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Abstract

High dimensionality data have become common in neuroimaging fields, especially

group-level functional magnetic resonance imaging (fMRI) datasets. fMRI connectivity

analysis is a widely used, powerful technique for studying functional brain networks

to probe underlying mechanisms of brain function and neuropsychological disorders.

However, data-driven technique like independent components analysis (ICA), can

yield unstable and inconsistent results, confounding the true effects of interest and

hindering the understanding of brain functionality and connectivity. A key contribut-

ing factor to this instability is the information loss that occurs during fMRI data reduc-

tion. Data reduction of high dimensionality fMRI data in the temporal domain to

identify the important information within group datasets is necessary for such ana-

lyses and is crucial to ensure the accuracy and stability of the outputs. In this study,

we describe an fMRI data reduction strategy based on an adapted neighborhood pre-

serving embedding (NPE) algorithm. Both simulated and real data results indicate that,

compared with the widely used data reduction method, principal component analysis,

the NPE-based data reduction method (a) shows superior performance on efficient

data reduction, while enhancing group-level information, (b) develops a unique strata-

gem for selecting components based on an adjacency graph of eigenvectors,

(c) generates more reliable and reproducible brain networks under different model

orders when the outputs of NPE are used for ICA, (d) is more sensitive to revealing
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task-evoked activation for task fMRI, and (e) is extremely attractive and powerful for

the increasingly popular fast fMRI and very large datasets.
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1 | INTRODUCTION

Functional magnetic resonance imaging (fMRI) data are one of the

most widely used neuroimaging modalities for probing underlying

neurobiological mechanisms. Functional connectivity analyses of fMRI

data allow researchers to noninvasively estimate patterns of inter-

regional neural interactions and are consistently observed at rest and

correspond with patterns of task-evoked activation and functional

connectivity (Bijsterbosch et al., 2020; Lurie et al., 2020). FMRI data,

especially group-level fMRI data, have the characteristic of high

dimensionality, due to the massive datasets with tens to hundreds of

thousands of voxels, hundreds to thousands of timepoints in a single

brain, and ever-growing numbers of subjects (Bijsterbosch

et al., 2020; Vince D Calhoun, Silva, Adali, & Rachakonda, 2015;

Rachakonda, Silva, Liu, & Calhoun, 2016; Smith, Hyvärinen,

Varoquaux, Miller, & Beckmann, 2014).Thus, for brain network ana-

lyses, the dimensionality (timepoints � subjects) is far larger than the

presumed number of true brain connectivity networks in fMRI data.

To analyze the fMRI signals efficiently, dimensionality reduction

methods are necessary to reduce group datasets into a reasonable

number.

Principal component analysis (PCA), a generic method for reduc-

ing the dimensionality of a high-dimensional dataset while preserving

as much shared variance (i.e., statistical information) as possible, has

been widely used to extract the dominant constituents from fMRI

datasets (Jollife & Cadima, 2016; Mannfolk, Wirestam, Nilsson,

Ståhlberg, & Olsrud, 2010; Rachakonda et al., 2016; Smith

et al., 2014). By successively maximizing the variance of variables in

the data after transformation, the most prominent orthogonal direc-

tions of the generated variation (eigenvectors) in a high-dimensional

space are determined, and the amount of variance in each direction

(eigenvalues) are sorted from largest to smallest. Retaining the dimen-

sions with the largest eigenvalues for further analysis and removing

dimensions with smaller eigenvalues for dimensionality reduction is

the typical method applied in PCA reduction. The motivation for

choosing components with dominant variances of PCA results, is

based on the assumption that principal components with the highest

variance are most likely to be informative signals (e.g., brain networks),

while noise components will have a small variance (Erhardt

et al., 2011; McKeown, Hansen, & Sejnowsk, 2003).

The drawbacks of discarding small variance eigenvectors in PCA

reduction are well-known but not well-handled. PCA is so efficient

and convenient in reducing the dimension burden that the potential

loss of meaningful brain networks with small variances under the

orthogonal constraint is relegated to second place. Even so, the

number of dimensions after reduction is still higher than the number

of dimensions expected after further analysis, for example, indepen-

dent component analysis [ICA] or sparse dictionary learning. Thus,

model order estimation methods (C. F. Beckmann & Smith, 2004;

Y. O. Li, Adali, & Calhoun, 2007) which have been developed to assist

in selecting a proper number, are often found to be unstable and

dependent on a number of factors (e.g., field strength, number of time

points, number of subjects, and data quality) (Abou-Elseoud

et al., 2010; Ding & Lee, 2013; Ray et al., 2013). Meanwhile, many

information criteria, for example, Akaike's information criterion

(Akaike, 1998), Kullback information criterion (Cavanaugh, 1999), and

the minimum description length criterion (V. D. Calhoun, Adali,

Pearlson, & Pekar, 2001; Rissanen, 1978) applied for model order esti-

mation, are highly reliant on variance to choose a suitable number to

select components from dimensionality reduction results. So far, there

is no robust and stable model order estimation method that can be a

solution to reduce the dimensionality for all fMRI datasets; moreover,

results from different estimation methods vary wildly.

Meanwhile, many studies have shown that the outputs of ICA

with the two popular ICA toolboxes—GIFT (Egolf, Kiehl, & Calhoun, )

and MELODIC (Smith et al., 2004)—based on PCA dimensionality

reduction, are too conservative in their dimensionality estimation for

the ideal choice for fMRI data analysis based on the above criteria

(Y. O. Li et al., 2007; Mannfolk et al., 2010; Ray et al., 2013; Suárez,

Markello, Betzel, & Misic, 2020). Furthermore, some studies have

found that higher order decompositions (e.g., orders over 70) revealed

finer subnetworks compared to low-order decompositions (e.g., order

from 20 to 70) (Abou-Elseoud et al., 2010; Kiviniemi et al., 2009; Ray

et al., 2013). This suggests that there is further useful information car-

ried in those “redundant” eigenvectors with small variance (Ystad,

Eichele, Lundervold, & Lundervold, 2010). However, blindly selecting

higher model order brings the problem of overestimation and corrup-

tion for ICA decomposition (Särelä & Vigário, 2004), even though it

can compensate for the information loss during dimensionality reduc-

tion. Ideally, the dimensionality reduction methods should solve the

dimension overwhelming problem while simultaneously retaining suf-

ficient information in a reasonable model order.

In the present study, we propose a novel and more effective

dimensionality reduction method based on neighborhood preserving

embedding (He, Deng, Yan, & Zhang, 2005) to solve the issues men-

tioned above. NPE is a manifold learning method which aims to pre-

serve the local neighborhood structure of the data once projected

onto the manifold, which could be patterns (e.g., brain networks in

fMRI data) or between-group differences that exist among datasets

(Ball, Adamson, Beare, & Seal, 2017). It has been widely applied in
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machine learning fields such as face recognition, and has proved to be

effective in projecting the high-dimensional setting into the low-

dimensional subspace (Khodor, Kashana, Khoder, & Younes, 2017;

2012; Wu & Zhao, 2011). By leveraging such characteristics, we pro-

pose an adapted NPE method, which can be helpful in preserving the

brain networks that exist in fMRI data when reducing dimensions.

First, we applied singular value decomposition (SVD) on each subject

to unfold the original fMRI dataset into individual subspaces to obtain

subject-specific eigenvectors. Second, we constructed neighborhoods

for each eigenvector to enhancement subject-sharing information for

each subject, by calculating the correlation between every single

eigenvector and those from other individual subspaces, and only

retaining eigenvectors which lie within well-compacted neighbor-

hoods. Finally, generalized least squares (GLS) is applied to project

information of components inside one neighborhood into the eigen-

vector from individual space, and the generated approximation are

the dimensionality reduction results.

Our method takes advantage of the neighborhood construction

procedure in NPE and has three novel traits compared to PCA and

other model order estimation methods. The first trait is that our

method does not rely on the variance of components, and instead, the

number of surviving neighborhoods becomes the criterion for reduc-

ing dimensions. As a result, components with small variance can be

preserved so long as they are used to help define a neighborhood.

The second trait is the strengthening effect for group information like

group-wise resting-state functional connectivity or task-evoked brain

activation. Since neighborhoods consist of components with good

connections from different subjects, the projection accomplished with

GLS helps to collect information shared in neighborhoods. The third

trait is that NPE is more efficient for fMRI data reduction, which can

maintain more useful information with fewer eigenvectors. The

advantages and improvements of NPE, that is, strengthening shared

common information in lower SNR data, and compacting information

in a more effective way, are evaluated and presented using both simu-

lated and Human Connectome Project (HCP) datasets.

2 | MATERIALS AND METHODS

2.1 | Adapted NPE algorithm

In contrast to PCA, which aims to preserve the global Euclidean struc-

ture of a dataset, NPE aims to preserve the local manifold structure. It

constructs an adjacency graph to compute the weights denoting the

relationship between samples, and is widely used in machine learning

fields. However, fMRI data are quite different from the typical

machine learning dataset. Taking the classic face recognition applica-

tion as an example; each face image is a single sample, and a massive

number of samples comprise a huge face space with the same basic

structure, even though each sample has its own type of specific sub-

manifold such as angry, happy, or sad expressions. The number of face

image samples far outnumbers the possible types of faces, and each

sample has its unique type in face space. However, things are quite

different when considering fMRI images, which usually are 4D or 3D

maps. It is obvious that every brain image shares the same major man-

ifold, as is the case with face images. However, each fMRI image is

originally a mixture of several different brain network sources, which

can be extracted into different components under various model

assumptions (i.e., independent components [ICs] for a linear mixing

model), and each component shares the same submanifold, for exam-

ple, vision region, motor region, and so on. Thus, neighbor construc-

tion will be valid and exceptional for fMRI dataset analysis.

Based on the unique characteristics of fMRI datasets, an adapted

NPE stratagem was proposed to reduce fMRI data dimensionality. Con-

sidering that fMRI data are a mixture of several source components,

SVD is performed first, primarily to transform individual data into an

individual subspace of temporal and spatial eigenvectors that unfolds

and separates the mixed information. This procedure brings the effect

of orthogonal constraint into individual datasets (Zhi & Ruan, 2007).

The whole procedure of this method is described as Figure 1.

2.1.1 | Stage 1: Adjacency graph construction

Taking the brain functional networks as the sources, the noise-free

model will be

X¼AS, ð1Þ

where S�ℝR�P contains the source components, A�ℝT�R is the

mixing coefficients matrix (temporal course for each component), and

X�ℝT�P contains the observations. For the kth subject

X kð Þ ¼ x1, � � �xT½ �, k¼1� � �N, in ℝT�P, where N is the number of subjects,

T is the number of time points, and P is the number of voxels. The

number of time points T is usually significantly larger than the number

of sources R, which leaves the space the remove redundant dimen-

sions on temporal domain. Then, SVD decomposition transforms the

X into subspace:

X¼VTΛU, ð2Þ

where U�ℝT�P and V�ℝT�T are the set of spatial and temporal

eigenvectors, and Λ is the diagonal matrix holding eigenvalues. The

adjacency graph for subject k, g kð Þ �ℝT�NT, is constructed from the

correlations between spatial eigenvectors from the kth subject and

those from the remaining subjects. Finally, for all subjects, a total of

T�N nodes (number of total spatial eigenvectors) and the connec-

tions, or edges, are generated and defined as the correlation coeffi-

cients of two spatial eigenvectors—higher correlation between

eigenvectors means the eigenvectors are more adjacent.

2.1.2 | Stage 2: Neighborhood construction

Normally, K-nearest neighbors and ε neighborhoods are the two com-

mon ways to build neighborhoods for traditional NPE. With certain
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sorted distance metrics of edges, the former only recruits the top K

edges to form a neighborhood, while the latter only rules out edges

undermine the ε threshold. However, in the special case of fMRI data,

the orthogonal constraint on SVD results naturally divides each adja-

cency graph g kð Þ into T neighborhoods (each eigenvector as a node

defined a neighborhood), which including T nodes and their

corresponding T� (N-1) edges. In such case, we adopt and adapt both

two stratagems to automatically reduce the dimensions from T to suit-

able number.

The adjacency graph denotes all potential neighborhoods of sub-

ject k with the relationship between components of subjects k and

other subjects. Then good neighborhoods will be compact and have

strong connections, which means only highly similar spatial eigenvec-

tors can form solid edges. Realistically, the SVD cannot perfectly

extract brain networks from the observations, and the similarity of

eigenvectors can be weakened and affected by the quality of the orig-

inal datasets. Hence, several linkage principles are set up to assess the

quality of neighborhoods and make sure the neighborhoods are

F IGURE 1 Three stages are the graphical demonstration of adapted neighborhood preserving embedding (NPE) for functional magnetic
resonance imaging (fMRI). Stage 1: Singular value decomposition (SVD) is applied to each subject to generate subject-specific spatial
eigenvectors, and the correlation coefficients of all spatial eigenvectors are used to form the adjacency graph. “Hotter” colors of dots or strips
denote stronger connections. The adjacency graph of all subjects is named as G and each subject is consisted of T nodes and T*(N-1) connections.
The values in adjacency graph represent connections of two eigenvectors from different subjects. In single adjacency graph, the green strip
represents a spatial eigenvector from subject k and the connected eigenvectors of this node were sorted from highest to lowest based on
correlation. Stage 2: The illustration of a neighborhood. The hotter box and dots are qualified components that finally form a surviving
neighborhood with the green dot, while darker dots are disqualified components with weak connections. Stage 3: The linear approximation is
employed to compute the weight by using well-constructed neighbors with generalized least squares (GLS). After computing all the weights of

survived neighbors of subject k, they were used to project back the data reduction results
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suitably compact. First, we thresholded the edges with ε>0:01 to

define solid effective edges; edges below the threshold are treated as

abundant weak connections (denoted as a black dot or eigenvector).

Second, after that we only retained neighborhoods with solid edges

numbering more than half group size (N/2, number of components

within circle) to constrain the group level common trait.

2.1.3 | Stage 3: Linear approximation and
projection

Once the neighborhoods are well-established, for example, we target

the eigenvector ui of any surviving neighbors in g kð Þ and employ GLS

to solve the minimization problem for computing the weights W kð Þ:

min
X

i

ui�
X

j

Wijuj

�����

�����: ð3Þ

From the above, note that ui is from the kth subject, while uj is

the set of eigenvectors from the rest of the subjects that are within

the same neighborhood as ui. Namely, the Wij is enforced to be 0 if

no connection or edge is established or uj does not belong to the

neighborhood. Finally, the Y kð Þ ¼W kð ÞX kð Þ denotes the projection of

the observation for subject k. Such kind of linear approximation can

bring adequate group-level information while preserving the local

structure inside the kth subject. The reconstructed results Y kð Þ is also

the dimensionality reduction results of subject k, such that the

corresponding eigenvalue and mixing coefficients of any

reconstructed spatial eigenvector can be referred from Λ and V in

Equation (2).

2.2 | Simulated fMRI data

Simulated 4D fMRI data were generated by using 6 resting-state brain

networks (Damoiseaux et al., 2006) and 6 ground truth temporal

courses with 250 time points. A total of six subjects' fMRI data were

generated; each individual fMRI data set contained five of the six

paired spatial maps and temporal courses. One unique pair of spatial

map and corresponding temporal course was missing for each subject,

so that we could test the ability of the proposed method to preserve

individual space information without introducing nonexisting informa-

tion into each individual subject. Meanwhile, expected variation in the

fMRI data from each subject was simulated by including spatial and

temporal variability to each simulated dataset. The spatial variability

was achieved by slightly rotating the same brain network for each

subject with a maximum 3� rotation. The temporal variability was

introduced by using subject-specific temporal course derived from

real data for six subjects to simulate the resting-state fMRI signals as

shown Figure 2. By altering temporal courses with a time-lag block

design, the task fMRI simulation data were also generated by testing

the performance of proposed method (Supplementary Figure 1).

The SNR of the fMRI data has a large effect when applying PCA

for dimensionality reduction, because the interesting, ground truth

information can be drowned out by noise and distributed into a large

F IGURE 2 The spatial maps
and temporal courses used as
ground truth. (a) Six source maps
are created from the resting-state
networks. The original spatial
maps cover the whole brain
(in the figure they are
thresholded for clarity, as there is
some overlap between these
source maps). (b) The temporal
courses correlation of total
36 temporal courses for six
ground truth networks of six
subjects each. (c) The temporal
courses are generated from real
functional magnetic resonance
imaging (fMRI) data and designed
with one unique spatial–temporal
pair omitted for each subject as
zeros for each subject
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range of dimensions in PCA results, especially when SNR is low.

Therefore, the SNR is defined as the ratio of the SD of the source sig-

nal to the SD of the Gaussian noise. Gaussian noise was added for

each subject with amplitudes appropriate to generate the SNR range

from 1 to 4 with a step of 0.5. Each subject's fMRI data are originally

formed as 4D maps (volume � timepoint, 61 � 73 � 61 � 250). A

whole brain mask was applied, and the data were indexed into a two-

dimensional matrix (voxel � timepoint, 67,541 � 250) as the input to

the dimensionality reduction.

2.3 | Real fMRI data

2.3.1 | Resting-state fMRI data

Resting-state data from a total of 100 healthy subjects (70 females and

30 males, age: 30.2 ± 2.6) from two phase encode directions (right-to-

left and left-to-right) and two sessions (Rest 1 and Rest 2) were

selected from the HCP 3T data repositories (HCP: www.

humanconnectome.org). All had undergone the “minimal

preprocessing” procedure (Glasser et al., 2013), including gradient

unwarping, motion correction, fieldmap-based EPI distortion correction,

brain-boundary-based registration of EPI to structural T1-weighted

scan, nonlinear registration into MNI152 space, and grand-mean inten-

sity normalization. For details of the data acquisition parameters, see

Smith et al. (2013). Meanwhile, the “clean” data after ICA_FIX is used

to reduce the effects of motion. To minimize the effects of data acqui-

sition and preprocessing, the only additional preprocessing performed

by us was using a kernel of FWHM = 6 voxel to smooth data with

FMRIB Software Library, FSL (Smith et al., 2004, https://fsl.fmrib.ox.ac.

uk/fsl/fslwiki/). After preprocessing, we averaged the data with two

phase encode directions to avoid distortion and cut out the last 1,000

volumes from a total timepoints of 1,200. Finally, brain voxels were

extracted from subjects' original 4D (volume � timepoint;

91 � 109 � 91 � 1,000) data files and reformatted into two-

dimensional matrices (voxel � timepoint; 228,483 � 1,000) as the

input to the dimensionality reduction. The SNR of fMRI vivo data is

usually evaluated with the metric tSNR (temporal SNR). We calculated

the tSNR in a given voxel of the resting-state vivo data by dividing the

mean voxel value across time points with its temporal SD. The whole

brain mean tSNR is 97.2 ± 8.1 for 100 subjects.

2.3.2 | Task fMRI data

The language processing task fMRI data were chosen from the HCP

3 T datasets of the same subjects as used for the resting-state fMRI

data. The task consists of two runs that each interleave four blocks of

a story task and four blocks of a math task. Only one phase encode

direction, from left to right, is used from two runs because it is not

crucial for the final results and conclusion. The more detailed descrip-

tion and motivation for the task design are in Barch et al. (2013) and

Binder et al. (2011). The total length of this task design is 316 volumes.

The lengths of the blocks vary (average of approximately 30 s), but

the task was designed so that the math task blocks match the length

of the story task blocks, with some additional math trials at the end of

the task to complete the 3.8 min run as needed. The whole brain

mean tSNR is 125.2 ± 16.8 for 100 task fMRI datasets.

2.4 | Comparison stratagem and assessment
methods

2.4.1 | Simulated data

To fully assess the performance of the proposed method, two differ-

ent PCA strategies were utilized to demonstrate the pitfalls of dimen-

sionality reduction when dealing with low SNR datasets. The first was

to match the dimensions of the PCA with the surviving NPE neighbor-

hoods' number, called as matched PCA (mPCA), while the second was

to select dimensions for the PCA which were not matched, but deter-

mined by retaining sufficient components to explain a given propor-

tion of the signal variance in each data set, called variance PCA

(varPCA). After reducing dimensions, the individual ICA (fast ICA used,

Hyvärinen, 1999), group ICA (V. D. Calhoun et al., 2001), and dual

regression (C. Beckmann, Mackay, Filippini, & Smith, 2009; Nickerson,

Smith, Öngür, & Beckmann, 2017) were used to evaluate the dimen-

sionality reduction performance of the NPE, mPCA, and varPCA

methods.

For dimensionality reduction of group fMRI data, in addition to

varPCA and mPCA, full-concatenated PCA (full-PCA), which directly

concatenates the original dataset along the temporal dimension and

applies a single PCA for dimensionality reduction, was also treated as

another comparison of group ICA.

The details of how the comparisons were conducted for simula-

tion data are listed below.

1. Individual ICA: Dimensionality reduction + ICA was implemented.

Three dimensionality reduction methods, adapted NPE, mPCA, and

varPCA were performed prior to ICA decomposition.

2. Group ICA: The classic two-step PCA/adapted NPE + ICA was

implemented. In addition to the three methods inherited from indi-

vidual ICA above, the performance of full-PCA, which simply con-

ducts PCA on the temporally concatenated original datasets

before the group ICA was also evaluated.

3. Dual regression: After getting the group-wise result of spatial maps

from group ICA, we applied dual regression to get the temporal

courses and spatial maps in individual subjects. However, only

adapted NPE and mPCA are employed with dual regression for

clarity and simplicity, since the outcomes of varPCA and full-PCA

can be predicted based on the correlation of group-level recovery

on spatial maps.

The comparison of individual ICA results mainly focused on the recov-

ery of the ground truth networks, which were separately extracted

under all levels of SNR. We calculated the correlation coefficients
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between the ICA decomposition results and the ground truth to eval-

uate the sensitivity and specificity of the derived spatial–temporal

components. We also used the average of the correlation coefficients

of all the ground truth networks for each SNR to determine how per-

formance changed with increasing SNR. To clarify the advantage of

the proposed method, both the ground truth subject-specific spatial

maps and temporal courses, as well as the group-level overlapped spa-

tial maps and temporal courses, were used to evaluate the perfor-

mance of different dimensionality reduction methods. The former was

targeted to the sensitivity and specificity of individual datasets, while

the latter was more focused on group effects. For all levels of SNR,

the between methods differences were tested with paired two-

sample t test and marked for significant differences (*p < .05,

**p < .01). For group ICA, a similar comparison was conducted by cal-

culating correlation coefficients between recovered spatial–temporal

components and ground truth to quantify the performance of differ-

ent methods. Dual regression conducts a temporal linear model fit on

group maps (the first step), and the resulting temporal courses are

used to estimate subject-specific spatial maps (the second step). Dual

regression was conducted based on the results of group ICA to calcu-

late subject-specific spatial–temporal pairs.

2.4.2 | Resting-state fMRI data

Temporal concatenated group ICA was used to do comparison

between PCA and proposed methods. After reducing dimension,

results under different model orders from low (50) to high (200) were

fed into ICA decomposition. The final output IC, spatial maps were z-

score transformed and thresholded with Zj j>3. The between ICs' cor-

relation coefficients were applied with fisher-z transformation.

However, the lack of a “gold standard” for real data led us to seek

these important metrics for assessment.

1. Efficiency of dimensionality reduction. Based on the two-step PCA

procedure, we calculated the explained variance ratio and dimen-

sion number of reduction results to assess the efficiency of two

methods.

2. Reproducibility. One model order was chosen as the reference

model order, and the decomposition results of other model orders

were compared with the reference one to identify those reproduc-

ible components. The reproducibility were evaluated by comparing

the number of highly correlated (correlation coefficients rj j> :7 or

fisher-z value Zj j>0:86) ICs under different model orders (Groves

et al., 2012). Hence, the focus of reproducibility is to justify the

reliability of one specific model order by repeating ICA in another

model order.

3. Test–retest reliability. To demonstrate the unique advantage of

possessing group common information of NPE methods, the

test–retest assessment was performed by comparing highly

reproduced ICs from two different rest runs (Rest 1 scanned in

Day 1 and Rest 2 scanned in Day 2) under several typical model

orders.

4. Consistency. Consistency analysis was performed based on the ini-

tial idea of evaluating the persistence of ICs across a certain model

order range. Consistent ICs under specific (reference) model order

were defined as those which can be repeatably extracted over a

range of model orders (Zhao et al., 2020). Unlike the reproducibil-

ity, which favors model order, the consistency focus on persistence

of ICs and aims to assess the reliability of consistent components.

2.4.3 | Task fMRI data

Reconstructed 4D task fMRI data for each subject were generated

after NPE-based data reduction to demonstrate the group common

information collection ability of NPE, especially in low SNR condition.

The original temporal course of the language processing task contains

316 volumes and consists of four blocks of two types of task stimuli

(story and math). Hence, we segment it into half and quarter length,

by retaining only the first 158 and 79 volumes, respectively, which

properly includes one half and one quarter of the four blocks (see the

HRF-convolved time course in Figure 9a). The smaller blocks here rep-

resent lower SNR, because it will be more difficult to produce robust

and strong activation for participant. Then the three temporal course

lengths (including full length) were separately analyzed with general

linear model (GLM) on either the original data, or the reconstructed

individual data after NPE.

The GLM was implemented with FSL by using the FEAT script

provided by the HCP to estimate the first-level effects of task stimuli

(Barch et al., 2013). The group-level voxel-wise comparison (one-

sample t test) were conducted with DPABI (Chao-Gan & Yu-

Feng, 2010) and visualized with FSLeyes (https://fsl.fmrib.ox.ac.uk/

fsl/fslwiki/FSLeyes). All group-level activation maps are T maps with-

out correction and threshold with Tj j>5 for shown.

3 | RESULTS

3.1 | Simulated data—Dimensionality reduction

Figure 3 shows the performance of dimensionality reduction of the

NPE, mPCA, and varPCA methods. The X-axis shows the eigenvectors

from the SVD for the NPE, mPCA, and varPCA methods. The eigen-

vectors are sorted, with eigenvalues from highest to lowest. The Y-

axis shows the sum of the correlation coefficients of each spatial

eigenvector (total 250) with all the ground truth networks for

SNR = 1. Different color bars denote the correlation value of each

eigenvector with the different ground truth networks; each subject

had five dominant colors, which was consistent with the design of

one ground truth network omitted in each subject. For each eigenvec-

tor, the heights of all five bars were summed to represent the level of

information contained in the eigenvector related to ground truth net-

works, that is, how “informative” the eigenvector was. It is clear that

high eigenvalues do not necessarily mean the network was highly

informative. Many dominant eigenvectors with higher eigenvalues

ZHAO ET AL. 1567

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes


were not informative; conversely, there were many informative eigen-

vectors with very small eigenvalues.

The dimensionality reduction performance of the three methods

for resting fMRI simulation data are shown in Figure 3. Under the low-

est SNR level (Figure 3 top left), varPCA was able to collect most of

the informative components with 90% of explained variance (the

black solid line, numbered as 161, 151, 155, 150, 152, 123), but at the

expense of including many noninteresting eigenvectors (which means

low dimension reduction efficiency). With our proposed NPE method,

the surviving spatial eigenvectors within qualified neighborhoods

were indicated with a pink background, which identified informative

eigenvectors in subject-specific level with no regard to the variance of

eigenvectors. mPCA only retained a small number of informative com-

ponents to achieve the same dimension reduction efficiency as the

NPE method (denoted by the black dotted line, numbered as 36, 53,

40, 43, 50, and 65). Noticeably, the NPE method can select almost all

the informative components, even those with smaller eigenvalues,

while keeping the highest dimension reduction efficiency. Further-

more, to clarify the performance of dimensionality reduction under

different SNR levels of all three methods, one simulated dataset (sub-

ject #3) was chosen as an example to demonstrate this influence

(Figure 3 top right). When the SNR was higher (SNR ≥3.5), NPE shows

slightly higher dimensionality reduction efficiency than mPCA by

selecting mainly useful information with a smaller component number

(the black dotted line, numbered as 45, 50, 57, 46, 30, 16, and 8). The

performance of NPE and mPCA diverge when SNR was lower (SNR

≤3.0); NPE demonstrates more effective dimension reduction than

mPCA by retaining more useful information with the same number of

components. The varPCA method shows lower dimension reduction

efficiency that maintains the same proportion explained variance

(90%, the black solid line, 156, 153, 149, 144, 140, 133, and 126) for

all the different SNR levels. Thus, the NPE-based dimension reduction

method shows better performance over the full range of SNR levels

considered, and always target on group-sharing common information

even under lower SNR. NPE demonstrated to be the most effective

dimension reduction method as it can detect most informative spatial

eigenvectors with the lowest dimension number.

The advantage of NPE method on simulated task fMRI data are

more obvious because the information distributions are more local

concentrated. In this case, around 110 components (black solid line)

with 90% of explained variance for varPCA, will be able to collect all

ground truth information. NPE reduces the dimension number to

27, 43, 30, 24, 29, and 36 from subject 1 to 6 (Figure 3 bottom left),

and 30, 44, 40, 31, 25, 14, and 12 from SNR 1 to 4 (Figure 3 bottom

right) to collect all ground truth information. Noticeably, the linkage

between variance explained and efficiency at collecting ground truth

F IGURE 3 The comparison of dimension selection. The bar height represents the sum of correlation coefficients between ground truth
networks and spatial eigenvectors; the different colors denote the different networks. It is noticeable upon examination that each subject only
has five dominant colors, because every subject was designed with one ground truth network absent in the simulation. The black dashed line is
the cutoff of dimensionality reduction for matched principal component analysis (PCA). The black solid line is the cutoff of dimensionality
reduction for variance PCA with the same variance ratio 90% (resting-state functional magnetic resonance imaging [fMRI] simulation) or 90%
(task fMRI simulation) in different SNRs. The pink background indicates the spatial eigenvectors located by neighborhood preserving embedding
(NPE) with surviving neighborhoods
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components no longer holds, and eigenvectors with large variance

may not be helpful in further ICA decomposition, but only cause

higher model order burden. That can be one reason to explain the dis-

tinct performance of different methods, because NPE and mPCA have

the same model order, but mPCA retains less important information,

while varPCA exceeds the model order compared to NPE which leads

to corruption on ICA decomposition in low SNR (see in Sections 3.2

and 3.3). For both individual and group ICA, NPE has a better dimen-

sion reduction efficacy in proportion of explained variance versus and

retained eigenvector numbers (Supplementary Tables 1–4).

3.2 | Simulated data—Individual ICA

First, the performance of detecting group common information was

evaluated for the three methods by calculating the correlation of indi-

vidual ICA decomposition results with the overlapped spatial–

temporal ground truth networks. As shown in Figure 4a, the boxplot

of three methods—mPCA (green), varPCA (blue), and adapted NPE

(red) denotes the mean correlation coefficients of all the ground truth

networks and paired ICA components for six subjects under SNR

levels from 1 to 4. The right panel heat map represents the correlation

coefficients of ICA components and ground truth networks for each

single subject. NPE method shows better performance on recovering

the ground truth networks at low SNR levels compared with the other

two methods, while not inducing nonexistent network (represented as

repeated diagonal elements). Overall, the adapted NPE-based

dimensionality reduction methods outperformed mPCA and varPCA

in recovering group-shared spatial maps of all the ground truth net-

works under all SNR levels. The same results were also found from

the simulated task fMRI data as shown in Supplementary Figure 2.

We then evaluated the performance of detecting individual-

specific information for three methods by calculating the correlation

between individual ICA decomposition results and subject-specific

spatial–temporal ground truths. As shown in Figure 4b, compared

with mPCA, NPE shows significantly better performance in recovering

the subject-specific spatial maps (in lower SNR, SNR ≤2.0) and tempo-

ral courses (for all SNR levels). Compared with varPCA, NPE is more

powerful in recovering subject-specific spatial maps and temporal

courses under lower SNRs (SNR ≤2.0). This is expected, as both over-

estimated model order (varPCA) and mass information loss (mPCA)

can corrupt the recovery of spatial maps and temporal courses. Of

note, there was a cross-over, in that varPCA outperformed NPE

slightly at the highest SNR (4.0). This indicates that NPE slightly sacri-

fices some subject-specific information as a tradeoff for strengthening

the group common information.

3.3 | Simulated data—Group ICA and dual
regression

Since the group ICA is already focused on group information, we only

performed comparison based on the overlapped ground truth networks

for the group ICA decomposition results. The correlation coefficients of

F IGURE 4 The comparison
of individual independent
components analysis (ICA) results
with ground truth networks with
resting-state functional magnetic
resonance imaging (fMRI) data.
Two types of ground truth,
overlapped (a) and subject-varied
(b), were evaluated. Coefficients
of spatial maps and temporal
courses were separately assessed
under SNR levels from 1 to
4 with a step of 0.5. The boxplot
denoted the mean correlation of
all ground truths for six subjects.
The heat map represents detailed
recovery performance for each
single subject and ground truths.
*p < .05, **p < .01
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all the ground truth networks and corresponding ICA components for

all SNRs are shown in Figure 5a. The proposed NPE method had an

overall better performance for group ICA results, and a significant dif-

ference were noticed under low SNR levels. Interestingly, the full-PCA

clearly outperforms the other methods in recovering the temporal

courses, because of no information loss. The dual regression used to

recover subject-specific ground truth networks are shown in Figure 5b;

the proposed NPE (red) had an improvement in estimating

subject-specific spatial–temporal components compared to mPCA

(green) especially under low SNRs (SNR ≤2.0), which was coherent with

the performance on group-level independent components (ICs). The

similar results were also found in resting-state fMRI data analysis

(Supplementary Figure 3). We only showed the comparison results

between proposed NPE and mPCA method, because the performances

of dual regression are heavily relied on the group ICA result.

3.4 | Real fMRI data—Resting-state fMRI

3.4.1 | Efficiency of dimensionality reduction

After a two-step dimension reduction procedure, proposed NPE

method shown a better efficiency in compacting information as

shown in Figure 6. PCA-based methods must employ much higher

dimension numbers to achieve the same level of information ratio. For

example, NPE-based method shows higher explained variance radio

(around 90%), while PCA-based method only achieved 73% explained

variance radio with the same model order of 200. Therefore, the NPE-

based method can be helpful in dimension selection during first PCA

step by targeting on those common shared eigenvectors and then

benefit the second PCA with a higher compact effect.

3.4.2 | Reproducibility

Between model order reproducibility comparisons were implemented

with the principle of proximity for four different model orders,

50, 100, 150, and 200. The quantitative metric employed was similar-

ity of ICs, and the correlation coefficients were computed as a func-

tion of model order. In Figure 7a, the left panel represents the three

paired comparison (150 vs. 200, 100 vs. 150, and 50 vs. 100, results

from Rest 1) results with line plot for two methods (solid line for NPE

and dotted line for PCA). NPE slightly outperformed PCA for the first

two pairs and showed a superior performance under 150 versus

200 results, with more highly correlated ICs. To further explore the

difference, we mapped the coefficient into a spatial distribution with

F IGURE 5 The comparison of group independent components analysis (ICA) results and dual regression results of task functional magnetic
resonance imaging (fMRI) simulation. (a) The comparison of group ICA results with the overlapped ground truth networks between matched principal
component analysis (mPCA) (green), full-PCA (black), varPCA (blue), and neighborhood preserving embedding (NPE) (red). The boxplot shows the
correlation coefficients between group-level ICs and six paired spatial–temporal ground truths under SNR levels from 1 to 4. (b) The comparison of
dual regression results with the subject-varied ground truths between mPCA (green) and NPE (red). The boxplot denoted the mean correlation
coefficients of all the regressed subject-specific set of spatial–temporal components for six subjects SNR levels from 1 to 4. *p < .05, **p < .01
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corresponding ICs identified as reproducible ICs. Most areas are com-

mon regions and black circles are used to denote major differences,

which show that NPE detects more cortical networks in prefrontal

areas. As for a more detailed spatial distribution comparison under

other pairs, model orders 100 versus 150, and 50 versus 100, as well

as the results from another run, Rest 2, are listed in supplementary

materials (Supplementary Figure 5).

3.4.3 | Test–retest reliability

The same four typical model orders, 50, 100, 150, and 200 are used

to evaluate the test–retest reliability. For each model order level, NPE

shows better performance in producing more reliable ICs between

two isolated runs for the same datasets (Figure 7b left). The results

for model order 100 were chosen to show the spatial distributions of

those reproducible ICs generated by NPE and PCA methods

(Figure 7b right). It shows that more prefrontal and occipital areas

were identified using NPE. The complete comparisons of other model

F IGURE 6 The comparison of dimension reduction number and
corresponding explained variance ratio. Both two run, Rest 1 (red) and
Rest 2 (blue) are assessed for principal component analysis (PCA)-
based (dotted line) and neighborhood preserving embedding (NPE)-

based method (solid line). The black line represents the number and
90% ratio level

F IGURE 7 The reproducibility and test–retest ability comparison between twomethods. (a) The reproducibility is assessed between twomodel
orders (yellow for 150 vs. 200, green for 100 vs. 150, and black for 50 vs. 100) in quantitative correlation. (b) The test–retest ability is assessed by
comparing similarity of results from two resting runs under differentmodel orders (blue for 200, yellow for 150, green for 100, and black for 50). One best
result each is showed in right box bymapping correlation into spatial distribution. Black circlemarked themajor differences between the two results
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orders are shown in the supplementary materials (Supplementary

Figure 6).

3.4.4 | Consistency

The consistency is evaluated from model orders 50 to 200 with a step

of 10 for reference model order 100. As shown on the consistency

map in Figure 8, the persistency of these 100 ICs was visualized in the

heat map for NPE-based (left) and PCA-based method (right). We

sorted the ICs based consistency from top to bottom and the brighter

row indicated a higher consistency. NPE-based results had shown a

better performance in producing consistent ICs. The top 30 highly

consistent ICs were chosen to represent the spatial distributions. The

areas of major difference are also marked with black circles. NPE

shows more consistent ICs in cortex areas while some of PCA results

are found in white matter area. The similar results from Rest 2 are

shown in supplementary materials (Supplementary Figure 7).

3.5 | Real fMRI data—Task fMRI

The task fMRI data have the advantage that prior knowledge for

expected activation areas. For the selected task, Barch et al. (2013)

found a robust activation in ventral lateral prefrontal cortex and in

both superior and inferior temporal cortices, including the anterior

temporal poles bilaterally. These findings were identical in our results

including a highly similar, stronger activation on the left side of the

brain. Hence, the comparison between three segment conditions can

be more reasonable by using the activation areas and level as “golden
standard” from Barch et al. (2013).

The group activation maps (contrast of story vs. math) in

Figure 9c, have shown that after NPE reconstruction (right panel),

there are stronger and wider activation under full, half and quarter

length of temporal course conditions. With NPE strengthening, data

with half-length shows better performance than the original full

length data. To ensure the individual-specificity, the 100 subject's

first-level activation maps in each segment condition were compared

with their group-level activation and the correlation coefficient are

shown in Figure 9b. Apparently, not all subjects show high correlation

especially under shorter length of the original data (GLM, dotted line).

The reconstructed data with NPE shows superior correlation (solid

line) under all three data lengths compared with the original data (dot-

ted line). We also noticed that some subjects with worse correlation

were still hold the same situation after NPE reconstruction. That is a

solidified characteristic of preserving individual-specificity in accor-

dance with the simulation results in both resting-state and task fMRI

data experiments. Meanwhile, a group-wise correlation comparison of

mean/SD is represented in Figure 9b, which denoted a more quanti-

fied differences between two methods and length conditions.

4 | DISCUSSION

In this article, we propose and evaluate a novel and powerful dimen-

sionality reduction method for fMRI data based on adapted NPE. It

shows excellent performance for recovering both the spatial and tem-

poral components of ground truth networks in simulated data, and for

generating more reliable and reproducible results, especially for low

SNR fMRI data. The advantage of the NPE-based method comes from

the unique stratagem of preferentially selecting dimensions found

within “neighborhoods” indicating shared information, which helps

collects and strengthens the useful information shared in the group

during dimensionality reduction. This avoids the limitations of

selecting components solely based on the variance of eigenvectors,

giving preference to “important” variance.

4.1 | Dimensionality reduction and information
enhancement traits

To effectively reduce fMRI data, with such high dimensionality and

high information content, it is crucial to find the right balance

between information retention and dimension reduction. For the

F IGURE 8 The consistency comparison between two methods. The consistency is assessed by computing the persistence of independent
components (ICs) with correlation coefficients across model order 50 to 200 with a step of 10. The sorted paired IC with model order 100. The
spatial distributions of the top 30 ICs are shown in the middle box. Black circle marked the differences between two results
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typical dimensionality reduction method, PCA, a high number of

dimensions is typically used to retain as much variance as possible to

avoid losing information. However, this is not practical when temporal

courses are too long. This may potentially lead to overestimation of

the number of dimensions and add computation cost, which is espe-

cially problematic for large-scale fMRI data analyses. The simulation

results of full-PCA presented here demonstrate this issue. However,

some useful, group-shared information, with smaller variance may not

be retained after PCA dimension reduction, even with a higher dimen-

sion selection. Instead, as shown in Figure 3, many irrelevant compo-

nents are retained by PCA-based method. The NPE-based

dimensionality reduction method, however, inherits the efficiency of

PCA in transforming fMRI data into orthogonal subspace, and adds

the unique advantages of selecting dimensions and gathering group

information. It shows excellent performance for low SNR fMRI data

dimensionality reduction and increase the retention of group-shared

information. Thus, NPE-based dimension reduction method strikes a

proper balance of high-dimensional reduction efficacy and high infor-

mation retention.

These traits also show specialized advantage in task fMRI data.

On the one hand, the task-related brain region activations are stron-

ger contrast to resting state, which leads to a higher SNR level. On

the other hand, the fundamental assumption of commonality let NPE

better serves its purpose of collecting group information. After recon-

struction with NPE results, the task fMRI data seem to be more

“cleaner” because desired common information are preserved while

non-related redundant are discarded during the dimension reduction.

Combining above advantages and the comparison results, it is possible

to save cost by conducting the task experiment with a short design

length (data acquisition time).

4.2 | Stability and reliability

In addition to being more sensitive, NPE-based dimensionality reduc-

tion method is able to generate more reliable brain network compo-

nents under different model orders. As shown in the real fMRI data

results, when the selected dimension numbers were matched for NPE

F IGURE 9 The individual and group-level comparison of task activation map. (a) The HRF course of two task stimuli and the segment
illustration. (b) The correlation between the participant activation maps and group activation maps under certain conditions and methods. The
upward violin plot with mean/SD bar denotes group-wise comparison. Three different colors purple, green, and yellow were used to represent
three segment conditions—full, half, and quarter, respectively. Solid lines show general linear model (GLM) results after reconstruction with the
neighborhood preserving embedding (NPE) method, and dotted lines show GLM on the original data. (c) The group activation maps of the two
methods and three conditions
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and PCA methods, the advantage of strengthening useful group-

common information favors NPE in producing more reliable ICA

decompositions (more reliable brain network components than PCA in

Figures 7 and 8). The quantitative comparison results demonstrated

the stability of NPE methods in several measurement metrics like

reproducibility, test–retest ability, and consistency. Meanwhile, we

used the whole brain mask (volumetric space) instead of gray ordinate

mask for the reason that white matters and brain stems are showing

the characteristic of high variance, which helps in demonstrating the

limitation of variance. Therefore, the reliable components from PCA-

based method are located in white matter, brainstem areas and cere-

brospinal fluid. The better performance in the spatial maps of stable

components obtained by NPE dimension reduction methods is likely

due to the strengthening of group information from NPE. The benefits

primarily come for two reasons. First, common components (cortical

areas) may have lower variance, and therefore require a higher model

order to be preserved in a PCA decomposition. Second, brain net-

works in the cortex are more vulnerable to noise arising from abrupt

head movement, which could lead to a sensitivity to SNR for

individual-level dimension reduction with PCA.

4.3 | Linear and nonlinear methods

Dimensionality reduction theories and methods are booming for the

potential in revealing key insights to brain imaging data via offering

the low-dimensional and tiny representations (Tang, Chen, &

Li, 2021). Most methods can be classified into two general types, lin-

ear or nonlinear methods. Those linear methods like PCA and canoni-

cal correlation analysis (CCA) or nonlinear methods like locally linear

embedding (LLE; Roweis & Saul, 2009) and LPP (locality preserving

projections, He & Niyogi, 2003) are been applied in fMRI data analysis

(Mannfolk et al., 2010; Sui et al., 2010; Tian, Dey, Ashour, McCauley, &

Shi, 2018; Tsatsishvili, Cong, Toiviainen, & Ristaniemi, 2015). How-

ever, there are certain limitations that principle of CCA, maxing corre-

lation, are too aggressive in eliminating subject-specific variations, and

assumption of nonstationary for LLE and LPP are found to be more

efficient in decomposing or representing low-order features of fMRI

data (Gallos, Galaris, & Siettos, 2020; Morioka, Calhoun, &

Hyvärinen, 2020). NPE, developed as the linear approximation of LLE

and combining with the orthogonal constraint from PCA, is adapted

for fMRI based on the correlation analysis and shows to be efficient

and promising in reducing temporal domain dimensions. Especially, it

serves ICA with a more stable and reliable results.

4.4 | Limitations

1. Memory cost: The proposed NPE-based dimensionality reduction

method is computationally challenging for extremely large datasets

the same as the conventional PCA method, as they both require

loading all the subjects into memory for data reduction. For exam-

ple, our vivo fMRI datasets cost around 200 GB peak memory for

a total of 100 subjects with 1,000 timepoints and 228,483 voxel

number per subject when using either method. Thus, it would be a

worrisome issue for both NPE and PCA to deal with very large

datasets because of the increasing computational expense and

memory requirement. With the growing interest to integrate large

datasets for neuroscience research, this problem needs to be tack-

led. To solve this problem, PCA-based methods have been devel-

oped for large-scale fMRI datasets to get rid of the limitation of

subject number (Rachakonda et al., 2016; Smith et al., 2014). We

will develop our proposed NPE method into a new version which

will be more reliable and reproducible for increasingly-large

datasets in future work.

2. Parameter setting: The dimension reduction efficiency is related to

the threshold used for constructing neighborhoods—currently, the

threshold is set to get the balance of information retention and

dimension reduction in our analyses. However, it is possible to cal-

culate the relation between data reduction efficiency and the

threshold, which could provide a more deterministic way to choose

the threshold (Supplementary Figure 8) for less dimension number.

5 | CONCLUSION

In this manuscript, we have evaluated the performance of PCA and

NPE dimensionality reduction for ICA analyses of fMRI data. This

includes multiple methods of threshold selection at the individual level

(dimension matched and variance) and several decomposition strate-

gies, such as individual ICA, group ICA, and dual regression. NPE has

demonstrated significant benefits relative to PCA for recovering spa-

tial and temporal components of ground truth networks (in simulated

data) and generating more reliable and reproducible results (in real

fMRI data). Controlled trials with simulated data at different SNR

levels demonstrated that NPE can strengthen group information espe-

cially in low SNR data, while providing high degrees of dimensionality

reduction. This was verified in real fMRI data; structural components

extracted from the NPE analyses had higher peak values and larger

clusters than those derived from PCA analyses, and cortical and sub-

cortical components were enhanced. Overall, our proposed NPE-

based method shows excellent performance for fMRI data dimension-

ality reduction. It has the advantage of utilizing and strengthening the

group information in both individual and group level, while efficiently

rejecting “unimportant” variance and reducing data dimensionality.

Our software is available at https://github.com/WeiZhao04/fMRI_

NPE.git. There is also a GUI beta version at https://github.com/

WeiZhao04/Toolkit_GUI.git.
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