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ABSTRACT
Environmental chemicals can alter gut microbial community composition, known as dysbiosis. 
However, the gut microbiota is a highly dynamic system and its functions are still largely under-
explored. Likewise, it is unclear whether xenobiotic exposure affects host health through impairing 
host–microbiota interactions. Answers to this question not only can lead to a more precise under-
standing of the toxic effects of xenobiotics but also can provide new targets for the development of 
new therapeutic strategies. Here, we aim to identify the major challenges in the field of microbiota- 
exposure research and highlight the need to exam the health effects of xenobiotic-induced gut 
microbiota dysbiosis in host bodies. Although the changes of gut microbiota frequently co-occur 
with the xenobiotic exposure, the causal relationship of xenobiotic-induced microbiota dysbiosis 
and diseases is rarely established. The high dynamics of the gut microbiota and the complex 
interactions among exposure, microbiota, and host, are the major challenges to decipher the 
specific health effects of microbiota dysbiosis. The next stage of study needs to combine various 
technologies to precisely assess the xenobiotic-induced gut microbiota perturbation and the 
subsequent health effects in host bodies. The exposure, gut microbiota dysbiosis, and disease 
outcomes have to be causally linked. Many microbiota–host interactions are established by pre-
vious studies, including signaling metabolites and response pathways in the host, which may use as 
start points for future research to examine the mechanistic interactions of exposure, gut microbiota, 
and host health. In conclusion, to precisely understand the toxicity of xenobiotics and develop 
microbiota-based therapies, the causal and mechanistic links of exposure and microbiota dysbiosis 
have to be established in the next stage study.
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Introduction

Xenobiotics, such as heavy metals, pesticides, anti-
biotics, and food additives, can cause adverse effects 
on human health. The mammalian gut microbiota 
plays a critical role in food fiber digestion, energy 
metabolism, immune system development, xeno-
biotic biotransformation and so on, and it has 
been characterized as an “exteriorized organ”.1, 2 

Considering the important roles of the gut micro-
biota in host health, the effects of xenobiotics on the 
gut microbiota are extensively explored in the last 
two decades, and accumulating evidence indicates 
that many xenobiotics can profoundly perturb the 
gut microbiota composition to affect host health 
status.3 For example, artificial sweeteners can 
cause glucose intolerance by disturbing the gut 
microbiota in mice.4 However, the gut microbiota 
community is a highly dynamic system, and 

numerous factors, such as host genotype, diet, age, 
and host lifestyles, can significantly alter gut micro-
biota composition.5–7 The inter-individual and 
intra-individual variation of the gut microbiota is 
a pervasive phenomenon. Therefore, although 
exposure of multiple xenobiotics can shift gut 
microbiota, the changed gut microbiota is not 
necessary to cause adverse health effects in host 
bodies. Many studies indicate the association 
between xenobiotic-perturbed gut microbiota and 
host diseases, but the causality, for most of the 
compounds, is still unestablished. To better assess 
the effects of xenobiotic exposure on the gut micro-
biota as well as the subsequent health effects, we 
need to explore which specific functions of gut 
microbiota are impaired during exposure. The 
aims of this review are to summarize the current 
knowledge of the xenobiotic-driven gut microbiota 
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dysbiosis, discuss the challenges and principles of 
future studies, and highlight the demonstrated 
mechanistic pathways of gut microbiota–host inter-
actions to provide potential future research 
directions.

Xenobiotic exposure and gut microbiota 
dysbiosis

Antibiotics

Since the 20th century, antibiotics have been 
extensively produced and used to treat bacterial 
infections, which have saved millions of lives. 
However, many studies reveal that antibiotics 
increasingly accumulate in natural environments, 
including soil and aquatic environments.8–10 With 
the important roles of the gut microbiota in host 
health being continuously recognized, the pro-
found and persistent impacts of antibiotic treat-
ment on human gut microbiota have been given 
special attention.11,12 Various antibiotics can 
cause gut microbiota perturbation, including van-
comycin, ampicillin, streptomycin, and 
metronidazole.13–16 Vancomycin, for example, 
can reduce the microbial diversity, decrease the 
gram-positive bacteria, and cause the compensa-
tory increase of gram-negative bacteria.13,17 The 
antibiotic-shifted gut microbiota is associated with 
multiple diseases. A typical example is that anti-
biotic treatment affects Clostridium difficile colo-
nization and host susceptibility to C. difficile 
infection.18,19 Clindamycin-induced gut micro-
biota dysbiosis is associated with long-lasting sus-
ceptibility to Clostridium difficile infection.20 In 
addition, vancomycin-induced gut microbiota 
dysbiosis is associated with decreased insulin sen-
sitivity by modifying bile acid metabolism.13 

Another study has found a cocktail of antibiotics 
perturbed the gut microbiota to disrupt gut redox 
dynamics.21 On the other hand, antibiotics also 
could reduce disease risk by modifying gut micro-
biota. For example, rifaximin treatment can 
improve the level of beneficial bacteria, such as 
Bifidobacteria and Lactobacilli, to reduce disease 
risk.22 Depletion of Firmicutes and Bacteroidetes 
caused by vancomycin and bacitracin ameliorates 
insulin resistance in mice with diet-induced 
obesity.23

Heavy metals

Heavy metals are environmental pollutants that 
affect the health of millions of people in the 
world.24 Interactions between gut microbiota and 
heavy metals have been studied since the last cen-
tury, mainly focusing on the gut bacteria- 
performed heavy metal biotransformation.25–27 

Recently, the heavy metal-driven gut microbiota 
dysbiosis is also investigated. For example, inor-
ganic arsenic exposure has been demonstrated to 
change gut microbiota community structure, func-
tional gene patterns as well as the metabolome 
profiles.28–30 Our previous study has demonstrated 
that chronic arsenic exposure changed community 
diversity, reduced the relative abundance of 
Firmicutes, and shifted the carbohydrate metabolic 
gene patterns in female mice.29 Moreover, the sex- 
dependent effects of arsenic exposure on the gut 
microbiota are observed.31,32 The effects of lead 
exposure are also explored, and both acute and 
chronic lead exposure can cause gut microbiota 
dysbiosis in animal studies.33–37 Short-term lead 
exposure significantly alters the richness and diver-
sity of the gut microbiota, increases the abundance 
of α-Proteobacteria, and decreases the abundance 
of Firmicutes in zebrafish.33 But another study used 
mouse model reveals that chronic lead exposure- 
perturbed gut microbiota is characterized by 
decreased Bacteroidetes and increased 
Firmicutes.34 Chronic lead exposure can shift the 
gut microbiota metabolic profiles to change the 
abundance of functional metabolites, such as 
amino acids, bile acids, and tricarboxylic acid 
(TCA) cycle-associated metabolites.34,35 Perinatal 
lead exposure can induce gut microbiota dysbiosis 
by increasing Firmicutes and decreasing 
Bacteroidetes.36 Likewise, cadmium exposure can 
also perturb normal gut microbiota community 
compositions.38,39 Short-term cadmium exposure 
can inhibit the growth of Bacteroidetes as well as 
some probiotics, such as Lactobacillus and 
Bifidobacterium, and reduce the copy number of 
short-chain fatty acid (SCFA)-associated genes.38 

Another study demonstrates the abundance of 
Firmicutes is decreased in cadmium-treated 
mice.39 Gut microbiota dysbiosis caused by early- 
life cadmium exposure is associated with the expo-
sure-induced fat accumulation in male mice.40
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Pesticides

Pesticide contamination is another serious threat to 
public health, and the effects of pesticide exposure 
on the gut microbiota are explored recently. For 
example, a recent study on honey bees has revealed 
that glyphosate, one of the most popular herbicides, 
specifically inhibited the activity of 5-enolpyruvyl-
shikimate-3-phosphate synthase enzyme in the shi-
kimate pathway of gut microbiota.41 This 
inhibition causes the decline of beneficial gut 
microbiota with this enzyme and increases the 
mortality of bees infected with pathogen Serratia 
marcescens. Glyphosate-induced gut microbiota 
dysbiosis has also been associated with neurobeha-
vioral alterations.42,43 Organophosphate insecti-
cides are another group of extensively used 
pesticides, and their effects on the gut microbiota 
are also investigated. For example, diazinon is 
found to cause sex-specific effects on mouse gut 
microbiota, differentially changing the bacterial 
components, functional gene composition as well 
as fecal metabolite profiles in male and female 
mice.44 Trichlorfon exposure can decrease the 
abundance of Lactobacillus in Japanese quail.45 

Moreover, a recent study revealed that organopho-
sphate-induced hyperglycemia was directly asso-
ciated with the altered gut microbiome.46 

Organophosphate exposure enriches the xenobiotic 
biodegrading genes in gut microbiome which pro-
mote the gut microbiota to utilize organophosphate 
to produce acetic acid. The increased acetic acid 
then enhances the gluconeogenesis in host bodies 
and finally results in glucose intolerance. Many 
other pesticides are also found to induce gut micro-
biota dysbiosis, such as 2,4-D,47 clorpyrifos,48,49 

imazalil50–52 and so on. Recent studies of pesticide 
effects on the gut microbiota is well summarized by 
a recent review.53

Artificial sweeteners

Non-caloric artificial sweeteners are widely used in 
the food industry to enhance sweet taste without 
the associated high energy content of caloric sugars. 
Artificial sweeteners generally have low absorption 
and metabolism rates, and in a long time, they are 
considered to be harmless to humans.54 However, 
some studies indicate that artificial sweeteners can 
perturb gut microbiota and cause adverse effects on 
host health. For example, chronic saccharin con-
sumption can exacerbate glucose intolerance in 
mice by mediating gut microbiota.4 Saccharin con-
sumption increases Bacteroidetes phylum, reduced 
Firmicutes phylum, and also decreases SCFA pro-
duction. Our previous study has found saccharin- 
induced gut microbiota shift was associated with 
liver inflammation.55 SUCRAM, consisting of sac-
charin and neohesperidin dihydrochalcone, has 
been demonstrated to induce the growth of 
Lactobacillus.56,57 Likewise, sucralose, the most 
popular artificial sweetener, also can alter gut 
microbiota. Chronic sucralose consumption causes 
a shift of a series of gut microbiota genus and 
enriches the pro-inflammatory genes in mouse gut 
microbiome.58 A recent study found that sucralose 
caused gut microbiota dysbiosis was associated 
with a high level of hepatic cholesterol and altered 
bile acid profiles.59 Some animal studies find that 
aspartame and acesulfame-K could perturb normal 
gut microbiota composition,60,61 and an epidemio-
logic study also reveals that human gut microbiota 
diversity is different between aspartame or acesul-
fame-K consumers and non-consumers.62 

A summary of the effects of artificial sweeteners 
on the gut microbiota can be found in two recent 
reviews.63,64

Figure 1. Scheme to show the differences between “extensive grazing model” and “intensive cultivation model”.
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Others

The number of compounds that can perturb the gut 
microbiota is much more than those we listed 
above. For example, numerous of non-antibiotic 
drugs have extensive effects on the gut 
microbiota.65,66 The interaction of gut microbiota 
and drugs is tightly associated with the drug side- 
effects in host bodies. In addition, some environ-
mental pollutants, such as polychlorinated biphe-
nyls (PCBs),67,68 polycyclic aromatic hydrocarbons 
(PAHs),69 and triclosan,70–72 can disturb the gut 
microbiota community and affect host health. Our 
previous studies also demonstrated that nicotine 
consumption shifted the gut microbiota composi-
tion in mice.73 It can be anticipated that com-
pounds that impact gut microbiota will be 
continuously reported.

Current difficulties and limitations in 
xenobiotics–microbiota studies

Previous studies have evaluated the gut microbiota 
perturbation induced by a series of xenobiotics, but 
in most cases, we only demonstrated the correlation 
of xenobiotic exposure, gut microbiota dysbiosis, 
and disease outcomes, that unexposed and exposed 
subjects had different gut microbiota profiles. These 
studies can be regarded as “extensive grazing model” 
which show the potential effects of those xenobiotics 
on gut microbiota and provides basic information as 
well as the theoretical basis for the subsequent 
research. But to further understand how xenobiotic- 
induced gut microbiota dysbiosis affects our health 
and to develop new microbiota-based intervention 
approaches, “extensive grazing model” has transfer 
to “intensive cultivation model” in which the caus-
ality between xenobiotic-perturbed gut microbiota 
and host diseases are determined (Figure 1). 
However, there are many challenges to establish 
the causal relationship of xenobiotic exposure, gut 
microbiota dysbiosis, and host diseases.

First, the gut microbiota community is a highly 
dynamic and complex system, so the specific roles 
of each type of gut microorganisms in host home-
ostasis are unclear. Moreover, many recent studies 
reveal that the same species from different humans 
have different characters and can cause very differ-
ent health impacts on host bodies.74,75 Therefore, 

the exact definition of “healthy/normal gut micro-
biota” is still undetermined in many aspects, 
though many studies have conducted to try to 
define it.76,77 In addition, notably, although gut 
microbiota is considered as an extra organ, gut 
microbiota damage does not necessarily affect our 
health; after all, they are not a true part of our 
bodies, which means that xenobiotic-shifted gut 
microbiota is not always detrimental to host health. 
It is largely unknown that when gut microbiota 
shift is bad and can cause adverse health effects on 
host bodies.

Secondly, functional redundancy is ubiquitous in 
the gut microbiota community. For example, buty-
rate-producing bacteria exist both in the phylum 
Bacteroidetes and Firmicutes.78,79 Therefore, com-
munity composition changes are not always con-
sistent with functional dysbiosis. But, without 
knowing the functional perturbation of the gut 
microbiota, it is hard to evaluate the associated 
health effects in host bodies. Thus, unless we 
know the specific function of each bacteria, only 
investigating the gut microbiota composition chan-
ged by xenobiotics wouldn’t improve our under-
standing of the associated health effects.

Thirdly, xenobiotic effects on host bodies and gut 
microbiota may occur simultaneously. Therefore, 
although many studies detect gut microbiota shift 
and host health deterioration during xenobiotic 
exposure, we actually cannot determine whether 
the xenobiotic-shifted gut microbiota impairs host 
health, or the xenobiotic-deteriorated host responses 
affect the gut microbiota, or this is a dynamic and bi- 
directional process. Currently, cause and effect have 
not been demonstrated for most of the studies.

Last but not least, many factors could cause the 
detectable fluctuation of community composition, 
including but not limited to diet, bedding caging, 
sampling time (gut microbiota rhythm), DNA 
extracting method, and sequencing data analysis. 
Craigl L. Franklin and other researchers have done 
some valuable work on the impact of some “periph-
eral factors” on gut microbiota composition.80–82 

But, in general, the effects of those factors on experi-
ments are rarely quantified and controlled between 
different studies or even in a single study, which 
challenges the reproducibility of microbiota- 
associated studies. Standardization of experimental 
design remains a critical need in the field.
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In summary, to determine the health effects of 
xenobiotic-induced gut microbiota perturbation, 
we have to distinguish the natural fluctuation and 
dysbiosis of the gut microbiota. The former one 
would not affect host health status, but the gut 
microbiota dysbiosis has to be linked with adverse 
health effects in host bodies. To build the links, we 
need a more refined view to investigate the effects 
of xenobiotic exposure on the gut microbiota. In 
other words, we need to explore which specific 
aspects of gut microbiota are changed by xenobio-
tics and whether and how these changes affect host 
health.

Important research principles, strategies, and 
technologies

Precisely assessing the xenobiotic-induced gut 
microbiota perturbation

Precisely assessing the xenobiotic-induced gut 
microbiota perturbation is the prerequisite and 
foundation of linking gut microbiota dysbiosis 
with host health conditions and developing micro-
biota-directed therapies (Figure 1). However, as the 
high dynamics of the gut microbiota, many factors 
can influence the gut microbiota composition. 

Although controlling the interferences of unrelated 
variables are required in most of the experiments, 
for gut microbiota-related studies, it needs to be 
especially emphasized and concerned, that some 
“peripheral factors” need to be strictly controlled 
or normalized, such as diet, drinking water, host 
genetics, and so on.80–82 Notably, the cage effects 
should be highly concerned, because the mice in the 
same cage frequently share their gut microbiota and 
tend to have similar gut microbiota profiles.83 Cage 
effects decrease the efficiency of individual repli-
cates, and thus multiple cages need to be set in the 
same experimental group to avoid the false positive 
or negative results caused by the cage-effects.

In addition, gut microbiota variation in different 
individuals or groups cannot be completely 
avoided, which requires us to identify the xenobio-
tic-caused gut microbiota changes from the neutral 
fluctuation. How to efficiently filter the true signals 
from noise is a critical question that needs to be 
answered. 16S rRNA sequencing, metagenomics, 
metatranscriptomics, metaproteomics, and meta-
bolomics are powerful technologies that can effi-
ciently identify the changes of gut microbiota,84,85 

but also can induce many false-positive results. 
Combining multiple technologies can provide 
a better understanding of the xenobiotic-induced 
gut microbiota dysbiosis. The in-vitro devices, such 

Figure 2. Schematic representation of potential mechanistic links of xenobiotic-induced gut microbiota dysbiosis and adverse health 
effects. PAHs: polycyclic aromatic hydrocarbons; PCBs: polychlorinated biphenyls; SCFAs: short-chain fatty acids; TMA: trimethylamine; 
TMAO: trimethylamine-N-oxide; GPCRs: G protein-coupled receptors; HDACs: histone deacetylases; PPARγ: peroxisome proliferator- 
activated receptor gamma; HR: histamine receptor; IBD: inflammatory bowel disease; TGR5: the G protein-coupled bile acid receptor 1; 
CVDs: cardiovascular diseases.
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as batch-culturing systems, simulators of the 
human intestinal microbial ecosystem (SHIME), 
the chemostat-type simulators, and gut-on-chip 
devices can also help to evaluate the effects of xeno-
biotics on gut microbiota,86 although it is still 
a challenge to exactly mimic the true physiological 
conditions to maintain the gut microbiota commu-
nity. In addition, the advance of system biology and 
computational biology may also provide some 
other solutions to identify the exposure-induced 
gut microbiota dysbiosis. For example, recent stu-
dies in Dr. Gordon’s group successfully utilized the 
Random Forests, a machine learning approach, to 
identify the age-discriminatory taxa in children, 
which allowed to quantitatively assess the 
unhealthy level of the gut microbiota.87,88 Another 
recent study defined the “ecogroup” which used 
a series of conserved covarying taxa to evaluate 
the alteration of the gut microbiota under different 
scenarios.89 Comparing using the changes of dis-
crete community components, the variation of 
ecogroup may better reflect the functional changes 
of the gut microbiota between different groups.

Assessing the health effects of xenobiotic-induced 
gut microbiota dysbiosis

Comparing with assessing the effects of xenobiotics 
on the gut microbiota, assessing the specific health 
effects of xenobiotic-induced gut microbiota dys-
biosis are more concerned by toxicologists. Many 
studies detected the differential gut bacterial pro-
files in the untreated group and xenobiotic-treated 
group. However, both the xenobiotics exposure and 
the exposure-caused gut microbiota dysbiosis can 
affect host health, and host conditions also can 
affect gut microbiota. Studies based on traditional 
exposure study design cannot well determine the 
causal link of xenobiotic exposure, gut microbiota 
dysbiosis, and host health impairments.

Germ-free animals and antibiotic-treated ani-
mals are powerful tools to explore whether the gut 
microbiota plays a role in xenobiotic-associated 
adverse health effects on host bodies. They are 
analogous to the “gut microbiota knock-out” and 
“gut microbiota knock-down” animals. By compar-
ing the different responses of conventional-raised 
animals and germ-free/antibiotic-treated animals, 
we can determine whether the presence of gut 

microbiota can influence the toxic effects of xeno-
biotics. In addition, gut microbiota transplantation 
is a key step. By transplanting the xenobiotic- 
exposed gut microbiota to healthy germ-free or 
antibiotic-treated animals, we can determine the 
specific health effects of exposure-driven gut micro-
biota dysbiosis in host bodies. However, it should 
be noticed that germ-free animals have largely dif-
ferent physiological conditions with conventional- 
raised animals, especially of their immune system, 
and antibiotic treatment may also affect host body 
conditions. Moreover, transplanting efficiency 
needs to be carefully evaluated.

Transplanting the exposed gut microbiota to 
germ-free animals is helpful to evaluate the overall 
health effects of the whole community, but it still 
cannot tell us which components are the key fac-
tors. After all, not all of xenobiotic-induced changes 
in gut microbiota will affect host health. Decipher 
the “black box”, that to find the key functional 
components and pinpoint the key perturbation 
events, is the critical step to promote the develop-
ment of microbiota-directed new therapies to treat 
exposure-caused diseases. However, since our cur-
rent knowledge about the function of each bacterial 
components in the gut microbiota is still largely 
limited, it is still a big challenge to identify the 
functional taxa, genes, and metabolites. An execu-
table experimental process is first to select those 
taxa, genes, or metabolites that dramatically chan-
ged by exposure as candidates and then validate 
them by complementary experiments.90

Metabolite-driven microbiota–host interactions

Microbiota-derived metabolites play a central role 
in microbiota–host interactions,2,91 and previous 
studies have found various of key metabolites func-
tioning as signaling molecules by which the micro-
biota affects host homeostasis. Although the whole 
picture of the microbiota–host interactions is not 
fully understood, many mechanistic pathways 
about how microbiota-derived metabolites affect 
host health have been found by previous studies. 
Those mechanistic pathways causally link the gut 
microbiota dysbiosis and host disease outcomes. In 
the following, we summarize well-demonstrated 
metabolite-driven microbiota–host interactions, 
which could serve as the starting points and 
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measurable indexes to examine the xenobiotic- 
induced gut microbiota dysbiosis and the asso-
ciated health effects (Figure 2).

SCFAs

SCFAs, mainly including acetate, butyrate, and pro-
pionate, are the end products of anaerobic dietary 
fiber fermentation. As one group of the most abun-
dant microbiota-synthesized metabolites, SCFAs 
have been found to play important roles in various 
physiological processes, especially in energy supple-
ment, immune regulation, gut barrier integrity 
maintenance, pathogen resistance, and gut-brain 
axis.

SCFAs function as energy sources to influence host 
energy homeostasis
Most of SCFAs are absorbed in the intestinal 
epithelium in ceca and colons. SCFAs, especially 
butyrate, are the main energy source of colonocytes 
and provide around 10% of daily caloric in humans 
estimated by a previous study.92 The rest SCFAs are 
mainly metabolized in livers as energy source or 
used to synthesize host endogenous metabolites. 
For example, propionate can be utilized in gluco-
neogenesis to synthesize glucose in livers.93,94 

SCFAs regulated energy homeostasis has been cor-
related with obesity, and previous studies found 
that mouse and human subjects with obesity have 
higher levels of intestinal SCFAs than in lean 
groups.95,96

SCFAs function as G-protein-coupled receptor (GPCRs) 
ligands to regulate immune response
Activating GPCRs is a critical mechanism of 
SCFA-conducted immunity regulation.97,98 

GPR43 is a receptor that can be activated by acet-
ate, butyrate, propionate. SCFAs activated GPR43 
signaling promotes the proliferation of CD4+ reg-
ulatory T (Treg) cells with enhanced Foxp3 and IL- 
10 levels, which improves colonic homeostasis and 
protects against colitis.99 Acetate-activated GPR43 
can protect non-obese diabetic mice by increasing 
the frequency of Treg cells but reducing autoreac-
tive T cells in peripheral tissues.100 Another study 
found that SCFA-activated GPR43 promoted the 
NLRP3 inflammasome activation by stimulating 
K+ efflux and hyperpolarization, which provides 

health benefits to against colitis.101 Moreover, pre-
vious studies found that SCFA-mediated GPR43 
signaling suppressed insulin signaling in adipo-
cytes and also increased the level of TNF-α in anti- 
inflammatory M2-type macrophages in adipose 
tissues, that both of them can inhibit fat 
accumulation.102,103 GPR41 is another receptor 
of SCFAs. Propionate-activated GPR41 regulates 
the generation of macrophages and dendritic cell 
precursors to protect against allergic inflammation 
in the lung.104 In human renal cortical epithelial 
cells, SCFA-activated GPR41 and GPR43 can 
reduce TNF-α-induced MCP-1 expression by sup-
pressing p38 and JNK phosphorylation.105 In 
addition, butyrate can specifically activate 
GPR109A. In colonic macrophages and dendritic 
cells, butyrate-activated GPR109A promotes the 
differentiation of Treg cells and IL-10-producing 
T cells, which inhibits colonic inflammation and 
carcinogenesis.106 The regulatory role of butyrate 
on Treg cells by GPR109A can also ameliorate 
gastrointestinal injury during graft versus host 
disease.107 A previous study demonstrated that 
SCFA-mediated GPR109A and GPR43 activation 
played a role in food antigens tolerance by increas-
ing mucosal CD103+ dendritic cells.108

SCFAs regulate host homeostasis through inhibiting 
histone deacetylases (HDACs)
Butyrate and propionate can inhibit the HDAC to 
promote the Foxp3 protein acetylation and then 
increase the generation of Treg cells.109 Likewise, 
butyrate-induced HDAC inhibition can reduce the 
LPS-stimulated pro-inflammatory mediators in 
intestinal macrophages, which may protect against 
ulcerative colitis or Crohn’s disease.110 Another 
study found that butyrate-regulated HDAC3 inhi-
bition in macrophages reduced the mTOR kinase 
activity but increased the antimicrobial peptide 
production, which enhanced the host antimicrobial 
capability.111 In the context of graft-versus-host 
disease, butyrate-promoted HDAC3 inhibition 
benefits the gut barrier integrity.112

Other interactional mechanisms
In addition to the three main mechanistic path-
ways, SCFAs also can affect host health by some 
other approaches. For example, butyrate can acti-
vate the peroxisome proliferator-activated receptor 
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γ (PPAR-γ) in colonic epithelial cells to promote 
the β-oxidation, which limits the aerobic pathogen 
expansion, such as Escherichia and 
Salmonella.113,114 On the other hand, however, 
SCFAs can down-regulate the PPAR-γ expression 
in liver and adipose tissue to inhibit lipid synthesis 
but increase lipid utilization, which helps to prevent 
high-fat-diet-induced obesity, reduce hepatic stea-
tosis, and improve insulin sensitivity.115 A previous 
study found that propionate could reduce the sta-
bility of HilD by disturbing its post-translationally 
modification and thus repress the Salmonella 
invasion.116

Bile acids

Bile acids are originally synthesized from choles-
terol in livers known as primary bile acids, stored in 
gall bladders and then secreted to small intestines to 
solubilize lipid and fat-soluble vitamins as potent 
detergents after a meal. Most of the bile acids can be 
reabsorbed and backed to our bodies, which is 
called bile acid enterohepatic circulation. Gut bac-
teria can hydrolyze the amino acid residues (taurine 
or glycine) in conjugated bile acids to generate free 
bile acids. Moreover, some gut bacteria also can 
synthesize secondary bile acids utilizing primary 
bile acids.117 Gut bacteria-performed bile acid bio-
transformation is a critical interaction between the 
gut microbiota and host, which is not only required 
to maintain the bile acid homeostasis but also pro-
vides key metabolic signaling to multiple tissues in 
host bodies.118

The gut microbiota influences host homeosta-
sis by affecting bile acid-regulated farnesoid 
X receptor (FXR) signaling

FXR is a transcription factor which presents in 
multiple tissues and regulates the expression of 
a wide range of target genes.119 The most potent 
endogenous ligands for FXR include chenodeoxy-
cholic acid (CDCA), lithocholic acid (LCA), deoxy-
cholic acid (DCA), and cholic acid (CA), that LCA 
and DCA are the two secondary bile acids synthe-
sized by gut microbiota.120 In addition, tauro-β- 
muricholic acid (TβMCA) has been identified as 
an antagonist of FXR. Previous studies demon-
strated the regulatory roles of gut microbiota on 

FXR signaling. Germ-free mice display a higher 
level of TβMCA and a lower activation level of 
FXR signaling than conventional mice.121 Bile salt 
hydrolase (BSH) activity in gut microbiota, which 
catalyzes the de-conjugation of conjugated bile 
acids, is correlated with the TβMCA level as well 
as the FXR activation.122 The FXR signal in livers 
and ilea inhibits bile acid synthesis.123 Gut micro-
biota-mediated bile acid metabolism and FXR acti-
vation play an important role in the regulation of 
bile acid pool size.118 In addition, intestinal FXR 
signaling is required for gut microbiota-associated 
lipid accumulation and obesity. Inhibiting intest-
inal FXR signaling by treating with antibiotics or 
tempol can reduce high-fat diet-induced hepatic 
triglyceride accumulation.124 Modulating gut bac-
teria to decrease intestinal FXR activation can ame-
liorate the high-fat diet-induced obesity.122,125 

Moreover, DCA-activated intestinal FXR signaling 
inhibits prostaglandin E2 production and promotes 
crypt regeneration, which benefits the colonic 
wound repair.126

The gut microbiota influences host homeosta-
sis by affecting bile acid-regulated TGR5 signal-
ing activation

TGR5 is another transcription factor expressing 
in a wide range of tissues, which is mainly activated 
by LCA, DCA, and tauroursodeoxycholic acid 
(TUDCA), the secondary bile acids synthesized by 
gut microbiota.127,128 TUDCA has shown anti- 
inflammatory effects by activating TGR5 in the 
nervous system.128,129 An in vitro study reveals 
that LCA-activated TGR5 can ameliorate cardiac 
hypertrophy.130

Other interactional pathways
There are some other mechanisms of the gut micro-
biota-regulated bile acid metabolism affecting host 
health status. The gut microbiota-conducted taur-
ine deconjugation can activate the NOD-like recep-
tor family pyrin domain containing 6 (NLRP6) 
inflammasome and increase IL-18 level to promote 
intestinal inflammation 132. Secondary bile acids, 
such as LCA and DCA, are known by their high 
cytotoxicity and carcinogenic effects. DCA has been 
demonstrated to inhibit tumor-suppressing 
CXCR6+ natural killer T cells and promote liver 
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tumorigenesis.131,132 Hepatic Pregnane X receptor 
(PXR) can be activated by LCA to prevent LCA- 
caused liver damage.133 On the other hand, how-
ever, the high toxicity of secondary bile acids also 
exhibits beneficial effects on host by preventing the 
colonization of certain pathogens, such as 
Clostridium difficile.134

Tryptophan metabolites

Tryptophan is an essential aromatic amino acid 
which is required for protein synthesis and some 
key metabolite biosynthesis in mammals. In the last 
decade, gut microbiota-derived tryptophan meta-
bolism has been extensively studied and it reveals 
that tryptophan and associated metabolic products 
play an important role in microbiota–host 
interactions.

Indole derivatives from tryptophan activate the aryl 
hydrocarbon receptor (AHR)
Gut microbiota can metabolize tryptophan to 
multiple indole-containing metabolites, such as 
indole-3-acetic acid (IAA), indole-3-lactic acid 
(ILA), and indole-3-propionic acid (IPA), 
which are important AHR agonists.135,136 For 
example, Lactobacillus reuteri produced ILA can 
down-regulate transcription factor Thpok to 
promote the differentiation of CD4+ T cells 
into CD4+CD8αα+ double-positive intraepithelial 
lymphocytes by activating AHR, which benefits 
to intestinal inflammation.137 Indole-3-aldehyde 
(IAld) from Lactobacillus reuteri can activate 
AHR, which promotes IL-22 production to inhi-
bit mucosal inflammation and resistant fungus 
Candida albicans colonization.138 IAld-induced 
AHR activation also promotes IL-22 secretion 
in pancreatic innate lymphoid cells to protect 
against autoimmune diabetes.139 Likewise, IAA- 
induced AHR activation can attenuate inflamma-
tory responses in macrophages and 
hepatocytes.138 Moreover, bacteria-derived 
indoxyl-3-sulfate, IPA and IAld also can limit 
central nervous system (CNS) inflammation by 
activating AHR in astrocytes.140 A previous 
study revealed that decreased indole derivatives 
from tryptophan caused a low AHR activation 
level which was associated with metabolic 

syndrome, and rescuing AHR activation could 
significantly improve metabolic dysbiosis.141

Other mechanic pathways that indole derivatives 
performed microbiota–host interactions
In addition to AHR activation, tryptophan-sourced 
indole derivatives also can modulate host home-
ostasis by other pathways. For example, IPA can 
activate PXR to promote the gene expression of 
tight junctional protein and downregulate entero-
cyte TNF-α, which decreases intestinal permeability 
and inflammation.142 Another study finds that 
acute treatment with indole promotes the secretion 
of glucagon-like peptide-1 (GLP-1) in colonic 
L cells by modulating the voltage-gated K+ channel- 
and Ca+-dependent action potentials, but continu-
ous exposure to indole reduced GLP-1 secretion by 
blocking NADH dehydrogenase to decrease ATP 
synthesis.143

Tryptophan-derived neurotransmitters
Gut microbiota also can metabolize tryptophan to 
different neurotransmitters, such as tryptamine and 
serotonin.144,145 Tryptamine is a product of trypto-
phan catabolism functioning as a β-arylamine neu-
rotransmitter. Clostridium sporogenes-produced 
tryptamine by decarboxylating tryptophan induces 
ion secretion in intestinal epithelial cells which 
could affect gastrointestinal motility.145 Likewise, 
another study demonstrated that tryptamine could 
activate GPCR serotonin receptor-4 to promote 
fluid secretion and accelerate gut transit.146 

Serotonin is another key neurotransmitter in the 
gut-brain-axis.144 A previous study demonstrated 
that indigenous spore-forming bacteria in gut 
microbiota promoted serotonin biosynthesis in 
colonic enterochromaffin cells, which increased 
the gastrointestinal motility and enhanced platelet 
activation and aggregation.147 The gut microbiota- 
regulated peripheral serotonin synthesis plays 
a mediatory role in host glucose homeostasis.148 

However, how microbiota-derived serotonin affect-
ing neuron system is still largely unclear.

Membrane components of gut microbiota

Multiple gut microbial membrane components can 
deeply influence host metabolism, especially 
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regulating host immune response. Lipopo 
lysaccharides (LPS), a cell wall component of gram- 
negative bacteria, is possibly the most investigated 
potent activator of innate immune signaling, and 
LPS plays an important role in gut microbiota- 
derived inflammatory responses. The TLR4/MD-2 
complex at the cell surface and endosomes is the 
receptor of LPS, which can be activated by LPS and 
trigger the downstream immune responses, such as 
inducing MAP kinases and NF-κB and activating 
p38 and JNK.149,150 LPS-induced host inflamma-
tion is associated with various diseases, such as 
IBD inflammatory bowel diseases (IBD), obesity, 
insulin resistance, and autoimmune and allergic 
diseases.151–153

In addition, capsular polysaccharide A is deeply 
involved in the Bacteroides fragilis-modulated 
immune responses. Polysaccharide A can bind 
with MHC-II and the TLR2 receptor in plasmacy-
toid dendritic cells and then stimulate CD4+ Treg 
cells to secrete anti-inflammatory cytokine IL-10, 
which helps to protect against colitis.154 A previous 
study found that polysaccharide A stimulated the 
suppressive CD4(+)CD45RB(low) effector/mem-
ory T cells by forming polysaccharide A-MHCII 
complex, which induced anti-inflammatory 
responses.155 Sphingolipids are another group of 
bacterial membrane components that play a role 
in the functional interaction between gut micro-
biota and host metabolism. For example, mem-
brane glycosphingolipids from some 
Sphingomonas spp. can activate natural killer 
T (NKT) cells and promote the cytokine release 
which is a benefit to the pathogen clearance during 
infection.156,157 In contrast, α-galactosylceramide 
from B. fragilis can reduce colonic invariant NKT 
(iNKT) cells which attenuates pro-inflammatory 
responses and protect against colitis.158 A recent 
study reveals that Bacteroides-derived sphingoli-
pids regulate the pool of host sphingolipids and is 
correlated with IBD.159

Histamine

Histamine can be synthesized by host cells as well as 
various histamine-secreting bacteria and four differ-
ent receptors can be activated by histamine, includ-
ing H1R, H2R, H3R, and H4R.160 Histamine 
produced by the gut microbiota has 

immunomodulatory activity. For example, in 
human monocytoid cells, Lactobacillus reuteri- 
produced histamine can activate

histamine H2 receptor (H2R) to elevate cAMP 
levels and inhibit the downstream MEK/ERK 
MAPK signaling, which inhibits the TLR-induced 
TNF-α production.161 Histamine-induced H2R 
activation plays a critical role in Lactobacillus reu-
teri-driven suppression of intestinal 
inflammation.162 Another study found microbiota- 
associated histamine as well as spermine reduced 
NLRP6 inflammasome assembly and decreased IL- 
18 secretion to regulate the host immune home-
ostasis and affect the host susceptibility to colitis.163

Lactate

Lactate is a ubiquitous metabolite in the gut that 
can be synthesized by some gut bacteria, especially 
by Lactobacillus species. Microbiota-derived lactate 
accelerates colon epithelial cell turnover in starva-
tion-refed mice by promoting the enterocyte 
hyperproliferation.101 Lactate also has immunomo-
dulatory activity that can inhibit NF-κB 
activation164 and regulate the TLR signal in 
intestines.165 Moreover, lactate can specifically acti-
vate GPR81,166 which can reduce TLR4-dependent 
inflammation.167 A recent study found lactate pro-
duced by Bifidobacterium and Lactobacillus spp. 
promoted the intestinal stem-cell proliferation in 
a GPR81-dependent manner.168 In addition, 
another study indicated that bacteria-derived lac-
tate and pyruvate induced dendrite protrusion in 
CX3CR1+ cells by activating GPR31, which 
enhanced the host resistance to intestinal 
Salmonella infection.169 Lactate can be utilized to 
synthesize butyrate in gut microbiota, which may 
also affect host homeostasis.170

Trimethylamine (TMA) and choline

Choline, phosphatidylcholine, and L-carnitine can 
be metabolized to trimethylamine (TMA) by cho-
line TMA-lyase in some gut microbes, which can be 
further oxidized to trimethylamine-N-oxide 
(TMAO) by host hepatic flavin 
monooxygenase.171 TMAO is known as its 
proatherogenic effect that enhances atherosclerosis 
and increases the risk of cardiovascular 
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diseases.171,172 Microbiota-derived TMAO can 
enhance stimulus-dependent platelet activation by 
promoting Ca+ release which potentiates thrombo-
sis potential.173 High serum levels of TMAO are 
also positively associated with impaired renal func-
tion, liver steatosis and diabetes.174–176 In addition, 
bacteria-conducted choline metabolism can modu-
late host homeostasis by affecting host epigenetic 
programming, that choline consumption by the gut 
microbiota decreases the availability of methyl- 
donor metabolites in host bodies resulting in the 
alteration of global DNA methylation patterns to 
increase anxiety as well as the susceptibility to 
metabolic disease.177

Succinate

Succinate is a common metabolite participating 
in the TCA cycle and it can also function as 
a signaling molecule to mediate microbiota– 
host interactions, especially by affecting patho-
gen infection. For example, the Salmonella enter-
ica serovar Typhimurium, another enteric 
bacterial pathogen, can get a competitive growth 
advantage by utilizing succinate as carbon 
source.178 Disturbing normal gut microbiota 
community by antibiotic and polyethylene glycol 
treatment increases the succinate level in intes-
tines, which can be utilized as an energy source 
by Clostridium difficile and finally promote the 
pathogen colonization.19 In addition, Bacteroides 
thetaiotaomicron-produced succinate can pro-
mote the virulence gene expression in another 
pathogen Enterohemorrhagic Escherichia coli by 
activating the transcriptional regulator Cra.179 

Succinate accumulation has also been associated 
with IBD and obesity.180–183

Others

Extracellular ATP in the small intestinal lumen is 
another metabolic signal performing the interac-
tions between gut microbiota and host. Microbiota- 
derived ATP is sensed by the ATP-gated ionotropic 
P2X7 receptor to limit the secretory IgA response 
in the small intestine by reducing Tfh cell activity, 
which is important to maintain the mucosal eco-
system homeostasis.184 Taurine can enhance the 
NLRP6 inflammasome-induced IL-18 secretion, 

which influences the host immune homeostasis 
and affected the host susceptibility to colitis.163 

Ascorbate, a microbiota-derived metabolite asso-
ciated with Crohn’s disease, can selectively inhibit 
activated human CD4+ effector T cells by suppres-
sing their energy metabolism and inducing 
apoptosis.185

Conclusions

In conclusion, the effects of xenobiotics on the gut 
microbiota are extensive and profound. However, 
our understanding of how those effects contribute 
to xenobiotic-induced toxic effects in the host is 
still very limited. The key needs are to precisely 
assess the xenobiotic-induced functional changes 
in gut microbiota and decipher which specific 
functional interactions/pathways between micro-
biota and host are altered by xenobiotics, which 
allow the following health effect evaluation. 
Currently, many mechanistic pathways of gut 
microbiota–host interactions have been found by 
previous studies, and more are expected to be 
discovered in the coming years. Linking those 
mechanistic pathways with xenobiotic exposure 
not only can elucidate the specific effects of xeno-
biotics on gut microbiota and help us better eval-
uate the toxicity and health effects of xenobiotics, 
but also can provide valuable targets for the devel-
opment of microbiota-based new intervention 
approaches and therapies.
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