
2488  |  	﻿�  Ecology and Evolution. 2021;11:2488–2502.www.ecolevol.org

 

Received: 29 October 2020  |  Revised: 15 December 2020  |  Accepted: 16 December 2020

DOI: 10.1002/ece3.7159  

O R I G I N A L  R E S E A R C H

Genomic association with pathogen carriage in bighorn sheep 
(Ovis canadensis)

Alynn M. Martin1  |   E. Frances Cassirer2 |   Lisette P. Waits3 |   Raina K. Plowright4 |   
Paul C. Cross1  |   Kimberly R. Andrews5

1United States Geological Survey, Northern 
Rocky Mountain Science Center, Bozeman, 
MT, USA
2Idaho Department of Fish and Game, 
Lewiston, ID, USA
3Fish and Wildlife Sciences, University of 
Idaho, Moscow, ID, USA
4Department of Microbiology and 
Immunology, Montana State University, 
Bozeman, MT, USA
5Institute for Bioinformatics and 
Evolutionary Studies (IBEST), University of 
Idaho, Moscow, ID, USA

Correspondence
Alynn M. Martin, United States Geological 
Survey, Northern Rocky Mountain Science 
Center, 2327 University Way, Suite #2, 
Bozeman, MT 59715, USA.
Email: alynnmartin@usgs.gov

Funding information
Montana University System Research 
Initiative; Oregon Department of Fish and 
Wildlife; National Institute of General 
Medical Sciences (NIGMS) of the National 
Institutes of Health (NIH); National Science 
Foundation; U.S. Fish and Wildlife Service; 
Morris Animal Foundation, Grant/Award 
Number: D13ZO-081; NIGMS; NIH, 
Grant/Award Number: P20GM103474, 
P30GM110732 and P30GM103324; NSF, 
Grant/Award Number: DEB-1316549

Abstract
Genetic composition can influence host susceptibility to, and transmission of, 
pathogens, with potential population-level consequences. In bighorn sheep (Ovis 
canadensis), pneumonia epidemics caused by Mycoplasma ovipneumoniae have 
been associated with severe population declines and limited recovery across North 
America. Adult survivors either clear the infection or act as carriers that continually 
shed M. ovipneumoniae and expose their susceptible offspring, resulting in high rates 
of lamb mortality for years following the outbreak event. Here, we investigated the 
influence of genomic composition on persistent carriage of M. ovipneumoniae in a 
well-studied bighorn sheep herd in the Wallowa Mountains of Oregon, USA. Using 
10,605 SNPs generated using RADseq technology for 25 female bighorn sheep, we 
assessed genomic diversity metrics and employed family-based genome-wide as-
sociation methodologies to understand variant association and genetic architecture 
underlying chronic carriage. We observed no differences among genome-wide di-
versity metrics (heterozygosity and allelic richness) between groups. However, we 
identified two variant loci of interest and seven associated candidate genes, which 
may influence carriage status. Further, we found that the SNP panel explained ~55% 
of the phenotypic variance (SNP-based heritability) for M. ovipneumoniae carriage, 
though there was considerable uncertainty in these estimates. While small sample 
sizes limit conclusions drawn here, our study represents one of the first to assess 
the genomic factors influencing chronic carriage of a pathogen in a wild population 
and lays a foundation for understanding genomic influence on pathogen persistence 
in bighorn sheep and other wildlife populations. Future research should incorporate 
additional individuals as well as distinct herds to further explore the genomic basis 
of chronic carriage.
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1  | INTRODUC TION

Host susceptibility (vulnerability to infection), tolerance (ability to 
reduce the cost of infection), infectivity (ability to transmit infec-
tion), and resistance (ability to clear infection) influence transmis-
sion and persistence of pathogens in populations. Heterogeneity in 
these characteristics can produce a subset of individuals that con-
tribute disproportionately to disease dynamics. For example, highly 
infectious individuals may act as superspreaders, resulting in dispro-
portionately more new infections relative to other less infectious 
individuals (Lloyd-Smith et al., 2005; Paull et al., 2012). Individuals 
with low resistance and high tolerance, or those with incomplete 
resistance, may act as chronic carriers (individuals that host and 
transmit pathogens for long durations) allowing infection to per-
sist in populations. There is a growing body of literature assessing 
pathogen infection and host genomics in wildlife (e.g., DeCandia 
et al., 2020; Donaldson et al., 2017), and the influence of host genet-
ics on host susceptibility, resistance, and tolerance has been widely 
documented (recent examples include Batley et al., 2019; Bishop & 
Woolliams, 2014; Oleński et  al.,  2019); however, few studies have 
investigated host-genomic influence on chronic carriage.

Understanding the role of host genomics on pathogen carriage 
risk can provide insights for management of disease in humans, do-
mestic animals, and wildlife. For example, in animals, genomic data 
can inform selective breeding for resistance to pathogens, which 
has been broadly discussed in agriculture and aquaculture (Bishop 
& Woolliams, 2014; Houston et al., 2020). These same approaches 
may be applied to selective breeding for individuals with low risk 
of becoming a chronic carrier. In free-living populations, identifying 
individuals genetically predisposed to maintaining infection could in-
form future research as well as management actions such as culling, 
captive breeding, and translocations.

One approach to understanding the impact of host genomics on 
carrier status is through genome-wide association (GWA) analyses. 
Genome-wide association methods have been used to better under-
stand the underlying architecture of disease (i.e., are few or many 
loci responsible for disease-related phenotypes?) and to identify sin-
gle nucleotide polymorphisms (SNPs) that may be associated with 
disease phenotypes (Bush & Moore,  2012). These methods have 
been successfully utilized to understand immunity and resistance 
in wildlife disease systems (Elbers et  al.,  2018; Kosch et  al.,  2019; 
Margres et al., 2018). While GWA methods are typically restrained 
to large sample sizes, they can be adapted for individuals with 
shared ancestry, including parent–offspring pairs and other relatives, 
through family-based association designs (Ott et  al.,  2011), which 
can be useful when sample sizes are limited. Additional metrics as-
sessing genome diversity, such as heterozygosity and allelic richness, 
can complement association analyses, identifying broader trends in 
diversity that may play a role in disease phenotypes.

Introduced disease has played a major role in reducing abun-
dance and inhibiting recovery in bighorn sheep (Ovis canadensis) 
populations across western North America. Specifically, pneumonia 
epizootics (primary etiological agent Mycoplasma ovipneumoniae) 

have caused all-age die-off events of varying severities (48% mortal-
ity on average), with the most extreme resulting in 100% mortality 
and localized extirpation (Cassirer et al., 2018). Following outbreak 
events, M. ovipneumoniae may persist within a population via per-
sistently infected and shedding individuals (often, asymptomatic; 
Plowright et al., 2017). Continued shedding by these chronic carriers 
often results in seasonal lamb exposure and mortality (20%–100%), 
suppressing recruitment and recovery in years following epizootics 
(Cassirer et  al.,  2018; Cassirer & Sinclair,  2007). These dynamics 
can result in ongoing population declines and stagnation with occa-
sional herd extinctions (Manlove et al., 2016). It is recognized that M. 
ovipneumoniae carriers have a significant impact on herd recovery 
(Garwood et al., 2020); however, factors that influence an individu-
al's ability to clear infection or transition to chronic carrier status are 
not well understood. Recent research suggests that paranasal sinus 
tumor presence in Rocky Mountain bighorn sheep (Ovis canadensis 
canadensis) may play a role in infection clearance (tumors are asso-
ciated with pathogenic bacteria presence in the upper respiratory 
tract of bighorn sheep; Fox et  al.,  2015); however, the causative 
agent of tumors is unknown (Fox et al., 2016).

The outcome of M. ovipneumoniae infection in bighorn sheep—
whether mortality, recovery, or transition to chronic carrier—is likely 
influenced by a multitude of factors, including pathogen strain, 
host immunity, host demographics (specifically, age, see Plowright 
et  al.,  2017), dosage, and environmental conditions. Here, we ex-
plore the association of host-genomic variation and chronic carrier 
phenotype in a well-studied bighorn sheep herd (Lostine herd, Hells 
Canyon) using family-based genome-wide association methodology 
and genome-wide diversity metrics. Long-term monitoring of the 
Lostine herd has identified chronic carriers, intermittent carriers, 
and noncarriers within the herd, and we hypothesize that host-ge-
nomic variation plays a role in carrier phenotype. A previous study 
of the Lostine herd found a strong association between carrier sta-
tus and heterozygosity at a major histocompatibility complex (MHC) 
locus, suggesting genetic diversity at the MHC gene complex may 
influence carrier status (Plowright et al., 2017). This prior study ex-
amined relationships between carrier status and diversity at four 
microsatellite markers associated with four genes with immune sys-
tem functions, as well as eleven microsatellite markers in “neutral” 
genomic regions (i.e., not associated with genes); here, we expand 
on that study by investigating associations between carrier status 
and allelic composition at thousands of SNPs across the genome. We 
also estimate genome-wide and MHC region diversity (heterozygos-
ity and allelic richness) between phenotypes. Pathogen exposure, 
strain, and habitat conditions are similar across individuals within the 
Lostine herd, and therefore, this study system provides an opportu-
nity to investigate genome-wide associations without the confound-
ing influence of these variables. Due to the difficulty in collecting 
longitudinal, invasive data in free-ranging wildlife, our sample sizes 
are necessarily small; however, individuals within the Lostine herd 
have shared ancestry, and thus, we employ a family-based GWA ap-
proach. This study represents one of the first to explore associa-
tions between genomic variation and carrier status in a free-ranging 
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species. Furthermore, our study demonstrates the potential power 
of family-based genome-wide association analyses to aid in manage-
ment decision-making for bighorn sheep and other wildlife species 
threatened by disease.

2  | METHODS

2.1 | Study population: Lostine herd

The Lostine River bighorn sheep herd occupies an approximately 230 
km2 range in the Wallowa Mountains of northeastern Oregon and is 
part of the Hells Canyon metapopulation, which includes 18 sheep 
populations and spans the states of Idaho, Oregon, and Washington 
(~2.3 million hectares, Figure  1; Fortin & Cassirer,  2015). Bighorn 
sheep are native to this region but were locally extirpated by 1945. 
The Lostine herd was re-established through the translocation of 20 
sheep from Alberta, Canada in 1971. Since the reintroduction event 
in 1971, the population has been monitored annually. Following pop-
ulation growth post-introduction, management efforts were adopted 

to maintain the population at approximately 80 individuals through 
translocations of sheep out of the Lostine herd (Coggins, 2006). In 
1986–87, a pneumonia outbreak resulted in the loss of two-thirds 
of the population (Cassirer et  al.,  1996; Coggins,  1988). By 1997, 
the population had made a near-full recovery reaching 92% of its 
pre-epidemic size. In the early 2000s, a different M. ovipneumoniae 
strain that was associated with pneumonia epizootics throughout 
the Hells Canyon metapopulation was detected in the Lostine popu-
lation (Cassirer et al., 2016), and since then, the population has been 
stagnant to declining, estimated at 60 – 90 sheep with no translo-
cations out of the population (Oregon Dept. of Fish and Wildlife, 
unpublished data).

The Lostine herd is a well-mixed population—with many related 
individuals—that winters on a range where the herd is supplementally 
fed as part of management efforts and where our genetic samples 
were collected. Disease exposure was homogeneous throughout the 
population as was confirmed by M. ovipneumoniae antibody pres-
ence in all sheep included in this study (Plowright et al., 2017). This is 
an important advantage in our association analysis, as results can be 
confounded by individuals that are phenotypically disease-free due 

F I G U R E  1   Distribution of the Hells 
Canyon bighorn sheep metapopulation 
across Idaho, Washington, and Oregon. 
This metapopulation consists of 18 herds 
including the Lostine herd (red). Herd 
range geospatial data were freely available 
from state wildlife agencies’ websites. The 
base map was sourced from ESRI (Esri & 
Nov., 2020)
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to lack of exposure, but exhibit “case” genotypes (i.e., individuals that 
have carrier genotypes but are classified as controls due to not being 
exposed). Further, a single M. ovipneumoniae strain was detected 
during the sampling period in the Lostine population, eliminating 
strain variation complexities (the same strain has been present since 
at least 2007; Cassirer et al., 2016).

2.2 | Sample collection and infection status

From 2011 to 2016, sheep (lambs, yearlings, and adults) in the 
Lostine herd were baited with alfalfa pellets and captured in a 
corral trap or chemically immobilized using a jab stick or dart gun. 
Individuals were aged and given a unique marker for recapture, and 
samples were collected including skin tissue, blood, and nasal swabs 
(Plowright et al., 2017). A subset (n = 52) of individuals was periodi-
cally recaptured, allowing for assessment of longitudinal infection 
status. The sampling regime focused on ewes, given the research 
interests of the study for which these data were collected (Plowright 
et  al.,  2017). Mycoplasma ovipneumoniae infection status was de-
termined using conventional and real-time PCR on nasal swabs 
(see Plowright et  al.,  2017). Age was documented for each sheep 
at every capture event and is reported as a range spanning age at 
first capture to age at last capture (Table 1). A subset of individu-
als that died was necropsied postmortem, and sinus tumor presence 
was documented.

Infection phenotype was assigned based on nasal swab PCR 
results with the following classifications: (i) individuals that consis-
tently tested negative for M. ovipneumoniae through time were given 
the status “negative”; (ii) individuals that tested positive and negative 
in consecutive captures, that is, infected and recovered, were given 
the status “intermittent”; and (iii) individuals that tested positive in 
two consecutive sampling events across two or more years were 
given the status of “chronic carrier” (Table 1) (Plowright et al., 2017). 
Individuals had to be tested ≥2 times for inclusion in this study (see 
Table 1). Our main objective was to understand drivers for chronic 
(i.e., persistent) carrier status; thus, we combined the negative and 
intermittent classes into one “negative” control class, as this group-
ing allowed us to specifically address carriage.

2.3 | DNA extraction and RADseq library 
preparation

Restriction site-associated DNA sequencing (RADseq) data were 
available from a previous parentage study of the Lostine herd, 
including 52 individuals with longitudinal disease data (Andrews 
et  al.,  2018; NCBI BioProject ID PRJNA454718, SRA accession 
SRP144608). RADseq generates sequence data from loci distrib-
uted relatively randomly across the genome, enabling a survey of a 
large portion of the genome (Andrews et al., 2016). Samples used 
to generate RADseq data consisted of blood and skin tissue sam-
ples collected as described above. DNA extraction and RADseq 

library prep are described in Andrews et  al.  (2018). Briefly, DNA 
was extracted using the DNeasy Blood and Tissue Kit (Qiagen 
Inc., Germantown, MD, USA). RADseq libraries were constructed 
using 50  ng of high-molecular-weight genomic DNA. DNA was 
digested using the Sbfl restriction enzyme, and cut sites were li-
gated with biotinylated RADseq adapters containing 8  bp bar-
codes unique to each sample. Ligated products from all samples 
were multiplexed and sheared to 400  bp using a Covaris M220 
Focused-ultrasonicator. Streptavidin bead washes were used to 
remove DNA fragments that did not have ligated adapters, and re-
maining fragments were prepped for sequencing using NEBNext 
Ultra DNA Library Prep Kit for Illumina, followed by sequencing 
with an Illumina HiSeq4000 at the University of California Berkeley 
QB3 Vincent J. Coates Genomics Sequencing Library with 150 bp 
paired-end reads.

TA B L E  1   Sheep infection status and sinus tumor presence. Sinus 
tumor presence is designated by a “+” symbol. Sinus tumor data 
were only available for five individuals

Sheep ID

Age range 
of testing
(total tests)

Infection 
status

Sinus tumor 
presence

04LO58 (ARH1) 4.7–12.7 (7) carrier +

14LO36 (ARI1) 4.4–8.7 (3) intermittent no data

04LO73 (ARJ1) 2.7–15.7 (9) intermittent no data

14LO83 (ARR1) 2.8–4.8 (4) carrier +

14LO81 (ARS1) 2.8–7.7 (3) intermittent no data

13LO01 (ART1) 4.5–6.8 (6) intermittent no data

11LO44 (ARW1ab) 4.7–9.8 (7) negative no data

14LO91 (ARX1) 3.7–6.8 (2) intermittent no data

13LO82 (ARY1ab) 1.9–4.8 (3) intermittent no data

08LO24 (ARZ1) 12.7–17.7 (5) intermittent no data

12LO38 (AS81) 4.6–7.8 (6) carrier +

14LO05 (AS91) 4.4–5.8 (2) intermittent no data

14LO51 (ASA1) 4.6–6.8 (2) negative no data

02LO43 (ASB1) 13.9–15.7 
(4)

carrier no data

05LO53 (ASH1) 8.8–11.8 (5) negative no data

04LO74 (ASI1) 12.7–15.8 
(5)

carrier +

03LO50 (ASL1) 12.8–15.8 
(5)

intermittent no data

10LO33 (ASM1) 3.8–9.8 (7) intermittent +

08LO29 (ASN1) 4.8–8.7 (7) intermittent no data

11LO40 (ASQ1) 4.7–9.8 (6) negative no data

12LO56 (AST1) 4.6–6.8 (7) intermittent no data

13LO02 (ASV1) 4.6–6.8 (4) negative no data

99L09 (ASW1) 12.8–16.7 
(5)

carrier no data

15LO54 (BQS1ab) 0.7–4.7 (3) negative no data

15LO63 (BQU1ab) 1.7–5.6 (3) negative no data
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2.4 | SNP discovery and genotyping

Sequence reads containing Illumina adapters were identified and re-
moved using HTS_ADATPERTRIMMER (https://github.com/s4hts/​
HTStream). Remaining reads were demultiplexed and cleaned using 
PROCESS_RADTAGS in STACKS v2.2 (J. Catchen et al., 2013) with 
the options -c, -q, -r, and --bestrad. PCR duplicates were removed 
using CLONE_FILTER in STACKS. Sequence reads were then merged 
for 18 samples for which library prep and sequencing had been per-
formed twice independently (see Andrews et al., 2018).

Quality filtered bighorn sheep sequences were aligned to the do-
mestic sheep (Ovis aries) genome (Oar v4.0) using end-to-end align-
ment methods in Bowtie2 v2.3.5.1 (Langmead & Salzberg,  2012). 
Parameters for alignment included the following: -sensitive (a de-
fault set of parameters for alignment sensitivity and accuracy) -X 
900 (maximum fragment length for valid alignments). Reads were 
filtered with the program SAMtools v1.9 (Li et al., 2009) for map-
ping quality >40. Variant discovery and genotyping were performed 
in STACKS v2.4 (J. Catchen et al., 2013; J. M. Catchen et al., 2011), 
and loci were filtered by minimum depth (≥5) and minimum qual-
ity score (≥20). Loci were further filtered in PLINK v2.0 (Purcell 
et al., 2007) based on level of missing data per site (≤10%) and minor 
allele frequency (≥1%), followed by sample-level filtering, which re-
moved samples with >10% missing data. Linkage disequilibrium fil-
tering was performed in PLINK v2.0 to retain a set of loci no less 
than 5 kb of each other (--indep-pairwise 5 5 0.2). This window is 
smaller than linkage decay observed in this population (~500 kbp; 
Andrews et al., 2018), but was employed to limit SNPs in close prox-
imity while retaining the majority of loci. Lastly, loci were removed 
that departed from Hardy–Weinberg equilibrium (HWE); this was 
determined in PLINK v1.9 using only samples with the control phe-
notype, as to not filter out loci that may be associated with disease 
status (following suggestions by Reed et al., 2015). Population struc-
ture was tested using both the --cluster and --pca flags in PLINK 
(versions 1.9 and 2.0, respectively), and no differentiated groups 
were observed. To correct for the bimodal relationship between age 
and infection status—the proportion of individuals that test positive 
for M. ovipneumoniae is higher in young (≤3) and old (≥14) individu-
als (Plowright et al., 2017)—we removed individuals if their capture 
events occurred exclusively before the age of four or after the age 
of fourteen. Following filtering, 25 samples remained, all of which 
were female bighorn sheep. These filtering steps are summarized in 
Data S1.

2.5 | Observed heterozygosity and allelic diversity

Several genomic diversity metrics were estimated to investigate 
the relationship between diversity and carrier status. Standard het-
erozygosity (proportion of heterozygous loci divided by the mean 
expected heterozygosity of typed loci) was calculated for each 
individual using the genhet function in R v3.5.3 (Coulon,  2010; 
R Development Core Team,  2016). The standard heterozygosity 

estimate accounts for differences in the numbers of genotyped 
loci among individuals. In addition, several population-level diver-
sity metrics were calculated to compare carrier and control pheno-
types. Observed heterozygosity was estimated for each phenotype 
in R v3.5.3 using the basic.stats function in package hierfstat v0.5–7 
(which accounts for group sample size; Goudet & Jombart,  2015). 
We also employed a rarefaction approach to estimate metrics of 
overall allelic richness (the average number of alleles per locus) and 
private allelic richness (number of unique alleles in a population) 
for both carrier and control phenotypes using program ADZE v1.0 
(Szpiech et  al.,  2008). This rarefaction approach allows for com-
parisons among groups where sample sizes differ, as is the case for 
our carrier and control groups. The maximum standardized sample 
size was set to 6, which is the sample size of the carrier group. For 
each diversity metric, we used Welch's two-sample t test in program 
R v3.5.3 to assess if mean diversity differed between control and 
carrier groups across all loci. We also implemented each of these 
diversity analyses to compare heterozygosity, allelic richness, and 
private allelic richness between phenotypes for loci that fell within 
the Ovar-Mhc region—where the major histocompatibility complex 
(MHC) class I through III genes are located—on chromosome 20. 
Ovar-Mhc SNPs were identified from base 7,166,117 to 27,665,927 
spanning the locations of the DYA to OLA genes based on our cur-
rent understanding of the Ovar-Mhc region structure and location in 
domestic sheep (Dukkipati et al., 2006).

2.6 | Association test

A single-marker univariate linear mixed model was used to test for 
SNP associations with pneumonia carrier status. Phenotypes were 
divided into one binary trait: M. ovipneumoniae negative (controls; 
individuals testing consistently negative or intermittently positive 
for Mycoplasma; n = 19) and M. ovipneumoniae carriers (cases; always 
Mycoplasma positive, n = 6) and analyzed using the following model 
(Zhou & Stephens, 2012, 2014):

where y is a vector of binary disease labels (0 for negative, 1 for carrier), 
W is a matrix of covariates including a column of ones (no additional 
variables included in this analysis), α is a vector of corresponding co-
efficients (including intercept), x is a vector of SNP genotypes, β is the 
corresponding effect of SNPs, u is a vector of random effects, and ϵ 
is a vector of errors. The random effect term (u) can incorporate a re-
latedness matrix (centered relatedness matrix generated in GEMMA; 
Data S2), which we included to account for relatedness as we observed 
many closer-than third-degree relatives in this population (see also the 
kinship coefficient matrix from PLINK v2.0; Data S2). The relatedness 
matrix was estimated using all sheep with RADseq data in the Lostine 
population (n = 82; Andrews et al., 2018), not just the individuals with 
longitudinal disease information used in the GWA. The association 
analysis was performed using GEMMA v0.98.1 (using -miss 0.1 -hwe 

(1)y = W� + x� + u + �

https://github.com/s4hts/HTStream
https://github.com/s4hts/HTStream
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0.000001 -maf 0.01-km 1 -lmm 4; Zhou & Stephens, 2012), and the 
likelihood ratio test p-values were used to test the null hypothesis 
(β = 0) for each SNP. The p-value significance threshold was adjusted 
using Bonferroni correction resulting in a threshold of 4.71  ×  10–6. 
Further, as the Bonferroni method can be overly conservative, we con-
trolled for type I errors by using false discovery rate (FDR) method-
ology, whereby new significance values (q-values) and threshold are 
defined: in this case, we use α = 0.15 (15% of significant values are ex-
pected to be false positives) (Benjamini & Hochberg, 1995). Manhattan 
and quantile–quantile plots (Q-Q plot) were created using the qqman 
package v0.1.4 in R (Turner, 2014).

2.7 | Identification of candidate genes

Genes with potential for influencing carrier status were identi-
fied as any genes located within a 500  kb window (up- or down- 
stream) of SNPs associated with persistent carriage. This window is 
based on linkage decay reported for this RADseq dataset (Andrews 
et  al.,  2018). Candidate genes were visualized using the NCBI 
Genome Data Viewer (https://www.ncbi.nlm.nih.gov/genom​e/gdv) 
and the domestic sheep genome (Ovis aries, Oar v4.0; GenBank ac-
cession GCA_000298735.2; annotation release 102).

2.8 | Gene ontology enrichment analysis

We implemented an overrepresentation test using PANTHER 
(http://geneo​ntolo​gy.org/; Mi et al., 2018), which identifies over- or 
under-represented gene ontology terms for a gene subset in relation 
to a reference gene set. The subset of genes associated with the 
significant SNPs identified by the family-based GWA analysis (the 
candidate genes identified by the previous section) was compared to 
a reference gene set comprised of all genes within a 500 kb window 
of all SNPs used in the analysis. To determine the list of genes in 
the reference set, we first used the UCSC Genome Table Browser 
database to obtain a full list of annotated genes with their positions 
on the O. aries v4.0 genome (https://genome.ucsc.edu/cgi-bin/hgTa-
bles; Karolchik et al., 2004). We then used BEDTools v2.29 (Quinlan 
& Hall, 2010) to identify genes positioned within a 500 kb window 
of all loci used in the family-based GWA. The PANTHER analysis uti-
lized biological processes, cellular components, and molecular func-
tions identified for genes in the human genome and applied Fisher's 
exact test, and p-values were corrected using false discovery rate 
(FDR) calculations.

2.9 | Genetic architecture

To understand if pneumonia carrier status is polygenic (many loci 
influencing the phenotype, each having little effect) or oligogenic 
(few loci affecting the phenotype, each having a large effect), a 
Bayesian sparse linear mixed model (BSLMM) was implemented in 

GEMMA v0.98.1 (Zhou et al., 2013). The structure of the model was 
as follows:

where 1n is n-vectors of 1s, μ is a scalar for phenotype mean, x is a 
vector of SNP genotypes, β is the corresponding genetic marker ef-
fects, u is a vector of random effects (relatedness matrix), and ϵ is a 
vector of errors. The BSLMM estimates the proportion of variance in 
phenotypes explained by the SNPs using xβ and u (PVE; “chip heritabil-
ity”) and estimates a parameter rho whereby values close to 0 imply a 
polygenic architecture and values close to 1 imply oligogenic structure 
(Zhou, 2016). The probit BSLMM was run for 50 million sampling itera-
tions following a 500k iteration burn-in, and parameter estimates were 
recorded every 10 iterations for a total of 500,000 sampled values. 
While this method can be limited by small sample size, we report the 
results and acknowledge a level of uncertainty.

3  | RESULTS

3.1 | Sample size and diversity metrics

A total of 98,307 variant loci were identified using genomic data 
from 52 bighorn sheep (19 carriers and 33 control genotypes). 
After quality filtering of the sequence data (see Data S1), a total 
of 10,605 SNPs (of which n  =  39 aligned to unplaced scaffolds) 
were identified and included in the genome-wide association 
analysis. Of these, n = 151 SNPs occurred within the MHC gene 
complex, including n  =  124 SNPs in the MHC class II region and 
n = 27 SNPs in the MHC class III region (no SNPs occurred in the 
MHC class I region). Details regarding final SNP locations and cov-
erage across chromosomes can be found in Data S3. After con-
trolling for age, a total of 25 individuals (all female) remained, with 
19 having control (noncarrier) status and six having carrier status 
(Table 1). Mean individual standardized heterozygosity did not dif-
fer between carrier and control groups (meancarrier = 1.03, mean-

control  =  1.04, t=−0.32, df  =  6.03, p  =  .76). Further, there was no 
difference in observed population-level heterozygosity between 
carrier and control groups for the 10,605 loci (meancarrier = 0.25, 
meancontrol = 0.25, t=−1.09, df = 20,321, p = .28), or for loci that fell 
within the Ovar-Mhc region (meancarrier = 0.23, meancontrol = 0.24, 
t = −0.45, df = 293.13, p =  .65). The mean allelic richness across 
all 10,605 loci was 1.55 (variance 0.14) and 1.55 (variance 0.10) 
for carrier and control groups, respectively (t = −0.10, df = 20,482, 
p = .92), and mean private allelic richness was 0.17 (variance 0.03; 
t = −0.19, df = 21,087, p =  .85) for both groups when rarefaction 
subsample size was set to 6. Similarly, no difference in allelic rich-
ness was observed across loci within the Ovar-Mhc region: mean 
allelic richness across was 1.51 (0.15 variance) and 1.51 (variance 
0.12) for carrier and controls (t = −0.04, df = 296.53, p = .97), and 
mean private allelic richness was 0.16 (variance 0.03 and 0.04 for 
carriers and controls, respectively; t = −0.07, df = 295.94, p = .94).

(2)y = 1n� + x� + u + �

https://www.ncbi.nlm.nih.gov/genome/gdv
http://geneontology.org/
https://genome.ucsc.edu/cgi-bin/hgTables
https://genome.ucsc.edu/cgi-bin/hgTables
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3.2 | Single SNP association

The Manhattan and Q-Q plots for the carrier trait association analy-
sis are shown in Figure 2. After implementing false discovery rate 
methods, the univariate linear mixed model identified two SNPs that 
were associated with the carrier phenotype (Figure 2c). The first SNP 
(ID: 14,407:36:+, Table 2) fell within the 5’ untranslated mRNA region 
of the growth hormone secretagogue receptor gene (GHSR) on chro-
mosome 1. Further, within the 500  kb up- and down-stream win-
dow of this SNP, there were five genes of interest (Table 2, Figure 3). 
The second associated SNP was positioned on chromosome 7 of the 
O. aries genome in a noncoding region, with one additional gene of 

interest within the 500 kb window (Table 2). The functions of these 
potential candidate genes are outlined in Table  3 and were deter-
mined using the National Center for Biotechnology Information and 
UniProt databases, https://www.ncbi.nlm.nih.gov/gene and https://
www.unipr​ot.org, respectively (Hutchins, 2014), as well as published 
literature. Additional information regarding candidate gene function, 
processes, and disease associations are outlined in Data S4.

3.3 | Enrichment analysis

The gene ontology biological process enrichment analysis compared 
seven candidate genes to 1,003 reference genes identified by the 

F I G U R E  2   Q-Q (a), Manhattan (b), 
and false discovery rate (c) plots for the 
results of the family-based genome-wide 
association of the M. ovipneumoniae 
chronic carrier trait. (b) The Manhattan 
plot displays the chromosomal location 
and -log10(P-value) for each variant 
included in the association test 
(represented as points). The Bonferroni-
corrected threshold of 4.71 × 10–6 (5.32 
on -log10 scale) is designated by the blue 
horizontal line. (c) False discovery rate 
corrected q-values are plotted with a 
cutoff of 0.15 (blue horizontal line). Two 
SNPs are identified as being significant 
(see Table 2)

TA B L E  2   Single nucleotide polymorphism (SNP) loci identified as significant in the family-based genome-wide association analysis (n = 2). 
Allele frequencies were calculated using PLINK v1.9 (--assoc command)

Chr ID / position region P-val q-val A1 A2 f(A) f(U) He LD region

1 14,407:36:+
212,949,890

gene region,
mRNA UTR

2.2E−05 0.115 T C 0.00 0.47 0.56 Gene(s): GHSR, SPATA16, ECT2, 
NCEH1, TNFSF10, FNDC3B

Pseudogene(s): LOC101113032

7 182,910:31:-
59,906,180

noncoding 7.3E−06 0.078 G A 0.67 0.13 0.28 Gene(s): SEMA6D
Pseudogene(s): LOC101110148

Note: Chr, chromosome; ID, variant identification; UTR, untranslated region; A1, allele 1 (minor allele); A2, allele 2 (major allele); f(A), frequency of 
allele 1 among individuals with the case phenotype (chronic carrier); f(U), frequency of allele 1 observed in individuals with the control phenotype 
(noncarrier); He, observed heterozygosity at locus; LD region, genes, pseudogenes, or protein-coding regions within ± 500 k base pairs up- or down-
stream of the SNP location (within the linkage disequilibrium decay threshold).

https://www.ncbi.nlm.nih.gov/gene
https://www.uniprot.org
https://www.uniprot.org
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USCS table browser to be ± 500 kb from any SNPs in the dataset. 
The reference genes related to 8,884 biological processes (GO 
terms), 1,709 molecular functions, and 879 cellular mechanisms in 
the human genome. After FDR corrections, no gene ontology terms 
were found to be overrepresented in any of the three categories.

3.4 | Genetic architecture

The BSLMM revealed that 10,605 SNPs explain approximately 
55.9% (PVE median, mean 54.5% ±32 S.D.) of the phenotypic vari-
ance, with a select few (median n = 16 SNPs) having a relatively large 
effect, explaining 45.2% (PGE median, mean 46.2% ± 31.7 S.D.) of 
phenotypic variance (Table 4). The value for rho (0.50, median) does 
not clearly identify the genetic architecture as either polygenic or 
oligogenic (Table 4). These results yield high uncertainty (see Table 4 
and sampling distributions in Data S5), which is likely the result of 
small phenotypic sample size. While convergence was difficult to at-
tain for some parameters (n[gamma] and pi), conservative inference 
may be made for others (PVE, PGE, and rho).

4  | DISCUSSION

Pneumonia resulting from M. ovipneumoniae infection is one of the 
major factors impeding the recovery of bighorn sheep in North 
America. Outbreaks can result in devastating all-age die-offs, fol-
lowed by limited lamb recruitment due to chronic carriers remaining 
in affected populations (Cassirer et al., 2018; Garwood et al., 2020). 
Here, we explored the impact of host genomics on the postoutbreak 
chronic carrier disease phenotype in bighorn sheep. We analyzed 
10,605 single nucleotide polymorphisms from across the bighorn 
sheep genome and reveal two loci associated with the chronic car-
rier phenotype. Further, a total of seven candidate genes were iden-
tified as potentially influencing disease phenotype. No differences 

were observed in heterozygosity or allelic richness between pheno-
types. While conclusions here are limited by sample size, these find-
ings present a first step toward understanding the genomic basis of 
chronic carriage in bighorn sheep and lay the foundation for future 
research. Larger sample sizes for both carriers and controls (of both 
sexes) as well as the inclusion of sheep from additional herds are 
needed to further explore the genomic associations identified here.

4.1 | Genetic diversity and M. 
ovipneumoniae carriage

Loss of genetic diversity and inbreeding are expected to leave 
host populations vulnerable to disease risk (Spielman et al., 2004). 
Further, polymorphisms near-to or within genes involved in immune 
function may play an important role in an individual's susceptibil-
ity, resistance, and tolerance to disease (O'Brien & Evermann, 1988). 
Here, we compared heterozygosity and allelic richness, across the 
entire SNP panel and for SNPs located within the MHC region, for M. 
ovipneumoniae carrier and control groups in bighorn sheep.

Host heterozygosity has often been associated with genetic 
health and the ability to resist pathogen infection (e.g., heterozygous 
advantage; Spurgin & Richardson, 2010). This idea has been previ-
ously demonstrated in free-living sheep. For example, inbred Soay 
sheep (Ovis aries)—as assessed by heterozygosity at several microsat-
ellite loci—were found to be more susceptible to gastrointestinal par-
asites (Coltman et al., 1999). In the bighorn sheep population studied 
here, differences in heterozygosity between M. ovipneumoniae car-
riers and noncarriers were previously assessed at eleven neutral and 
four putatively adaptive microsatellite loci (Plowright et al., 2017). 
Plowright et al. (2017) found that one of the four putatively adaptive 
loci (located in the MHC I gene complex) had significantly lower het-
erozygosity in persistent carriers relative to noncarriers; the other 
three loci, which occurred in other immune system-related genes, 
showed no differences in heterozygosity. Plowright et  al.  (2017) 

F I G U R E  3   Genome view of phenotype associated single nucleotide polymorphism (SNPs) and peripheral protein-coding regions. 
Locations of SNPs identified as associated by the analysis are shown in red. Gene regions are defined by green horizontal bars (intron 
regions) and green vertical bars (feature intervals or exons). Gray left-facing arrows indicate that the region is located on the complement. 
Pseudogenes are designated by the green-striped shading and exons in these regions are represented by vertical black bands
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also found no differences in heterozygosity between groups at the 
eleven neutral microsatellite loci. Similarly, we detected no differ-
ence in population- or individual-level heterozygosity across our full 

set of SNP loci between carriers and noncarriers. We also found no 
difference in heterozygosity between groups when comparing loci 
located in the Ovar-Mhc region on chromosome 20. Notably, how-
ever, all of these loci occurred within the MHC II or MHC III com-
plexes, and none occurred within the MHC I gene complex, where 
the microsatellite locus in Plowright et al. (2017) occurred. Though 
heterozygosity has been associated with host susceptibility and re-
sistance in some wildlife disease systems, this may vary depending 
on the host and pathogen. Here, we found no association between 
heterozygosity and pneumonia carriage in bighorn sheep.

Allelic richness—or, the average number of alleles per locus—is 
another metric by which genetic diversity can be assessed and is a 
reliable predictor of a population's potential adaptability (Caballero 
& García-Dorado,  2013). A related metric, private allelic richness 
(the number of unique alleles in a group) is used to genetically dis-
tinguish groups from one another (Kalinowski, 2004). We assessed 
allelic richness in our dataset using rarefied methods to account for 
disparities in sample sizes and found no difference in overall allelic 
richness or private allelic richness between phenotypes. The lack 
of significant differences for genetic diversity observed between 

TA B L E  3   Description of candidate gene function and tissues where they are expressed in O. aries. Information regarding the tissues 
where the highest expression of each gene is observed in O. aries was obtained from the National Center for Biotechnology Information 
website (https://www.ncbi.nlm.nih.gov/gene/). Additional information regarding biological processes for each gene can be found in Data S4

Gene Summary of gene function
Highest expression in 
O. aries Citation

GHSR: growth hormone 
secretagogue receptor

(1) Stimulation and release of hormones, (2) 
regulation of energy metabolism and food intake, 
(3) regulation of cell growth and survival, (4) 
pancreatic function, (5) regulation of immune 
functions related to aging and gastrointestinal 
homeostasis, (6) mitigation of inflammatory 
processes, and (7) cardio vascular and nervous 
system cell protection. Can be expressed in select 
forms of cancer

spleen, prescapular and 
mesenteric lymph node, 
omentum, lung tissues

Taub, 2007; Yin et al., 2014

SPATA16: spermatogenesis 
associated 16

Influences spermatozoa production testes

ECT2: epithelial cell 
transforming 2

Role in Rho activation (an essential protein that 
functions in furrow formation during cell cleavage. 
Overexpression of ECT2 has been observed in 
tumor tissues in humans. Also involved in enzyme 
regulator activity and enzyme binding

placental tissues, whole 
embryos

Yüce et al., 2005; Sano 
et al., 2006

NCEH1: neutral cholesterol 
ester hydrolase 1 (also 
called KIAA1363)

Plays role in hydrolysis of intracellular cholesterol 
ester and ether lipid signaling network. Elevation 
of NCEH1 has been documented in cancer cells; 
suppression of NCEH1 expression inhibits tumor 
cell migration and growth

cerebrum, hypothalamus, 
brain stem, alveolar 
macrophages

Chiang et al., 2006; Igarashi 
et al., 2010

TNFSF10: TNF superfamily 
member 10

Induces apoptosis in neoplastic cells (abnormal cell 
masses, such as tumors), plays role in suppressing 
cancer cells and their metastases

lymph node, lung tissue Griffith et al., 1998; Hellwig 
& Rehm, 2012

FNDC3B: fibronectin type 
III domain containing 3B

Potential to act as an oncogene when 
overexpressed, may promote tumor growth

placental tissues Cai et al., 2012; Lin 
et al., 2016

SEMA6D: semaphorin 6D (1) Immune function, (2) osteoclastogenesis, (3) 
cardio morphogenesis. Putative role in cancer

adrenal gland, brain 
stem, mammary 
gland, corpus luteum, 
hypothalamus, lung 
tissues

Kumanogoh & 
Kikutani, 2010; Kang & 
Kumanogoh, 2013; Chen 
et al., 2015; Moriarity 
et al., 2015; Lu et al., 2016

TA B L E  4   Results from the Bayesian sparse linear mixed 
model assessing heritability of carriage. There was considerable 
uncertainty in n.gamma estimates (see Data S5) that could not be 
resolved

Parameter Mean (SD) Median

Variance explained by all 
genotypes (PVE)

0.545 (0.320) 0.559

Number of large-effect SNPs 
(n.gamma)

82.55 (168.11) 16

Variance explained by large-
effect SNPs (PGE)

0.462 (0.317) 0.452

Genetic architecture (rho) 0.506 (0.288) 0.509

Note: PVE, phenotypic variance explained by all SNPs; PGE, phenotypic 
variance explained by large-effect SNPs (n.gamma); n.gamma, number 
of large-effect SNPs; rho, value for genetic architecture; SD, standard 
deviation. Means and medians were calculated from the posterior 
distribution.

https://www.ncbi.nlm.nih.gov/gene/
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phenotypes for all diversity measures suggests that genome-wide 
diversity is likely not predictive of carrier status.

4.2 | Candidate genes and sinus tumors

Seven candidate genes were identified nearby to the SNPs associated 
with chronic carrier status, using the annotation of the domestic sheep 
(O. aries) genome (Oar v4.0). Of these seven, six genes—ECT2, NCEH1, 
TNFSF10, FNDC3B, GHSR, and SEMA6D—have either been observed at 
elevated expressions in tumor cells or have been documented acting 
as oncogenes for specific cancers in humans (genes that can trans-
form cells into tumor cells). Changes in expression of these genes may 
influence tumor regulation in the bighorn sheep host.

Paranasal sinus tumors in Rocky Mountain bighorn sheep are 
characterized by thickening of the sinus lining (maxillary and/or fron-
tal sinuses) and neoplasm exudate (liquid secretion from abnormal 
growths or damaged tissues) (Fox et al., 2010). Sinus tumors were a 
good predictor of pathogenic bacteria (including M. ovipneumoniae) 
carriage in the upper respiratory tracts of bighorn sheep in a Colorado 
population (Fox et  al.,  2015). Specifically, 36% of sheep with sinus 
lining thickened >5 mm were PCR positive for M. ovipneumoniae (as 
opposed to 13% PCR positive with no tumor presence). These findings 
suggest that sinus tumors may disrupt the host's ability to clear patho-
gens, allowing for maintenance of chronic infections in the upper re-
spiratory tract and potential prolonged shedding (Fox et al., 2015). In 
our study, six of the seven candidate genes associated with persistent 
pathogen carriage have functions in tumor regulation, potentially 
indicating that a genetic predisposition to tumor growth influences 
pathogen carriage. However, no gene ontology terms were found to 
be significantly overrepresented for these seven candidate genes. 
Additional research would help assess the potential for a genetic pre-
disposition for tumor development, and consequently, if this impacts 
the risk of chronic carriage of M. ovipneumoniae.

In our dataset, information regarding the presence or absence 
of sinus tumors was available for five individuals (four chronic carri-
ers and one intermittent carrier), and each of these individuals had 
sinus tumors (Table  1). The presence of tumors in all four chronic 
carriers supports the hypothesis that tumors prevent pathogen 
clearing and promote long-term pathogen shedding (high infectivity, 
superspreaders). However, tumor data were not available for the re-
maining samples, thus limiting the conclusions that can be drawn re-
garding the association between carrier status and tumor presence 
for this dataset. Additional monitoring for tumors in both control and 
carrier sheep is necessary to better understand the role of tumors in 
pneumonia carriage in bighorn sheep.

4.3 | Mutation in the growth hormone secretagogue 
receptor (GHSR) gene

Two SNP variants were identified as being associated with M. ovip-
neumoniae carrier status in bighorn sheep. One variant was located 

in the 5’ untranslated region (5’UTR; mRNA leader sequence) of the 
growth hormone secretagogue receptor (GHSR) gene. The GHSR 
gene encodes a G-protein-coupled receptor that binds ghrelin, a 
peptide hormone, and is most widely recognized for its role in en-
ergy metabolism and growth (Müller et al., 2015). However, ghrelin 
and its receptor GHSR may play a complex role in the regulation 
of several other physiological functions, including immune func-
tion (Dixit & Taub, 2005; Yin et al., 2014). The variant identified by 
the genome-wide association analysis falls within the 5’ untrans-
lated region of the GHSR, a region that does not directly translate 
into proteins; however, both 5’ and 3’ untranslated regions are 
transcribed and function in post-transcriptional regulation (Hubé 
& Francastel,  2018). In instances when a start codon is located 
in the 5’ untranslated region, peptide (short chain of amino acids) 
translation can occur, which may affect expression of down-stream 
proteins (Calvo et al., 2009). However, these regions—known as up-
stream open reading frames—are not present in the 5’ untranslated 
region of the GHSR gene in the O. aries genome (assembly version 
4.0).

In domestic bovids, mutations in the GHSR gene have been of 
interest for selective breeding potential and quality assessment. 
Polymorphisms identified in the 5’ untranslated region of the GHSR 
were associated with increased carcass weight and average daily 
gain in domestic cattle (Komatsu et  al.,  2011). In caprine, investi-
gations of polymorphisms in the protein-coding region of the GHSR 
gene have been associated with changes in body metrics, including 
body weight, body length, blood cholesterol, and abdominal fat in 
domestic sheep (Bahrami et al., 2012), and body weight and chest 
depth in domestic goats (Da et al., 2013). Past research has indicated 
that ghrelin and GHSR may play an important role in inflammation 
regulation (suppression; Dixit & Taub, 2005), and GHSR mRNA ex-
pression in human leukocytes (T and B cells and monocytes) sug-
gests the ghrelin/GHSR pathway may have a role in generating or 
controlling immune response (Dixit & Taub, 2005; Taub, 2007). In the 
Lostine bighorn sheep herd, neither carcass trait data nor immune 
function data were available, limiting our understanding of the im-
pact that the GHSR 5’ untranslated region mutation may have had on 
bighorn sheep body metrics and immune response.

4.4 | Genetic architecture of carriage—polygenic?

Genetic architecture refers to the genetic contribution to—or herit-
ability of—a given phenotype, specifically whether the phenotype 
is influenced by few or many variants and the respective contribu-
tion of each variant to the phenotype. For example, in wild bighorn 
sheep, narrow-sense heritability of fitness-related traits, specifically 
horn size, has been investigated using quantitative trait loci (QTL) 
(Johnston et al., 2010; Poissant et al., 2012). However, heredity of 
disease-related traits—such as susceptibility, resistance, and infec-
tivity—can be difficult to quantify in wildlife. An understanding of 
genetic architecture for disease phenotypes can provide important 
insight into effective mitigation practices, including risk assessment, 
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drug development, and screening (Timpson et al., 2018). For exam-
ple, in domestic sheep, heritability of susceptibility to ovine footrot 
was found to be ~40% and the genetic architecture was polygenic 
(many loci contributing a small amount to phenotype), revealing 
that genetic screening would not suffice for assessing sheep quality 
(Raadsma et al., 2018).

Here, we found that our SNP panel accounted for ~55% of the 
phenotypic variance (chip heritability) in the carriage phenotype, 
with large-effect variants contributing to approximately 25% of the 
total phenotypic variance (or approximately 45% of the total vari-
ance explained by all SNPs). However, there is considerable uncer-
tainty surrounding both estimates: the number of large-effect SNPs 
could not be quantified with confidence, likely due to our relatively 
small sample sizes. Our results preliminarily suggest that more SNPs 
may have a large effect on the carrier phenotype than just the two 
identified in our analysis. However, our confidence intervals were 
broad, and additional studies with increased sample sizes would be 
required to fully characterize the genetic architecture of the carrier 
phenotype. A greater understanding of the numbers and effect sizes 
of genetic variants that influence resistance would allow manag-
ers to better assess the utility of using genomic screening moving 
forward. Specifically, the presence of few, large-effect SNPs would 
allow for more focused carrier screening, as opposed to many, small 
effect variants spread across the genome.

4.5 | Future directions

This study provides preliminary evidence of correlations between 
genotype and disease carriage in bighorn sheep. Due to the inher-
ent difficulty in longitudinal sampling of wildlife, this study is not 
without limitations. While we employed conservative methods for 
assigning carriage status, there remains uncertainty and potential 
for error in carriage assignment. Discrepancies in the number and 
timing of M. ovipneumoniae tests performed per individual may have 
influenced carriage status. As there is a general U-shaped trend 
for chronic carriage and age (Plowright et al., 2017), we attempted 
to control for this by eliminating individuals that were sampled at 
ages <4 or >14, exclusively. The limitations presented by testing 
number are more difficult to control for and are in-part a func-
tion of field sampling opportunities. Additional genome-wide as-
sociation analyses in other bighorn populations are needed to test 
these associations and to provide greater insight into associations 
between genomic composition, tumor susceptibility, and pathogen 
carriage. Larger sample sizes—both in number of individual sheep 
and in number of tests per sheep—would increase statistical power 
for identifying genomic associations. Increasing testing per sheep 
across different ages would increase confidence in carriage as-
signment and reduce error in the independent variable. Further, 
increasing the number of genomic markers surveyed in these stud-
ies would also improve our understanding of these associations. 
The RADseq approach used here surveyed thousands of mark-
ers across the genome with the caveat that identified associated 

variants may not truly impact the observed phenotype, but may 
be linked with an unidentified polymorphism that influences phe-
notype. In contrast, a whole-genome sequencing approach, while 
substantially more expensive, would provide a more thorough as-
sessment of genomic associations and would have greater ability 
to identify variants that directly impact the phenotype (Visscher 
et al., 2017).

The association we identified here between persistent pathogen 
carriage and tumor regulation genes prompts additional questions 
that should be explored. First, to further understand the relation-
ships between carriage and genomic variation related to tumor 
regulation in bighorn sheep, additional representative sampling is 
required from both carrier and noncarrier bighorn sheep of both 
sexes and across populations infected with other strains of M. ovi-
pneumoniae. Additional approaches could include investigation 
of associations between carriage and a targeted subset of genes 
known to be associated with cancer, for example, using an ampl-
icon sequencing approach (Meek & Larson,  2019). This approach 
would be substantially less expensive than RADseq or whole-ge-
nome sequencing. Other approaches that would help elucidate the 
relationships between genomic composition, tumor susceptibility, 
and persistent carriage include (a) assessing the differences in can-
didate gene expression in chronic carriers relative to noncarriers, 
(b) exploring external factors (e.g., viruses) as potential instigators 
for tumor development, (c) documenting tumor prevalence in both 
disease classes (carriers and noncarriers) in additional populations 
where tumors are present, and iv) investigating the possibility that 
tumor development is instigated by infection with etiological agents 
of pneumonia, rather than persistent pneumonia infection being in-
stigated by tumor development.

5  | CONCLUSIONS

Here, we investigated the influence of genomic composition on per-
sistent carriage of M. ovipneumoniae in bighorn sheep. To our knowl-
edge, this is the first study to investigate the connection between 
genomic composition and persistent carriage in a free-living species 
using restriction site-associated DNA sequencing (RADseq) technol-
ogy. We observed no difference in genome-wide diversity (allelic 
richness and heterozygosity) between phenotypes. However, we 
did identify two variant loci and seven genes associated with carrier 
status, and six of these genes have functions related to tumor regula-
tion. This result suggests potential causative links between genomic 
composition, tumor susceptibility, and pneumonia carriage. Support 
for this causative association comes from previous studies indicat-
ing a connection between paranasal sinus tumors and pneumonia 
in bighorn sheep. However, we observed no overrepresentation in 
our gene ontology analysis, and our interpretations are limited by 
our small sample size. This study provides a starting point for under-
standing the genomic basis and biological mechanisms underlying 
inability to clear infection in bighorn sheep, both of which are poorly 
understood but could provide important insight for understanding 
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factors contributing to chronic pathogen carriage and potentially 
contributing to effective management strategies to combat pneu-
monia in bighorn sheep populations.
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