multiscale adaptive basis function modeling of spatiotemporal cardiac electrical signals. IEEE Journal of 

Biomedical and Health Informatics 17, 484–492 (2013).
27.	 Goldberger, A. L. et al. PhysioBank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic 

signals. Circulation 23, e215–e220 (2000).
28.	 Liu, G., Kan, C., Chen, Y. & Yang, H. Model-driven parametric monitoring of high-dimensional nonlinear functional profiles. 

Automation Science and Engineering (CASE), 2014 IEEE International Conference. 722–727 (2014).
29.	 Nas, T. & Mevik, B. H. Understanding the collinearity problem in regression and discriminant analysis. Journal of Chemometrics 15, 

412–426 (2001).
30.	 Morrison, A., Ross, G. & Chalmers, M. Fast multidimensional scaling through sampling, springs and interpolation. Information 

Visualization 2, 68–77 (2003).



www.nature.com/scientificreports/

13Scientific Reports | 6:38913 | DOI: 10.1038/srep38913

Acknowledgements
This work is supported in part by the National Science Foundation (CMMI-1646660, CMMI-1617148, CMMI-
1619648, and IOS-1146882). The authors also thank Harold and Inge Marcus Career Professorship (HY) for 
additional financial support.

Author Contributions
H.Y. conceived the study and contributed to the design of the study, data collection, data interpretation, and 
revised the manuscript. Y.C. contributed to the development of algorithms, evaluated the data, performed the 
data analysis, and drafted the manuscript. All authors read and approved the final manuscript.

Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Chen, Y. and Yang, H. A Novel Information-Theoretic Approach for Variable 
Clustering and Predictive Modeling Using Dirichlet Process Mixtures. Sci. Rep. 6, 38913; doi: 10.1038/
srep38913 (2016).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	A Novel Information-Theoretic Approach for Variable Clustering and Predictive Modeling Using Dirichlet Process Mixtures

	Research Background

	Clustering Analysis. 
	Hierarchical Clustering. 
	Research Methodology. 
	Mutual Information based Embedding of Variables. 
	Dirichlet Process for Variable Clustering. 
	Predictive Modeling with Clustered Variables. 

	Experimental Materials and Results

	Simulation Study. 
	Real-world Case Study. 

	Discussion and Conclusions

	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ (a) Data clustering with each point representing a data sample (b) Variable clustering with each point representing a variable.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Data in the table form, where variables are in columns and samples are in rows.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Illustration of Pearson’s correlation (a) and hierarchical clustering (b).
	﻿Figure 4﻿﻿.﻿﻿ ﻿ An illustration for the computation of mutual information.
	﻿Figure 5﻿﻿.﻿﻿ ﻿ Algorithm and illustration of Chinese Restaurant Process.
	﻿Figure 6﻿﻿.﻿﻿ ﻿ (a) Matrix of Pearson’s correlation (b) Hierarchical clustering of simulated variables.
	﻿Figure 7﻿﻿.﻿﻿ ﻿ (a) Mutual information based dissimilarity matrix (b) Dirichlet process clustering of simulated variables.
	﻿Figure 8﻿﻿.﻿﻿ ﻿ (a) Dissimilarity matrix based on mutual information measured between variables (b) Dirichlet process clustering of model-based parametric features.
	﻿Figure 9﻿﻿.﻿﻿ ﻿ The results of variable clustering by (a) MI-DP clustering and (b) Information-based clustering with color coding.
	﻿Figure 10﻿﻿.﻿﻿ ﻿ The comparison of averages and standard deviation of prediction performances in the real-world case study.
	﻿Table 1﻿﻿. ﻿  Four cluster of simulated variables.



 
    
       
          application/pdf
          
             
                A Novel Information-Theoretic Approach for Variable Clustering and Predictive Modeling Using Dirichlet Process Mixtures
            
         
          
             
                srep ,  (2016). doi:10.1038/srep38913
            
         
          
             
                Yun Chen
                Hui Yang
            
         
          doi:10.1038/srep38913
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep38913
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep38913
            
         
      
       
          
          
          
             
                doi:10.1038/srep38913
            
         
          
             
                srep ,  (2016). doi:10.1038/srep38913
            
         
          
          
      
       
       
          True
      
   




