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Cox process representation and inference
for stochastic reaction–diffusion processes
David Schnoerr1,2,3, Ramon Grima1,3 & Guido Sanguinetti2,3

Complex behaviour in many systems arises from the stochastic interactions of spatially

distributed particles or agents. Stochastic reaction–diffusion processes are widely used to

model such behaviour in disciplines ranging from biology to the social sciences, yet they are

notoriously difficult to simulate and calibrate to observational data. Here we use ideas from

statistical physics and machine learning to provide a solution to the inverse problem of

learning a stochastic reaction–diffusion process from data. Our solution relies on a non-trivial

connection between stochastic reaction–diffusion processes and spatio-temporal Cox

processes, a well-studied class of models from computational statistics. This connection

leads to an efficient and flexible algorithm for parameter inference and model selection. Our

approach shows excellent accuracy on numeric and real data examples from systems biology

and epidemiology. Our work provides both insights into spatio-temporal stochastic systems,

and a practical solution to a long-standing problem in computational modelling.
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M
any complex behaviours in several disciplines originate
from a common mechanism: the dynamics of locally
interacting, spatially distributed agents. Examples arise

at all spatial scales and in a wide range of scientific fields, from the
microscopic interactions of low-abundance molecules within
cells, to ecological and epidemic phenomena at the continental
scale. Frequently, stochasticity and spatial heterogeneity play a
crucial role in determining the process dynamics and the
emergence of collective behaviour1–8.

Stochastic reaction–diffusion processes (SRDPs) constitute a
convenient mathematical framework to model such systems.
SRDPs were originally introduced in statistical physics9,10 to
describe the collective behaviour of populations of point-wise
agents performing Brownian diffusion in space and stochastically
interacting with other, nearby agents according to predefined
rules. The flexibility afforded by the local interaction rules has led
to a wide application of SRDPs in many different scientific
disciplines where complex spatio-temporal behaviours arise, from
molecular biology4,11,12, to ecology13, and to the social sciences14.

Despite their popularity, SRDPs pose considerable challenges,
as analytical computations are only possible for a handful of
systems8. Thus, many analytical techniques that are widely used
for non-spatial stochastic systems cannot be used for SRDPs.
From the practical point of view, perhaps the single most
important outstanding problem is inference in SRDP models:
given observations of the system, can we reconstruct the
interaction rules/local dynamic parameters? Solving this inverse
problem would be important, as it would allow to quantitatively
assess model fit to data and to compare different models/
hypotheses in the light of observations.

SRDPs are generally analysed by either Brownian dynamics
simulations of individual particles or by resorting to spatial
discretization, leading to the so-called ‘reaction–diffusion master
equation’ (RDME)15,16. The computational complexity of the
RDME obviously increases as the spatial discretization becomes
finer, and in many cases the limiting process does not lead to the
original SRDP17. Significant effort has been spent to improve the
performance of the two types of simulations18–24; however, the
computational costs are still high and quickly become prohibitive
for larger systems. More importantly, the lack of an analytical
alternative to simulations means that evaluating the fit of a model
to observations (the likelihood function) is computationally
extremely expensive, effectively ruling out statistical analyses. As
far as we are aware, the few attempts at statistical inference for
SRDPs either used simulation-based likelihood free methods13,
inheriting the intrinsic computational difficulties discussed above,
or abandoned the SRDP framework by adopting a coarse space
discretization25 or neglecting the individual nature of agents
using a linear-noise approximation26.

In this paper, we propose an approximate solution to the
problem of computing the likelihood function in SRDPs, thus
providing a principled solution to the inverse problem of model
calibration. Using the classical theory of the Poisson representa-
tion (PR) for stochastic reaction processes27, we show that
marginal probability distributions of SRDPs can be approximated
in a mean-field sense by spatio-temporal Cox point processes, a
class of models widely used in spatio-temporal statistics28. Cox
processes model the statistics of point patterns via an unobserved
intensity field, a random function that captures the local mean of
the observed point process. This relationship between SRDPs and
Cox processes is surprising, as SRDPs are mechanistic,
microscopic descriptions of spatio-temporal systems, while
Cox processes are employed phenomenologically to explain
regularities in point patterns. This novel link between these two
classes of models enables us to formally associate an SRDP with a
continuous evolution equation on the local statistics of the

process in terms of (stochastic) partial differential equations
(SPDEs). Crucially, this novel representation of SRDPs allows us
to efficiently approximate multiple-time marginals and thus data
likelihoods associated with observed point patterns, enabling us
to leverage the rich statistical literature on spatio-temporal
point processes for parameter estimation and/or Bayesian
inference28,29.

We demonstrate the efficiency and accuracy of our approach
for the problem of parameter inference and model selection by
means of a number of numerical and real data examples, using
non-trivial models from systems biology and epidemiology. Our
results provide both a valuable resource for performing statistical
inference and assessing model fit in this important class of
models, and a novel conceptual perspective on spatio-temporal
stochastic systems.

Results
SRDPs and the PR. In the classical Doi interpretation9,10, which
we adopt here, SRDPs describe the evolution of systems of point
particles performing Brownian diffusion in a spatial domain
D. While SRDPs are used in a variety of disciplines, we will use
the language of chemical reactions to describe them in the
following. We assume the existence of N different types of
particles Xi, or species, which can interact through a set of
predefined rules or reactions. We assume the structure of the
model, that is, which reactions are possible, to be known exactly;
later, we will relax this assumption to allow for the existence of a
(finite) number of possible alternative mechanisms. Each particle
of a particular species Xi performs Brownian diffusion with a
species-specific microscopic diffusion constant Di. Bimolecular
reactions between particles occur with a certain rate whenever
two particles are closer than some specified reaction range. In
principle, both reaction and microscopic diffusion rate constants
may be space dependent, for example, to account for geometric
constraints; for simplicity, we will only describe the homogeneous
case here.

SRDPs are frequently analysed via coarse graining by
discretizing space and assuming dilute and well-mixed conditions
in each compartment; in this case the dynamics in each
compartment is described by the chemical master equation30.
Modelling diffusion of particles between neighbouring
compartments as unimolecular reactions leads to the RDME15,
which describes the dynamics of a continuous-time Markov jump
process. For systems with only zero- or first-order reactions, the
RDME converges to Brownian dynamics in the continuum limit.
For non-linear systems, however, this is not the case in two or
more dimensions because the rate of bimolecular reactions
converges to zero, independently of the scaling of the
corresponding rate constant17.

Consider now a set of chemical species Xi in a finite volume
divided into L cubic compartments of edge length h, interacting
via the following R reactions:

XN

i¼1

sijX
l
i �!

kj
XN

i¼1

rijX
l
i ; j ¼ 1; . . . ;R; l ¼ 1; . . . L; ð1Þ

Xl
i �!

di Xm
i ; m 2 NðlÞ; l ¼ 1; . . . L: ð2Þ

Here, sij and rij are the number of reactants and product particles
of species Xi in the jth reaction, respectively, kj is the rate constant
of the jth reaction, Xm

i denotes species Xi in the mth compartment
and di is the diffusion rate constant of species Xi. The latter is
related to the microscopic diffusion constant Di via di¼Di/h2.
We assume homogenous diffusion here, that is, di is independent
of the compartment position, but it would be straightforward to
extend the following analysis to space-dependent diffusion. NðlÞ
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denotes all the adjacent compartments of the lth compartment.
Equation (1) describes chemical reactions happening in single
compartments, whereas equation (2) describes diffusion between
adjacent compartments. We confine our analysis to reactions with
at most two reactant and at most two product particles, that is,PN

i¼1 sir;
PN

i¼1 rir � 2; r ¼ 1; . . . ;R, since higher-order reac-
tions rarely occur in nature. We call a reaction linear ifPN

i¼1 sir � 1 and bimolecular if
PN

i¼1 sir ¼ 2. Under well-mixed
and dilute conditions in each compartment, the evolution of
marginal probabilities of this system is given by the RDME that is
given in general form in the Methods section.

In the case of only a single compartment, that is, L¼ 1, the
state of the system is given by n¼ (n1,y,nN), where ni is the
number of Xi particles in the system, and the time evolution of
the single-time probability distribution P(n,t) is determined by
the chemical master equation (see the Methods section). Gardiner
derived an alternative description of the dynamics of such a
system by making the ansatz of writing P(n,t) as a Poisson
mixture27,31:

Pðn; tÞ ¼
Z

du
YN
i¼1

Pðni; uiÞpðu; tÞ; ui 2 C; ð3Þ

where u¼ (u1,y,uN) and Pðni; uiÞ ¼ ðe� ui uni
i Þ=ni ! is a Poisson

distribution in ni with mean ui, and the ui are complex-valued in
general. Using this ansatz in the chemical master equation one
can derive an exact Fokker–Planck equation for p(u,t) or
equivalently a Langevin equation for u(t)27 (see Methods
section for more details). Gardiner derived this result for the
non-spatial chemical master equation and applied it to the RDME
to study the corresponding continuum limit. While the PR
provides an elegant analytical tool to study reaction systems, its
applicability is severely hindered by the fact that the Poisson
variables u are in general complex valued and hence lack a clear
physical interpretation; in particular, all bimolecular reactions
and all linear reactions with two non-identical product particles
give rise to a complex-valued PR (for a taxonomy of which
reaction systems become complex valued, see Supplementary
Methods).

Cox process representation. While in the classical view of the
PR, the auxiliary variables ui are simply introduced as a mathe-
matical device, we can make some progress by considering a joint
process over the ui and ni variables. Formally, this is equivalent to
what in statistics is called demarginalization: a complex process is
replaced by a (simpler) process in an augmented state space, such
that the marginals of the augmented process return exactly the
initial process. To formalize this idea, we first introduce some
concepts from spatial statistics.

A (spatial) Poisson process32 is a measure on the space of zero-
dimensional subsets of a domain D; in this work, we consider
Poisson processes that admit an intensity function u(x), which
gives the rate of finding a point in an infinitesimally small spatial
region. The number of points in a finite spatial region is then a
Poisson random variable, with mean given by the integral of the
intensity function over that region. A Cox process (also called
‘doubly stochastic Poisson process’) is a generalization of a
Poisson process, where the intensity field is itself a random
process. Conditioned on a realization of the intensity field, the
Cox process reduces to a Poisson process (see the Methods
section for a more detailed definition of Poisson and Cox
processes). We will consider families of spatial Poisson (Cox)
process indexed by a time variable; importantly, in this case the
intensity field can be thought of as the state variable of the system,
with the actual spatial points being noisy realizations of this state
(see Fig. 1 for a graphical explanation). Our first observation

follows directly from Gardiner’s analysis of the continuum limit
of the RDME (see Supplementary Methods for a proof).

Remark 1. Consider an SRDP on a spatial domain D and
temporal domain T , and let all reactions involve production or
decay of at most one particle. Then, for appropriate initial
conditions, 8t 2 T the single-time-point spatial probability
distribution of the SRDP is exactly the same as of a spatial
Poisson process.

General SRDPs. We can build on this point process repre-
sentation to develop novel, mathematically consistent approx-
imation schemes for SRDPs in general. Consider, for example, a
bimolecular reaction of the type AþB�!k C with propensity
function f (nA,nB)¼ knAnB/O, where nA and nB are the number of
A and B particles in the system, respectively, and O is the system
volume. While the PR for such systems is complex valued, we can
formally obtain a real system by applying a mean-field approx-

imation that replaces the bimolecular reaction AþB�!k C by the

two reactions A�!k nBh i=O
C and B�!k nAh i=O

C with propensity
functions f (nA,nB)¼ knAhnBi/O and f(nA,nB)¼ knBhnAi/O,
respectively. Here, h � i denotes the expectation of a random
variable with respect to its marginal distribution. The proposed
approximation hence replaces the direct interaction of the par-
ticles by an effective interaction of A with the mean field of B and
vice versa. Other bimolecular reactions and linear reactions with
two non-identical product particles can be approximated in a
similar manner. This leads to a real-valued evolution equation for
the ui variables, see Methods and Supplementary Methods for
details and examples.

Applying this approximation to a general RDME, and
subsequently the PR and taking the continuum limit gives the
following set of N coupled SPDEs (see Methods section for a
derivation)

duiðx; tÞ ¼ DiDuiðx; tÞþ
XR

r¼1

Sirgr uðx; tÞð Þ
" #

dt

þ
X

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gr0 ðuðx; tÞÞ

p
dWr0 ðx; tÞ;

ð4Þ

where the sum over r0 runs over all reactions with two product
particles of species Xi. In particular, this means that in the
absence of reactions with two identical product molecules the
diffusion term in equation (4) vanishes and equation (4) reduces
to a partial differential equation (PDE), that is, the ui(x,t) are
deterministic. x in equation (4) is a spatial location, Di¼ h2di is
the microscopic diffusion constant of species Xi, D is the Laplace
operator, u(x,t)¼ (u1(x,t),y,uN(x,t)), where ui(x,t) is the inten-
sity field of species Xi, dWr0(x,t) is spatio-temporal Gaussian white
noise and we have defined the propensity functions gr(u(x,t)) in
PR space. The latter are obtained by applying the mean-field
approximation to the propensity functions fr(n) and subsequently
replacing ni-ui(x,t) and hnii-hui(x,t)i. Note that the latter
denotes a local expectation of the stochastic random field ui(x,t),
rather than a spatial averaging. See Methods and Supplementary
Methods for more details and examples.

To obtain equation (4), we approximated bimolecular reactions
by linear reactions. Note, however, that the propensity functions
of the latter reactions depend on the mean fields of certain
species. This means that the resulting SPDEs in equation (4) are
generally non-linear and hence in principle are able to capture
non-linear dynamical behaviours.

Equation (4) looks similar to the spatial chemical Langevin
equation33, but has a different interpretation here, since it
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describes the intensity in PR space. In particular, just as any other
PDE or SPDE description in real space, the spatial chemical
Langevin equation does not provide a generative model for the
actual location of the events, and thus would not allow us to
directly model statistically particle locations. Notice that, as a
consequence of the mean-field approximation, the mean values of
the ui fields are the same as in a deterministic rate equation
description; however, the dynamics of the observed variable, that
is, the points in space, remain stochastic even when the intensity
field evolves deterministically. We can therefore extend Remark
1 to obtain the following result (see Supplementary Methods
for a proof).

Result 1. Consider the same setting as in Remark 1. Under
appropriate initial conditions, if there is at least one linear reac-
tion with two product particles of the same species, the system’s
single-time-point distribution is exactly the same as of a Cox
process, whose intensity fulfils the SPDE given in equation (4).
If the system involves other types of reactions, including bimo-
lecular reactions, the single-time probability distribution of the
SRDP is approximated in a mean-field sense by that of a Poisson
(Cox) process, whose intensity fulfils equation (4).

The likelihood function. Result 1 provides an efficient means to
calculate statistics such as expected number of agents within a
certain volume, without the need to perform extensive Monte
Carlo simulations, since it only requires to solve a (S)PDE for
which a rich literature of numerical methods exists28,29. The
numerical methods used in this paper are presented in
Supplementary Methods. Importantly, we can use Result 1 to
approximate the likelihood function of a configuration of points
arising from an SRDP, by using the well-known Cox process
likelihood: if u(x,t) is the intensity of a spatio-temporal Cox
process with distribution p(u(x,t)) and y a given measurement at
time t0, the corresponding likelihood is given by28

pðyÞ ¼
Z
Duðx; t0Þ

Y
s2y

uðs; t0Þe�
R

dxuðx;t0Þp uðx; t0Þð Þ: ð5Þ

This function can be easily optimized to yield statistical estimates
of kinetic parameters from single-time observations.

Remark 2. We would like to emphasize that in the case of a Cox
process, that is, a stochastic intensity field, the number of particles
in two non-overlapping spatial regions are correlated random

variables in general. The reason is that the PR ansatz in
equation (3) is not merely a product of Poisson distributions, but
rather an integral over such a product weighted by a corre-
sponding mixing distribution. In the case of a Poisson process,
that is, a deterministic intensity field, in contrast, the numbers of
particles in two non-overlapping spatial regions are always
uncorrelated.

Time-series observations. We next consider the problem of
approximating the joint distribution of point patterns arising
from an SRDP at different time points. This is important when
we have time-series observations, that is, spatial measurements
y ¼ ðyt0

; . . . ; ytn
Þ; yti

� D at discrete time points t0,y,tn, and
we want to compute the likelihood p(y|Y) of the data given a
model Y. Since the system is Markovian the likelihood factorizes
as

p y Yjð Þ ¼ p yt0
Yj

� �Yn

i¼1

p yti
yti� 1

;Y
��� �

: ð6Þ

We would like to approximate this likelihood, using the relation
to Cox processes established in Result 1. While this is in principle
straightforward, computing the terms pðyti

yti� 1
;Y

�� Þ involves
determining the distribution over the associated ui(x,t) fields in
PR space. This would involve inverting the PR transformation in
equation (3), which is computationally inconvenient. Instead, we
opt for an approximation strategy: assume that we have deter-
mined the PR distribution pðuti� 1Þ at time ti� 1, where we
introduced the shorthand uti ¼ uðx; tiÞ. By definition of the
intensity of a Poisson process, uti� 1 represents the expectation of
the random configuration of points yti� 1

at time ti� 1. We
then approximate pðyti

yti� 1
;Y

�� Þ in a mean-field way by
replacing the explicit dependence on yti� 1

with its expectation
pðyti

yti� 1
;Y

�� Þ � hpðyti� 1
yti� 1

;Y
�� Þipðyti� 1

uti� 1j Þ ¼ pðyti
uti� 1 ;YÞj .

Figure 1 visualizes this approximation. Figure 1a shows the time
evolution in an SRDP, while Fig. 1b shows the time evolution of a
corresponding approximating Cox process. This leads to a new
interpretation of the measured points y ¼ ðyt0

; . . . ; ytn
Þ: while

they are snapshots of the actual state in the true system, they
correspond to the noisy realizations of the state u(x,t) in the Cox
process picture. We thus have the following result.

Result 2. The joint n-time-point marginal distribution of an
SRDP can be approximated in a mean-field sense by the joint

Particle propagation
in time and space

Intensity field propagation Real space

t1

t2

t3

t1

t2

t3

Generates
point patterns

a b

Figure 1 | Visualization of Cox process approximation of SRDPs for multi-time points. (a) Time evolution of the true SRDP in space. Particles diffuse in

space, may decay or are created and react with each other. (b) Time evolution of a Cox process. Here, the intensity field evolves in time, rather than the

points in real space. The latter are merely noisy realizations of the intensity field. In particular, the point patterns at two different time points are

independent of each other conditioned on the intensity field.
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probability of a Poisson (Cox) process, with intensity governed by
the (S)PDE in equation (4).

Relation to Gardiner’s work. As mentioned before, Gardiner had
already derived similar equations as equation (4) for single-time
marginals of SRDPs27. Crucially, however, an approximation
scheme for multiple-time joint marginals was, to our knowledge,
never proposed; multi-time joint marginals are necessary for
inference from time-series observations, hence the importance of
Result 2. Furthermore, Gardiner’s approach generally leads to a
complex-valued PR; this motivates the novel approximation
schemes of certain reactions that we introduced here. It is this
novel real-valued PR, together with the interpretation of the PR
variables as state variables, which allows us to derive the novel
relation between SRDPs and spatio-temporal Poisson (Cox)
processes.

Inference. Result 2 is particularly powerful statistically, because it
enables us to analytically approximate the exact (intractable)
likelihood p(y|Y) in equation (6), by the likelihood of a spatio-
temporal Cox process with intensity u(x,t). The intensity itself
follows the dynamics imposed by the PR in equation (4);
importantly, the PR explicitly links the dynamic parameters
governing the evolution of the intensity function to the micro-
scopic diffusion and reaction rate constants of the SRDP.

Parameter estimation can therefore be performed efficiently by
maximizing the Cox process likelihood. In the simpler case where
the intensity function evolves deterministically, the likelihood can
be evaluated numerically via the solution of a system of PDEs,
and the dynamic parameters can be numerically recovered using
standard optimization algorithms. In the case where the intensity
function evolves stochastically, we evaluate the likelihood by an
approximate filtering approach, as commonly used in many
statistical and engineering applications (see Supplementary
Methods for algorithmic details).

The availability of a likelihood function enables us to provide a
statistically meaningful, data-driven assessment of how well a
model describes the data. This is particularly important when
there is uncertainty as to the precise mechanism underlying the
data, for example, the exact reactions or species involved.
Likelihood estimates, appropriately penalized to account for
model complexity, can then be used to select models according to
their support from the data.

It is important to notice that our approach directly optimizes
the kinetic parameters of the model, rather than fitting an
intensity function to the observed points and then fitting the
dynamics. Since kinetic parameters are usually much fewer than
the number of observations available, the risk of over-fitting is
generally low in our approach.

Next, we apply Result 1 and Result 2 to several examples, and
perform parameter inference by maximizing the data likelihood.
We solve the corresponding (S)PDEs numerically by projecting
them onto a finite set of spatial basis functions, see
Supplementary Methods for details. The software used is available
as Supplementary Data 1–4.

Parameter estimation for a gene expression system. To
demonstrate the accuracy of our method, we first consider
simulated time-series data in this section. Consider a gene
expression system as illustrated in Fig. 2. For simplicitly, we
consider a one-dimensional version of this system here, with the
nucleus located at one side of the cell. A gene located in the
nucleus is transcribed into messenger RNA (mRNA) molecules.
The latter decay and diffuse across the whole cell and are trans-
lated into proteins in the cytosol. The protein molecules also

diffuse across the whole cell and decay. For simplicity, we do not
model the gene explicitly, but assume that mRNA becomes
transcribed with a certain fixed rate m1 homogeneously in the
nucleus. The corresponding reactions are

+�!m1 M; M�!m2 +; ð7Þ

M�!
p1

Mþ P; P�!p2
+; ð8Þ

where M and P denote the mRNA and protein, respectively. For
this system, the SPDE of our method in equation (4) becomes
deterministic and thus corresponds to a Poisson process.

In addition to the reaction parameters m1, m2, p1 and p2, we
have to infer the nucleus size r, as well as the diffusion rates dm

and dp of the mRNA and protein, respectively, summing up to a
total number of seven parameters. We assume that the positions
of the protein molecules are observed at 30 time points, while the
mRNA is unobserved. The results for one parameter set are
shown in Table 1. Considering that we observe the protein at only
30 time points with unobserved mRNA and that we have seven
unknown parameters, the inferred average values are remarkably
close to the exact values. Moreover, the s.d.’s of the inferred
results for single data sets are small, demonstrating the accuracy
and precision of our method.

Next, we extend the system in Fig. 2 by adding an autocatalytic
reaction for the protein,

P�!p3
PþP: ð9Þ

Including this reaction leads to a non-vanishing noise term in
equation (4) and the system corresponds to a Cox process. We
note that the system has a steady state only if p3op2, with an
otherwise exponentially growing mean protein number. On the
mean level only the difference p2� p3 is identifiable, and we fix

mRNA

Gene

Nucleus
Cytosol

Ø

Ø

a

b

Protein

Figure 2 | Gene expression system. (a) Chemical reactions taking place.

(b) Illustration of system. The mRNA becomes transcribed in the nucleus,

and becomes translated to proteins in the cytosol. mRNA and protein

molecules decay stochastically and undergo Brownian diffusion across the

whole cell.
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p3¼ 0.01. We thus infer the same parameters as in the previous
case, but this time modelled as a Cox process. Table 2 shows the
results, indicating the accuracy of our method. See Supplementary
Methods for more information on the used equations and
algorithmic details.

Parameter estimation for an SIRS model. We next consider the
SIRS system, a popular model for describing the dynamics of an
infection spreading through a population. Such systems are
frequently modelled as SRDPs34 or discretized versions
thereof35. We consider a system in the two-dimensional square
[0,1]� [0,1]. The system comprises a susceptible (S), an infected
(I) and a recovered species (R), which perform Brownian
diffusion and interact via the reactions

Sþ I�!k;w 2I; I�!r R; R�!s S; ð10Þ

where the bimolecular infection is characterized by the
microscopic reaction rate k and the reaction range w. We
assume that all three species diffuse with the same diffusion rate
d. We assume further that initially there are no recovered (R)
particles, Sini susceptible (S) particles placed uniformly over the
whole area and one infected (I) particle located at [0.05, 0.05]. We
consider the case that all three species are observed and perform
inference for 40 simulated data points using Result 2, thereby
replacing k and w by an effective bimolecular reaction parameter
kPR. The model thus has four parameters that need to be inferred:

the diffusion rate d, the recovery rate r, the susceptible rate
s and the bimolecular infection rate kPR. Table 3 shows the
corresponding results, demonstrating the accuracy and precision
of our method. The computational efficiency of our method in
comparison with stochastic simulations is particularly
pronounced here. For the first parameter set in Table 3, for
example, the Brownian dynamics simulation of a single
realization of the system takes B250 s, while the whole
inference procedure for the four parameters using our method
takes only B10 s for one simulated data set on a 3.1 GHz core.
See Supplementary Methods for more details.

Figure 3 visualizes the dynamics of the SIRS system for one
parameter set. Individual points from a simulation are shown in
different colours (turquoise for S, bronze for I and blue for R),
while the background colours represent a superposition of the
respective intensity fields with optimized parameters. Notice how
the PR approximation is able to capture the emerging behaviour
of a wave of infection sweeping through the domain from bottom
left to top right, before the establishment of a dynamic
equilibrium between the three populations. Such a phenomenon
is clearly due to the spatial aspect of the system, and could
not have been recovered using an inference method that
does not incorporate spatial information. Indeed, the overall
number of infected individuals rises rapidly and remains
essentially constant between time 20 and 35 before dropping to
steady state, a behaviour that is simply not possible in a
non-spatial SIRS model.

Table 1 | Inference results for gene expression system.

r dm dp m1 m2 p1 p2

Exact 0.3 0.1 0.1 20 0.5 20 0.2
Inferred 0.31 (0.06) 0.12 (0.08) 0.14 (0.06) 23 (12) 0.51 (0.4) 26 (18) 0.25 (0.1)

The table shows the inferred parameter values for the gene expression system illustrated in Fig. 2, with reactions in equations (7) and (8). We assume the measurements of the protein, while the mRNA
is unobserved. The inference is carried out by maximizing the likelihood of simulated data for 30 measurement points separated by Dt¼0.5. This procedure is carried out for 100 simulated data sets and
the mean value and s.d. (in parenthesis) of the inferred results are displayed.

Table 2 | Inference results for gene expression system with additional autocatalytic reaction.

r dm dp m1 m2 p1 p2

Exact 0.3 0.1 0.1 20 0.5 20 0.2
Inferred 0.30 (0.05) 0.14 (0.08) 0.088 (0.03) 27 (17) 0.57 (0.3) 24 (21) 0.19 (0.08)

The table shows the inferred parameter values for the gene expression system illustrated in Fig. 2, with reactions in equations (7) and (8), and the additional autocatalytic reaction in equation (9). Since,
only the difference p2� p3 is identifiable, we fix p3¼0.01 and infer the other seven parameters. The table shows the average and s.d. (in parenthesis) of the inference results for 100 simulated data set.

Table 3 | Inference results for SIRS system.

103� d 10� r 10� s 103� kPR k w Sini

Exact 1 0.2 2 — 100 0.01 200
Inferred 0.8 (0.3) 0.19 (0.09) 1.8 (1.2) 2.5 (0.5) — —
Exact 1 0.2 2 — 100 0.01 300
Inferred 0.9 (0.4) 0.15 (0.06) 1.4 (0.9) 2.4 (0.5) — —
Exact 1 2 2 — 100 0.02 200
Inferred 1.0 (0.6) 1.6 (0.7) 1.5 (1.0) 3.4 (1.1) — —
Exact 1 0.2 2 — 1000 0.005 200
Inferred 0.8 (0.4) 0.21 (0.11) 2.2 (1.6) 2.4 (0.5) — —
Exact 2 0.2 2 — 100 0.01 100
Inferred 1.6 (0.8) 0.19 (0.09) 1.9 (1.2) 4.6 (1.1) — —

The table shows the results for parameter inference for the SIRS system, with reactions given in equation (10). The inference is carried out by maximizing the likelihood of the simulated data for 40
measurement points. This procedure is carried out for 200 simulated data sets, and the mean value and s.d. (in parenthesis) of the inferred results are displayed.
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Parameter estimation for Drosophila embryo data. Finally, we
apply our method to the real gene expression data for the bicoid
protein at cleavage stage 13 in the Drosophila embryo. The data
for 17 embryos can be obtained from the FlyEx database36. The
data consists of fluorescence intensity measurements on a spatial
grid and is shown for one embryo in Fig. 4a. The protein becomes
expressed in some region at the left end of the embryo, and then
diffuses across the embryo and decays. The system is typically
modelled by a linear birth–death process25,26, and we assume the
protein to be expressed within a certain distance r from the left
end of the embryo. At cleavage stage 13, the system is supposed to
be in steady state and we can perform inference using Result 1
and equation (4). For simplicity, we project the data to one
dimension (see Supplementary Methods for more details).

The system has four parameters: the creation range r, the
diffusion rate d, the production rate c1 and decay rate c2 of the
bicoid protein. For steady-state data not all parameters, but only
certain ratios are identifiable. We thus infer the creation range r,
the diffusion rate d and the ratio c¼ c1/c2. For the average of the
inferred parameters and their s.d.’s (shown here in parentheses)
across the ensemble of embryos we obtain

r ¼ 0:26ð0:09Þ; d ¼ 0:023ð0:005Þ; c ¼ 1:3ð0:2Þ�104; ð11Þ

with s.d.’s of B20–30%. We find that these results do not change
significantly under variations of the initial parameter values used
in the likelihood optimiser.

Figure 4 illustrates the inference result for one embryo.
Figure 4a,b shows the bicoid density across the whole embryo
for experimental data and the PR prediction, respectively.
We observe good agreement between the measurement data
and the point process approximation. Figure 4c shows a plot of
the model residuals (difference between model predictions
and real data); as can be seen, these are generally compara-
tively small. As could be expected, the larger errors are
concentrated around the steeply changing gradient region
between the anterior segments and the main body of the
embryo.

Model selection for an SIRS model. Next, we use Result 2 to
perform model selection. Specifically, we use our method to
decide which of two given microscopic models is more likely to be
the true model underlying some given data set. To this end, we
use the Bayesian information criterion (BIC)37. The BIC for a
model is the negative log-likelihood penalized by a term
depending on the number of inferred parameters and number

t= 0 t= 5 t= 10 t= 15 t= 20

t= 45t= 40t= 35t= 30t= 25

Susceptible Infected Recovered

Figure 3 | Dynamics of SIRS system. The figure shows the time evolution of a single simulated realization (points) and of the prediction of our method

(background colours) for the SIRS system with reactions in equation (10) for time t¼0–45, with steps of Dt¼ 5. For the simulation, we use the parameters

(Sini,k, w, d, r, s)¼ (103, 104, 0.02, 0.0002, 0.3, 0.01) and for the point process prediction the corresponding inferred parameters. The background is an RGB

image with the three colour components being proportional to the intensity fields of the three species S (turquoise), I (bronze) and R (blue). Notice how the

mean-field approximation captures the complex behaviour of a wave of infection, spreading through the domain from the bottom left corner.

Bicoid data Model prediction

Fluoresence intensity Intensity difference

50 100 200150 –25 –5 3515

a b c Residuals

Figure 4 | Results for the Drosophila embryo bicoid data. (a) Measurement data of bicoid fluorescence intensity across a single embryo.

(b) Corresponding prediction of our point process model. (c) Difference of the experimental data and point process prediction. We observe the point

process prediction agrees well with the experimental data. The point process prediction is obtained by solving equation (4) numerically for the inferred

parameter values maximizing the data likelihood.
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of measurement points. The model with the lower BIC is then
chosen to be the true model.

As an example, we modified the SIRS model of equation (10)
by including the possibility of a spontaneous, spatially
homogeneous infection of susceptible agents, according to the
reaction

S�!v I: ð12Þ

We consider two scenarios: the true microscopic model used to
generate the data does or does not contain the spontaneous
infection reaction. In either case, we use our method to select the
true model. To this end, we optimize the likelihood with respect
to the parameters using our method for both models, and
compare the corresponding BICs. Figure 5a,b shows the results
for the two scenarios of true model without and with spontaneous
infection, respectively. The figures show how often our method
selected the right or wrong model, and with which confidence
level. Each of the figures shows the combined results for 5
different parameter sets and 20 independent simulations for each
parameter set. We find that our method chose the correct model
in the vast majority of the cases (89% where the true system does
not include spontaneous infection and 96% where the true system
does contain spontaneous infection). Moreover, our method
chooses the correct model with a ‘very strong’ confidence in most
of the cases. This shows that our method is well suited for the
problem of model selection. The effectiveness of our model
selection approach is remarkable, since the two mechanisms
(spontaneous infection and contact infection) can lead to
identifiability problems. Such problems are particularly acute
when spatial heterogeneities even out rapidly, as in the case of fast
diffusion: the few mistakes that our model selection approach
makes are primarily due to random samples of the SRDP when
the infection spreads particularly fast, so that, for most time
points, the process is effectively equilibrated.

Discussion
We considered two popular classes of models for studying
stochasticity in spatio-temporal systems; SRDPs and spatio-
temporal point processes. The two classes of models are both
commonly used in many disciplines, such as epidemiology14,38

and social sciences39; however, they are widely perceived as
conceptually distinct. SRDPs are microscopic, mechanistic
descriptions used to predict the dynamics of spatially
interacting particles, whereas point processes are typically used
empirically to perform inference tasks for systems for which no
microscopic description exists. The two approaches therefore
seem to be orthogonal to each other.

However, in this paper, we have shown that the two methods
are intimately related. By using the PR we established a Cox
process representation of SRDPs, which is exact for certain classes
of systems and approximate for others. This novel representation
enables us to apply a wide range of statistical inference methods
to SRDPs, which has not been possible so far. We applied the
developed method to several example systems from systems
biology and epidemiology, and obtained remarkably accurate
results.

Since our method agrees with a deterministic rate equation
description on the mean level, bimolecular reactions may lead to
deviations from the true mean, which is known to be the case in
some non-spatial scenarios40. Since in our method distributions
are given as real Poisson mixtures, sub-Poissonian fluctuations
cannot be captured. However, Gardiner showed that fluctuations
of SRDPs are dominated by diffusion on small length scales and
therefore Poissonian33, which may explain the accuracy of our
method.

Most inference methods in the literature for SRDPs are either
based on Brownian dynamics simulations or stochastic simula-
tions of spatially discretized systems, using the RDME. Both
approaches are computationally extremely expensive, and quickly
become unfeasible for larger systems and in particular for
inference purposes. In contrast, our method relies on the solution
of (S)PDEs for which a rich literature of efficient numerical
methods exists. For the studied example systems, our method
turned out to be highly efficient: the computational time for
inferring four unknown parameters for the SIRS system, for
example, was found to be of the order of 10 s on a 3.1 GHz
processor. We therefore expect our method to be applicable to
significantly larger systems, containing more species and
unknown parameters. Remarkably, simulating a single realization
of the SIRS system from Brownian dynamics simulations took
about an order of magnitude longer than the whole inference
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Figure 5 | Model selection results for SIRS system. We use the Bayesian information criterion (BIC) for model selection for the SIRS system, with

reactions in equation (10) and the additional spontaneous infection reaction in equation (12). The sign of the difference in the BIC numbers of the two

models determines if the correct model is selected, and the corresponding magnitude how confident this choice is. We simulated 20 experiments for 5

parameter sets each. The figures show the combined results of these 100 experiments. (a) The true system used to generate the data does not include

spontaneous infection. The parameter sets are the same as in Table 3. (b) The true system used to generate the data does include spontaneous infection.

The parameter sets are the same as in Table 3, but with modified bimolecular infection rate that we set to k¼ 10, 5, 10, 100 and 10, respectively. The

spontaneous infection rate is set to v¼0.002 for all parameter sets. In both cases, we observe that our method selects the correct model in 480% of the

cases, and in most of these cases with ‘very strong’ confidence. This demonstrates the strong performance of our method for this model selection problem.
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procedure, using our method, that is, optimizing the likelihood
with respect to the parameters, indicating the immense
computational costs of inference methods based on such
simulations.

Having access to a likelihood function also provides a major
advantage in handling model uncertainty: our results on a spatial
SIRS model show that likelihood-based criteria can efficiently and
accurately discriminate between competing models. This success
raises the possibility that our approach could lay the foundations
for structure learning of spatio-temporal stochastic systems:
leveraging spatially resolved data not only to identify parameters,
but to learn directly the mechanisms underlying the data. The
availability of a likelihood approximation makes it in principle
possible to borrow techniques from fields, where structure
learning is more established and where efficient network learning
algorithms based on regularized regression or random forests are
routinely used, such as learning gene regulatory networks41,42.

Our approach can also readily handle spatial heterogeneity in
the reaction or diffusion rates: the gene regulation example
showed that the method can precisely identify simple geometric
features of the system, such as the radius of the cell nucleus.
While our examples are primarily illustrative of the methodology,
and hence simple, it would be in principle straightforward to
generalize the approach to SRDPs defined on complex geome-
tries, such as the intracellular landscapes revealed by X-ray
tomography43. Learning complex geometries directly from the
data would potentially be more challenging, however, as it would
generally require learning a large number of parameters.

While we believe that the derived representation of SRDPs in
terms of Cox process brings clear advantages from a statistical
point of view, it is also important to acknowledge the limitations
implied by the employed mean-field approximations. Perhaps,
the most important step in our approximation is the mean-field
treatment of multi-time joint distributions in Result 2. As noticed
before, this replaces direct dependencies between particle
locations at different time points, with indirect dependences
through the intensity field. This implies that self-excitatory
behaviours, such as clustering, cannot be accurately captured; at
best, these will be mimicked by a local increase in the intensity
field within a Cox process framework. More complex point
processes that can account for self-excitatory behaviour do
exist44; in our opinion, it is a question of considerable theoretical
interest whether such processes can also arise from a dynamical
SRDP representation.

Methods
The chemical master equation. Consider a system of N species Xi, i¼ 1,...,N that
interact stochastically via R reaction channels

XN

i¼1

sijXi �!
kj
XN

i¼1

rijXi; j ¼ 1; . . . ;R; ð13Þ

where kj is the rate constant of the jth reaction, and the sij and rij are non-
negative integer numbers. Define the stoichiometric matrix S as Sij¼ rij� sij; the jth
reaction is of order m if

PN
i¼1 sij ¼ m. We only consider reactions satisfyingPN

i¼1 sij;
PN

i¼1 rij � 2, that is, reactions with a maximum of two reactant and a
maximum of two product particles, since higher-order reactions rarely occur in
nature. Denote as n¼ (n1,y,nN) the state of the system, where ni is the copy
number of species Xi. Under well-mixed and dilute conditions, the time evolution
of the (single time) marginal probability distribution of the system obeys the
chemical master equation30

@tPðn; tÞ ¼
XR

r¼1

fr n� Srð ÞP n� Sr ; tð Þ�
XR

r¼1

frðnÞPðn; tÞ; ð14Þ

where Sr is the rth column of the stoichiometric matrix S. The propensity function
fr(n)dt gives the probability for the rth reaction to happen in an infinitesimal time

interval dt and is given by

frðnÞ ¼ krO
YN
k¼1

nk !

nk � skrð Þ !Oskr
: ð15Þ

Here, O is the volume of the system.

The Poisson representation. The PR makes the ansatz to write P(n,t) as a Poisson
mixture27

Pðn; tÞ ¼
Z

du Pðn1; u1Þ . . . PðnN ; uN Þpðu; tÞ; ui 2 C; ð16Þ

where u¼ (u1,y,uN) and Pðni; uiÞ ¼ e� ui uni
ið Þ=ni ! is a Poisson distribution in ni

with mean ui, and the ui are complex in general. The integrals in equation (16) in
general run over the whole complex plane for each ui. Using the ansatz
(equation 16) in the generating function equation that can be derived from
equation (14), one can derive the following PDE for the distribution p(u,t)27,

@tpðu; tÞ ¼
XR

r¼1

Okr

YN
i¼1

1� @

@ui

� �rir

�
YN
i¼1

1� @

@ui

� �sir
 !

�
YN
j¼1

O� sjr u
sjr

j pðu; tÞ:
ð17Þ

Note that this PDE generally involves derivatives of higher order than two, which
means that p(u,t) can generally become negative, in which case it does not admit a
probabilistic interpretation. However, since we only consider reactions satisfyingPN

i¼1 sir ;
PN

i¼1 rir � 2, equation (17) simplifies to

@t pðu; tÞ ¼ �
XN

i¼1

@

@ui
AiðuÞpðu; tÞ½ � þ 1

2

XN

i;j¼1

@

@ui

@

@uj
BijðuÞpðu; tÞ
� 	

; ð18Þ

which is a Fokker–Planck equation with drift vector A(u) and diffusion matrix
B(u) given by

AiðuÞ ¼
XR

r¼1

Sir grðuÞ; ð19Þ

BijðuÞ ¼
XR

r¼1

grðuÞ rirrjr � sirsjr � di;jSir

 �

; ð20Þ

grðuÞ ¼ Okr

YN
j¼1

O� sjr u
sjr

j ; ð21Þ

where di,j denotes the Kronecker delta. The corresponding Langevin equation reads

du ¼ AðuÞdtþCðuÞdW; CCT ¼ B; ð22Þ
where W is a l-dimensional Wiener process and l is the number of columns of C.

Depending on the reactions in the system, the diffusion matrix may be zero, in
which case the Langevin equation (equation 22) reduces to deterministic ordinary
differential equations. On the other hand, depending on the reactions, B(u) is not
positive semidefinite and thus CCT¼B cannot be fulfilled for real C, which means
that equation (18) is not a proper Fokker–Planck equation in real variables. Rather,
it needs to be extended to complex space. Specifically, this is the case whenever the
system contains bimolecular reactions or reactions with two non-identical product
molecules.

An important property of the PR is that the mean values of the particle
numbers ni are equal to the mean values of the corresponding PR variables ui, that
is, hnii¼ huii.

The reaction–diffusion master equation. Consider a system as in equation (13),
but in an M-dimensional volume discretized into L cubic compartments of edge
length h and volume hM. Denote as n¼ (n1

1,y,nN
1 ,y,n1

L,y,nN
L) the state of the

system, where nl
i is the copy number of species Xi in the lth compartment. Under

well-mixed and dilute conditions in each compartment, the reaction dynamics in
each compartment is governed by a corresponding chemical master equation
as in equation (14). If we model diffusion of species Xi between neighbouring
compartments by linear reactions with rate constant di¼Di/h2, where Di is the
microscopic diffusion constant of species Xi, the time evolution of the (single time)
marginal probability distribution of the system obeys the RDME30:

@tPðn; tÞ ¼
XL

l¼1

X
m2NðlÞ

XN

i¼1

di nm
i þ 1


 �
P nþ dm

i � dl
i; t


 �
� nl

iP n; tð Þ
� 	

ð23Þ

þ
XL

l¼1

XR

r¼1

½frðnl � SrÞP n� Sl
r ; t


 �
� frðnlÞPðn; tÞ�; ð24Þ

where fr(nl) is the propensity function of the rth reaction evaluated at the state
vector nl ¼ nl

1; . . . ; nl
N


 �
of the lth compartment, dl

1 is a vector of length N� L
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with the entry corresponding to species Xi in the lth compartment equal to 1 and
all other entries zero, and Sl

r is a vector of length N� L with the entries
corresponding to the lth compartment equal to the rth row of the stoichiometric
matrix S and zero otherwise.

Real-valued Poisson representation in space. We next apply the PR to the
RDME in equations (23) and (24) after applying the mean-field approximations
defined in the Results section to bimolecular reactions and reactions with two
non-identical product molecules, and subsequently take the continuum limit.
Consider first the diffusion term in equation (23). Since different species do not
interact with each other if there are no chemical reactions happening, we can
consider a system containing only a single species, say species X1, for which
equation (23) reduces to

@t Pðn; tÞ ¼
XL

l¼1

X
m2N ðlÞ

d nm þ 1ð ÞP nþ dm � dl; t

 �

� nlPðn; tÞ
� 	

; ð25Þ

where n¼ (n1,y,nL), nm is the number of X1 particles in the mth compartment,
dm is a vector with a one in the mth entry and zero otherwise, d is the diffusion
constant of species X1 and the sum over m runs over all neighbouring compart-
ments NðlÞ of the lth compartment. For this system, the PR is real and determi-
nistic, and we use the PR without any approximations. The corresponding
Langevin equation reads

dul ¼ D

2Mul �
P

m2N ðlÞ
um

h2
dt; l ¼ 1; . . . ; L; ð26Þ

where M is the spatial dimension of the system and D¼ dh2 the microscopic
diffusion constant. Since the sum over m runs over all adjacent compartments of
the lth compartment, the fraction in equation (26) is just the discretized version of
the Laplace operator D ¼ @2

1 þ . . . þ @2
M . Introducing a discretized density field

u(xl)¼ ul/hM, where xl is the centre of the lth compartment, and taking the
continuum limit of equation (26), we get the PDE

duðx; tÞ ¼ DDuðx; tÞdt; ð27Þ
which is just the diffusion equation for the field u(x,t).

Consider next the reaction term of the RDME given in equation (24). Since
reactions only occur within compartments, we can treat the compartments
independently of each other. For a single compartment, equation (24) then reduces
to the chemical master equation given in equation (14). Here, however, we first
apply the approximations defined in the Results section to bimolecular reactions
and reactions with two non-identical product molecules (see Supplementary
Methods for more details). These approximations lead to a real-valued PR and only
reactions with two identical product molecules lead to stochastic terms. The PR
Langevin equation hence simplifies to

dui ¼
XR

r¼1

SirgrðuÞdtþ
X

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gr0 ðuÞ

p
dWr0 ; ð28Þ

where u¼ (u1,y,uN) and the sum over r0 runs over all reactions with two product
particles of species Xi. The propensities gr(u) are obtained by replacing the ni

variables with ui variables and O with hM in the expressions for the fr propensities
of the approximated reactions. The factor of two in the square root in equation (28)
comes from the fact that two identical molecules become produced in these
reactions. Reintroducing the label l denoting the compartment number in
equation (28), and the species label i in equation (27), we can add the two
contributions to obtain

dul
i ¼Di

2Mul
i �

P
m2NðlÞ

um
i

h2
dtþ

XR

r¼1

SirgrðulÞdt

þ
X

r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gr0 ðulÞ

q
dWl

r0 ;

ð29Þ

where u ¼ u1
1; . . . ; u1

N ; . . . ; uL
1 ; . . . ; uL

N


 �
and ui

l is the PR variable of species Xi in
the lth compartment. If we again define discretized density fields uiðxlÞ ¼ ul

i=hM ,
where xl is the centre of the lth compartment, and dWrðxlÞ ¼ dWl

r=
ffiffiffiffiffiffi
hM
p

, we can
take the continuum limit of equation (29) that leads to the real-valued SPDE for the
intensity fields given in equation (4). The gr(u(x,t)) therein are not functions of
single PR variables anymore, but rather functionals of the space-dependent
intensity field vector u(x,t)¼ (u1(x,t),y,uN(x,t)). They are obtained by taking the
corresponding propensity functions fr(n) of the approximate reactions in real
space, replacing ni-ui(x,t) and hnii-hui(x,t)i, and omitting O factors. The latter
can be identified with hM here, and hence get absorbed in the definition of the
intensity fields given below equation (29).

As an example, consider the reaction AþB-+. The non-spatial propensity in
real space for this reaction is f(nA,nB)¼ knAnB/O. However, since this
is a bimolecular reaction and hence leads to a complex-valued PR, we replace
it by two reactions A-+ and B-+, with propensities f1(nA,nB)¼ khnBinA/O
and f2(nA,nB)¼ khnAinB/O, respectively. By replacing ni-ui(x,t) and hnii-
hui(x,t)i, and omitting O terms, we thus obtain the corresponding propensity

functions in spatial PR space as g1(uA(x,t),uB(x,t))¼ khuB(x,t)iuA(x,t) and
g2(uA(x,t),uB(x,t))¼ khuA(x,t)iuB(x,t), respectively. See Supplementary Methods for
more details and examples.

Poisson and Cox processes. A (spatial) Poisson process on a spatial region D of
arbitrary dimension defines a measure on countable unions of zero-dimensional
subsets (points) of D. A Poisson process is often characterized by an intensity
function u : D ! Rþ , giving the probability density of finding a point in an
infinitesimal region around x. Now, let N(A) denote the number of points in a
subregion A � D. Then N(A) is a Poisson random variable with mean given by
the integral of u( � ) over A:

p NðAÞ ¼ nð Þ ¼ P n; uAð Þ; uA ¼
Z
A

dx uðxÞ; ð30Þ

where P n; uAð Þ is a Poisson distribution in n with mean uA.
A (spatial) Cox process is a generalization of a Poisson process and also called

‘doubly stochastic process’, in the sense that the intensity function u is itself a
random process. Conditioned on the intensity u, the Cox process reduces to a
Poisson process. The distribution of the number of points in a subregion A � D is
hence a mixture of Poisson distributions,

p NðAÞ ¼ nð Þ ¼
Z

duAP n; uAð Þp uAð Þ: ð31Þ

Since we are interested in dynamical systems, we will assume time-dependent
intensities u : D�T ! Rþ , where T is a finite real interval denoting time. We
then require that for any fixed time point t 2 T , the process is a spatial Poisson
(Cox) process with intensity u( � ,t). In the case of a Poisson (Cox) process, the
intensity u may, for example, be defined as the solution of a PDE (SPDE).

Code availability. The software used for the studied examples is available as
Supplementary Data 1–4.

Data availability. The Drosophila Bicoid data used in this study is available from
the FlyEx database, http://urchin.spbcas.ru/flyex/.

References
1. Bullara, D. & De Decker, Y. Pigment cell movement is not required for

generation of Turing patterns in zebrafish skin. Nat. Commun. 6, 6971 (2015).
2. Metzler, R. The future is noisy: the role of spatial fluctuations in genetic

switching. Phys. Rev. Lett. 87, 068103 (2001).
3. Elf, J. & Ehrenberg, M. Spontaneous separation of bi-stable biochemical

systems into spatial domains of opposite phases. Syst. Biol. 1, 230–236 (2004).
4. Takahashi, K., Tanase-Nicola, S. & Ten Wolde, P. R. Spatio-temporal

correlations can drastically change the response of a MAPK pathway. Proc. Natl
Acad. Sci. USA 107, 2473–2478 (2010).

5. Short, M. B., Brantingham, P. J., Bertozzi, A. L. & Tita, G. E. Dissipation and
displacement of hotspots in reaction-diffusion models of crime. Proc. Natl
Acad. Sci. USA 107, 3961–3965 (2010).

6. Mahmutovic, A., Fange, D., Berg, O. G. & Elf, J. Lost in presumption: stochastic
reactions in spatial models. Nat. Methods 9, 1163–1166 (2012).

7. Yates, C. A. et al. Inherent noise can facilitate coherence in collective swarm
motion. Proc. Natl Acad. Sci. USA 106, 5464–5469 (2009).

8. Cottrell, D., Swain, P. S. & Tupper, P. F. Stochastic branching-diffusion models
for gene expression. Proc. Natl Acad. Sci. USA 109, 9699–9704 (2012).

9. Doi, M. Second quantization representation for classical many-particle system.
J. Phys. A 9, 1465 (1976).

10. Doi, M. Stochastic theory of diffusion-controlled reaction. J. Phys. A 9, 1479
(1976).

11. Bicknell, B. A., Dayan, P. & Goodhill, G. J. The limits of chemosensation vary
across dimensions. Nat. Commun. 6, 7468 (2015).

12. Grima, R. & Schnell, S. A systematic investigation of the rate laws valid in
intracellular environments. Biophys. Chem. 124, 1–10 (2006).

13. Holmes, G. R. et al. Repelled from the wound, or randomly dispersed? Reverse
migration behaviour of neutrophils characterized by dynamic modelling. J. R.
Soc. Interface 9, 3229–3239 (2012).

14. Davies, T. P., Fry, H. M., Wilson, A. G. & Bishop, S. R. A mathematical model
of the London riots and their policing. Sci. Rep. 3, 1303 (2013).

15. Gardiner, C. W., McNeil, K. J., Walls, D. F. & Matheson, I. S. Correlations in
stochastic theories of chemical reactions. J. Stat. Phys. 14, 307–331 (1976).
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