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BACKGROUND For comprehensive electrocardiogram (ECG) syn-
thesis, a recent promising approach has been based on a heart
model with physical and chemical cardiac parameters. However,
the problem is that such approach requires a high-cost and limited
environment using supercomputers owing to the massive computa-
tion.

OBJECTIVE The purpose of this study is to develop an efficient
method for synthesizing 12-lead ECG signals from cardiac parame-
ters.

METHODS The proposed method is based on a variational autoen-
coder (VAE). The encoder and decoder of the VAE are conditioned by
the cardiac parameters so that it can model the relationship be-
tween the ECG signals and the cardiac parameters. The training
data are produced by a comprehensive, finite element method
(FEM)-based heart simulator. New ECG signals can then be synthe-
sized by inputting the cardiac parameters into the trained VAE
decoder without relying on enormous computational resources.
We used 2 metrics to evaluate the quality of ECG signals synthesized
by the proposed model.
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RESULTS Experimental results showed that the proposed
model synthesized adequate ECG signals while preserving
empirically important feature points and the overall signal
shapes. We also explored the optimal model by varying the
number of layers and the size of latent variables in the pro-
posed model that balances the model complexity and the
simulation accuracy.

CONCLUSION The proposed method has the potential to
become an alternative to computationally expensive FEM-
based heart simulators. It is able to synthesize ECGs from
various cardiac parameters within seconds on a personal laptop
computer.
KEYWORDS Variational autoencoder; Electrocardiogram; Synthesis;
Cardiac parameters; Finite element method
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Introduction
Electrocardiograms (ECG) are graphical representations of
the electric potential changes generated by the excitation of
the myocardial cells of the heart detected using electrodes
placed at specific locations on the body surface. ECG is a
common tool for monitoring cardiac health and detecting
heart disease in medical practice.1–8 Various tools and
techniques to analyze ECG signals and quickly detect
abnormalities have been devised over many decades in
order to improve medical care. In recent years, advances in
machine learning technologies such as deep neural
networks (DNNs)4,9,10 have led to rapid development in
research that seeks to find useful clinical clues from real
ECGs. Efforts to date using even limited amounts of properly
annotated ECG data suggest that this could be a productive
approach for early detection of abnormalities and diag-
nosis.10–17 However, it is not easy for experts to manually
add clinical insights to real ECGs from multiple
perspectives, and this is a serious obstacle facing this AI-
based research strategy. The acquisition, analysis, and label-
ing of electrocardiograms is extremely time consuming,
requiring both specialized expertise and specialized equip-
ment. In addition, using actual ECGs from medical patients
requires strict compliance with applicable laws and regula-
tions covering data privacy.

In this context, there is a need for new approaches that do
not rely solely on the analysis of real ECGs by human experts
with specialized knowledge about these ECGs.

Over the years, attempts have been made to synthesize and
simulate ECGs on a computer as an alternative to relying
solely on actual ECGs from patients interpreted by clinical
experts. Conventional approaches to synthesizing ECG sig-
nals are based on the dynamic models described by ordinary
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differential equations.18,19 Newer DNN-based approaches to
synthesizing ECGs have also emerged more recently which
focus on the waveform shapes (morphological patterns) of
ECG signals. As such, EGG signals synthesized by these ap-
proaches are linked only to shape features representing
morphological patterns (eg, timing and voltage of R posi-
tions).9,18,20

There are also methods that can synthesize ECG signals
from physical and chemical parameters, including electro-
chemical parameters at the cellular level.21 In this paper,
we refer to such parameters as cardiac parameters and use
the cardiac parameters listed in Table 1. ECG synthesis
from cardiac parameters is expected not only to more accu-
rately reflect the relationship between an ECG and the inter-
nal state of the human heart, but also to help better understand
clinical states, because it is more consistent with the underly-
ing mechanisms of the ECG signal generation and propaga-
tion process than ECG synthesis derived only from ECG
appearances.

The ability to easily synthesize ECG signals from cardiac
parameters is expected to provide important clues for early
detection of heart disease and screening treatment strategies
for individual patients. A straightforward approach, for
example, is the compilation of an encyclopedia of electrocar-
diograms for each patient using synthetic ECGs for a variety
of cardiac parameters in advance with reference to the case
histories. Such an encyclopedia would allow an actual
ECG from the patient to be systematically searched for
similar ECGs.

There have been promising efforts to use advanced heart
simulators based on the finite element method (FEM) to
computationally synthesize ECGs. While capable of princi-
pled synthesis, the FEM-based heart simulators are too
computationally expensive to be a practical solution for ap-
plications, such as creating a comprehensive encyclopedia
of ECGs. For example, the UT-Heart21 simulator takes about
350 node-hours1 on the supercomputer Fugaku2 to synthe-
size a single-beat 12-lead ECG. In addition, when the cardiac
simulation is used to analyze complex multifactorial pathol-
ogies such as heart failure, it is difficult to use computation-
ally expensive methods owing to the combinatorial explosion
of factors.

Against this background, the goal of this study is to
construct a fast method that simulates the mechanism of the
FEM-based method and synthesizes ECGs having the same
quality as those obtained by the FEM-based method. That
is, this method is intended not to improve the accuracy of
the simulation of the original FEM-based method, but to
significantly increase its speed while maintaining as much ac-
curacy as possible. A fast and high-quality ECG synthesis
method has potential to discover new clinical knowledge
and insight. For example, a fast ECG simulator may generate
1Nodemeans a management unit of a supercomputer, and node-hour is a
unit of computation time equivalent to 1 hour of computation on 1 node.

2Fugaku is a supercomputer developed in Japan, and each node of the su-
percomputer Fugaku has 1 Fujitsu A64FX CPU with 48 cores.
many reference ECGs by interpolating and extrapolating the
cardiac parameters representing the various heart conditions.
These generated ECGs may be used, for example, in medical
practice, for training other machine learning models, and for
creating an ECG encyclopedia by accumulating them. The
potential applications and challenges to use of a fast, para-
metric ECG synthesis method are further discussed in the
Discussion section.

To achieve this goal, we propose a DNN-based method to
accelerate the speed of ECG generation by simulating the
process of the FEM-based method. In this paper, we adopt
a conditional variational autoencoder (VAE) architecture
for representing the cardiac parameters and the other factors
as conditional inputs and latent variables in the VAE. This
study is the first report to point to a method for replicating
an elaborate physical/electrical heart simulator for ECG syn-
thesis using a general-purpose machine learning model,
greatly reducing the computational cost. Using the accuracy
measures in terms of the peak signal-to-noise ratios and the
mean absolute errors of Q, R, S, and T positions, we
confirmed that the proposed method is equivalently accurate
to reproduce the ECG generation compared with the FEM-
based heart simulator using the same cardiac parameters.
ECG synthesis, which currently requires slow and expensive
computation of FEM-based heart simulators on a supercom-
puter, can therefore potentially be replaced by general-
purpose machine learning tools running on a standard laptop.
Methods
Dataset
We used an open dataset of 12-lead ECG signals synthesized
by the multi-scale multi-physics heart simulator “UT-
Heart”21 to train and evaluate the proposed model. In the da-
taset, UT-Heart takes as input 16 cardiac parameters, named
SCon, LCon, INa, SERCA, ICaL, CaRC, NCX, IKs, IKr, Ito,
IK1, LV, EX, CELL, HR, and CIR, major known factors asso-
ciated with heart failure as listed in Table 1. Other factors that
may affect ECG, such as body shape, sex, environment, and
personality, are not considered. The detailed description of
the cardiac parameters can be found on their official web
page.22 The dataset includes 2880 ECG variations, corre-
sponding to the number of combinations of the above cardiac
parameters.

In the information provided with the current UT-Heart
data, the continuous value parameter is set at 100% after care-
ful selection by the authors of the UT-Heart simulator of sit-
uations that are assumed to be healthy, and candidate values
that may cause potential adverse effects such as disease are
evaluated relative to each other. Such a setup is very reason-
able, since UT-Heart has a vast number of parameters other
than cardiac parameters that govern body shape, sex, etc;
and since the absolute values themselves, which can be repre-
sentative of the situation of a healthy person, are heavily
influenced by factors other than those cardiac parameters.
Thus, it is not easy to give a clinical interpretation to absolute
values of cardiac parameters. Therefore, continuous values of



Table 1 Cardiac parameters used as inputs for the proposed machine learning-based method and for the conventional finite element–based
method

Name Description of individual cardiac parameters†

SCon, LCon Cardiac conduction velocities in the short- and long-axis directions of cardiomyocytes. The tuple of them takes 3
continuous values: (100%, 100%), (120%, 80%), or (100%, 80%).

INa Conductance of sodium current. It takes 2 continuous values: 100% or 70%.
SERCA, ICaL, CaRC Amount of sarcoplasmic reticulum Ca21 ATPace, the scale of L-type Ca21 current, and the degree of phosphorylation. The

tuple of them takes 2 continuous values: (100%, 100%, 100%) or (50%, 70%, 150%).
NCX Activity of Na1-Ca21 exchanger current. It takes 2 continuous values: 100% or 150%.
IKs, IKr, Ito, IK1 Slow and fast components of delayed rectifier outward potassium current, transient outward potassium current, and inward

rectifier potassium current. The tuple of them takes 3 continuous values: (100%, 100%, 100%, 100%), (50%, 80%, 80%,
80%), or (30%, 50%, 30%, 50%).

LV Sphericity of the left ventricular shape. It takes 2 discrete patterns corresponding to the cases SI5 0 $ 53 and SI5 0$ 68,
where SI stands for sphericity index, defined by (sphericity index)5 (heart long-axis length) / (heart short-axis length).

EX Ventricular activation pattern. It takes 4 discrete patterns: normal, left axis deviation, right axis deviation, and mild delay
in right ventricular activation.

CELL Arrangement pattern of the 3 ventricular cell models: endocardial cell, M-cell, and epicardial cell. It takes 5 discrete
patterns.

HR Heart rate. It takes 1 discrete pattern indicating the heart rate of 60 beats per minute.
CIR Circulation parameter that indicates either normal, heart failure, or diastolic dysfunction.26 The current data contains only

electrocardiograms of a normal case, and therefore, the circulation parameter was fixed to the normal pattern.
†A value of 100% for the continuous parameters means normal.
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cardiac parameters in this study will use relative assessed
values.

We preprocessed the ECGs and cardiac parameters for use
in the proposed method. The amplitude of ECG signals was
normalized to be between 0 and 1 by dividing it by 1024
before inputting them into the proposed model. The parame-
ters that take continuous values were also normalized to be
between 0 and 1 by dividing them by 200. Those 11 contin-
uous parameters were represented as an 11-dimensional vec-
tor. Each discrete parameter was converted to a 1-hot vector,
a common format for representing discrete inputs and outputs
in DNNs, and inputted into the proposed model. That is, the
LV, EX, CELL, HR, and CIR parameters were respectively
converted to 2-, 4-, 5-, 1-, and 1-dimensional 1-hot vectors,
depending on the number of discrete patterns that each
discrete parameter can take. Therefore, an input vector for
the proposed method comprises the 11 continuous parame-
ters and the 1-hot vectors, and the dimension of the parameter
vector given to the proposed model was 111 21 41 51 1
1 15 24. Note that our model can be trained even when the
number of possible values that a specific parameter (eg, HR)
can take increases for future extensibility.
Model
Our model synthesizes each of the 12-lead signals used for
ECG from the cardiac parameters. For synthesis, we adop-
ted a conditional VAE architecture (Figure 1). The condi-
tional VAE represents variations inherent in the process of
ECG generation using a Gaussian distribution, while the
changes in the ECG owing to differences in the cardiac
parameters are represented by the conditional vector. The
former corresponds to the factors not included in the car-
diac parameters, such as environment, physique, and per-
sonality. Note that DNNs that convert the cardiac
parameters directly into ECGs cannot represent different
ECGs from the same cardiac parameters, since their archi-
tecture assumes a 1-to-1 correspondence between the car-
diac parameters and ECGs. In contrast, conditional VAE
can represent the factors other than a given set of param-
eters as the Gaussian distribution in the latent space.

The VAE assumes that the ECG signal is stochastically
generated from a D-dimensional latent variable z˛RD, repre-
senting ECG characteristics, where D˛f2; 4; 8; 16; 32; 64;
128g. We vary the value of D to optimize the VAE model.
Our model also assumes that ECG signals are generated
from the cardiac parameters Y˛R24 to simulate the synthesis
process of ECG signals by the UT-Heart. Letting
x5fx1;.; xTg˛RT be an ECG signal, where T is the number
of samples per ECG cycle, we formulate the hierarchical
generative model of the ECG signal x as follows:

pqðx; zjYÞ5 pqðxjz; YÞpðzÞ;

where p(z) is the prior distribution of z. pqðxjz; YÞ is a likeli-
hood function of x and is represented by an arbitrary deep
neural network called a decoder with a parameter set q. In
this paper, we formulate the generative model so that
both x and z follow a standard Gaussian distribution, as fol-
lows:

pðzÞ5
YD
d51

pðzdÞ5
YD
d51

N ðzdj0; 1Þ;

pqðxjz; YÞ5
YT
t51

pqðxtjz; YÞ

5
YT
t51

N
�
xt

���mq;tðz; YÞ; s2
q;tðz; YÞ

�
;

where N ð$��m; s2Þ represents a Gaussian distribution with a
mean parameter m and a variance parameter s2.
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mq;tðz; YÞ˛R and s2q;tðz; YÞ˛R1 are the output of the decoder
DNN with the parameter set q.

We use a stack of Ldec fully connected (FC) layers as the
decoder network, where Ldec˛f4; 5; 6; 7; 8; 9; 10g is the
number of the FC layers. A rectified linear unit layer follows
each FC layer except the last one, and a hyperbolic tangent
(tanh) layer follows the last FC layer. The input dimension
of the decoder network is D1 24. The output dimension of
the decoder network is T!2: The output dimension of
each layer except the last layer is set so that the input and
output dimensions of the decoder network are exponentially
interpolated as follows:

Ddec
i 5 T!

�
D

T

�12 i
Ldec ði5 1;.; Ldec21Þ;

where Ddec
i is the output dimension of i-th FC layers in the

decoder network.

Training
The objective of VAE training is to find the parameter set q
by maximizing the log-marginal likelihood log pqðxjYÞ.
Since calculating the log-marginal likelihood is intractable,
we introduce an encoder network with a parameter set f to
approximately represent the variational posterior qfðzjx; YÞ.
Although we can use qfðzjxÞ as a variational posterior, we
actively use Y as auxiliary information since Y is available.
Then, we train the parameter sets q and f by maximizing
the following evidence lower bound L ðq; fÞ:

log pqðxjYÞ5 log
Z

pqðxjz; YÞpðzÞdz

5 log
Z

qfðzjx; YÞ
qfðzjx; YÞpqðxjz; YÞpðzÞdz

�
Z

qfðzjx;YÞlog pfðxjz; YÞpðzÞ
qfðzjx;YÞ dz

52DKL

�
qfðzjx; YÞ

��pðzÞ	þ EqfðzjxÞ½log pqðxjz; YÞ

5 Lðq;fÞ;

where D KLð $k $Þ is the Kullback-Leibler (KL) divergence
and E½ $� is the expectation by the variational posterior
qfðzjx; YÞ given by

qfðzjx; YÞ5
YD
d51

qfðzdjx; YÞ

5
YD
d51

N
�
zd

���mf;dðx; YÞ; s2
f;dðx; YÞ

�
;

where mf;dðx;YÞ˛R and s2f;dðx; YÞ˛R1 are a mean param-
eter and a variance parameter that are the outputs of the
encoder network. Since we provide the decoder with the
latent variable z and the cardiac parameters Y, z should repre-
sent the ECG features that the parameters Y cannot describe.
Therefore, we provide the encoder with the cardiac parame-
ters Y as a hint for training the encoder.

The encoder network is a stack of Lenc FC layers like the
decoder network, where Lenc˛f4; 5; 6; 7; 8; 9; 10g is the num-
ber of the FC layers and equals Ldec. A rectified linear unit
layer follows each FC layer except the last one. The input
dimension of the encoder network is the summation of the
length of an ECG signal and the size of the parameter vector,
ie, T1 24. The output dimension of the decoder network isD
! 2, which corresponds to the number of the mean and vari-
ance variables of z. The output dimension of each FC layer,
except the last layer, is set so that the input and output dimen-
sions of the encoder network are exponentially interpolated as
follows:

Denc
i 5 T!

�
D

T

� i
Lenc

ði5 1;.; Lenc21Þ;

where Denc
i is the output dimension of the i-th FC layer in the

encoder network.
Inference
A new ECG signal is obtained by inputting a latent var-
iable z50 and an unseen set of cardiac parameters ~Y
into the decoder of the trained VAE. Since the proposed
method assumes that the latent variables represent the
generative factors of ECG, including the cardiac param-
eters and the others, we can also use zs0 for synthesiz-
ing ECGs by the trained decoder. However, we simply
use z50 to obtain the ECG that is most likely to be syn-
thesized from the given cardiac parameters. The mean
vector ~x5mqð0; ~YÞ5fmq;1ð0; ~YÞ;.;mq;Tð0; ~YÞg is consid-
ered as the synthesized ECG.
Experimental condition
We randomly split 2880 synthesized 12-lead ECG signals
into a training dataset (1728 ECG signals), a validation data-
set (576 ECG signals), and a test dataset (576 ECG signals).
The lengths of individual synthesized signals were all
T 5 500. To search for the appropriate VAE model for
the ECG signal generation, we varied the number of
layers of the encoder and decoder networks
Lenc5Ldec˛f4; 5; 6; 7; 8; 9; 10g and the size of the latent var-
iable D˛f2;4;8;16;32;64;128g. We optimized the proposed
VAE using the Adam optimizer23 with the parameters
a50:001 (learning rate), b1 5 0:9， b2 5 0:999, and ε5
1028. The weight and bias parameters of the FC layers of
the encoder and decoder networks were initialized to random
values between 2

ffiffiffiffiffiffiffiffi
1=k

p
and

ffiffiffiffiffiffiffiffi
1=k

p
, where k represents the

input dimension of each FC layer. The batch size and the
number of epochs were 1024 and 2000, respectively.

We evaluated the degree to which the artificial ECG syn-
thesized by the proposed method can reproduce the original
ECG signal using objective evaluation metrics. The
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Figure 1 Overview of the proposed conditional variational autoencoder (VAE). The proposed method is based on a conditional VAE, which is composed of
encoder and decoder neural networks. The encoder takes the electrocardiogram (ECG) x and cardiac parameters Y and outputs the distribution parameter of the
latent variable z. The decoder takes the latent variable z and the cardiac parameters Y and outputs the ECG x.
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appropriate evaluation criteria depend on the purpose. For
example, in the context of synthesizing ECGs for arrhyth-
mias, a metric that emphasizes the periodicity of the signal
may be appropriate. In order to evaluate the general reproduc-
ibility as a waveform and the degree to which clinically
important features are maintained, here we used the
A B

Figure 2 Examples of the ground-truth and generated electrocardiogram (ECG)
signals, respectively. Gray vertical dotted lines represent the ground-truth or estima
the NeuroKit2. B: Example with the lowest peak signal-to-noise ratio of lead I.
following 2 metrics: position mean absolute error (PMAE)
and peak signal-to-noise ratio (PSNR).

PMAE represents the gaps of Q, R, S, and T positions of
the ground-truth and generated ECG signals and is calculated
as follows: PMAE51

N

PN
n51

��tgt;�n 2tes;�n

��; where N is the
number of test data; “�” represents Q, R, S, or T;
signals. Blue and orange lines represent the ground-truth and generated ECG
ted positions. A: Example including the error of the S positions estimated by



Table 2 Performance of the NeuroKit2 measured by the mean
absolute errors of individual electrocardiogram positions

Q R S T

PMAE
[sample]†

7.58 6 8.30 0.55 6 0.61 19.15 614.28 0.51 6 0.73

PMAE 5 position mean absolute error.
†Results show the mean absolute errors and their standard deviations be-
tween the positions manually annotated and those estimated by Neurokit2
for the ground-truth electrocardiograms.
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tgt;�n ˛f1;.Tg is the position in sample unit of the n-th
ground-truth ECG signal; and tes;�n ˛f1;.; Tg is the position
in sample unit of the n-th generated ECG signal. The ground-
truth positions tgt;�n were manually annotated by a non-author
worker under the supervision of a non-author medical
specialist. On the other hand, the positions tes;�n for the large
numbers of ECGs generated by the system were automati-
cally estimated by NeuroKit2.24 We found that NeuroKit2
sometimes failed to output meaningful positions. For
example, NeuroKit2 estimated an incorrect S position in
Figure 2A and an incorrect T position in Figure 2B. To
exclude the effect of these obvious errors of NeuroKit2, the
results for the Q, S, and T positions were excluded from
the PMAE calculation in the following cases:
Figure 3 Mean absolute errors of individual electrocardiogram positions. Each h
sition. The vertical and horizontal axes of each heatmap represent the latent variable
in the heatmaps represent the calculated PMAEs.
� Q position more than 100 milliseconds (ie, 50 samples)
away from the corresponding R position

� S position more than 150 milliseconds (ie, 100 samples)
away from the corresponding R position

� T position appearing prior to the corresponding Q position

Furthermore, we did not measure PMAE for the P posi-
tions because all the P waves in the UT-Heart dataset used
for training and tests are actually copies of an identical tem-
plate P wave. The HR parameter is fixed to 60 beats per min-
ute, so the duration of 1 beat is 1 second. Since the number of
samples of all ECG signals is T5 500 per second, the interval
between adjacent samples is 1/500 of a second. Therefore,
PMAE representing the position gap in samples can be con-
verted to a gap in seconds by PMAE/500.

PSNR is a metric used to evaluate the quality of synthe-
sized ECG signals25 and is calculated as follows:
PSNR51

N

PN
n5110 log10

MAX2

MSEn
; where MSEn represents the

mean squared error calculated as:
MSEn51

T

PT
t51ðxgtn;t2xesn;tÞ

2
; where xgtn 5fxgtn;1;.; xgtn;Tg and

xesn 5fxesn;1;.; xesn;Tg are n-th ground-truth and generated
ECG signals in the test dataset, respectively. MAX represents
the maximum amplitude that ECG signals can take, and we
set MAX 5 1 because all ECG signals were normalized
before inputting them into the proposed model.
eatmap corresponds to the position mean absolute error (PMAE) of each po-
size and the number of layers. The numbers and colors of individual elements



Figure 4 Peak signal-to-noise ratios (PSNRs) of individual leads. Each
heatmap corresponds to the PSNRs of each position. The vertical and hori-
zontal axes of each heatmap represent the latent variable size and the number
of layers. The numbers and colors of individual elements in the heatmaps
represent the calculated PSNRs.

Nishikimi et al VAE-Based ECG Model Trained by FEM-Based Simulator 25
Results
First, we examined the accuracy of NeuroKit2 by measuring
PMAE for Q, R, S, and T positions. This was done by
applying NeuroKit2 to the manually annotated ground truth
waveforms and comparing the results. The results are shown
in Table 2. A lower PMAE indicates better accuracy. While
the R and T positions were very accurately recognized, the
errors of the Q and S positions were larger than those of
the R and T positions. We consider that this is because Neu-
roKit2 tends to recognize the Q and S positions at the lowest
local minimum of the entire Q and S waves, respectively,
which is not always the case clinically.

The PMAEs calculated on the test data for the combina-
tion of the number of layers and the size of latent variables
in the proposed network are illustrated in Figure 3. We found
that differences in the size of the latent variable and the num-
ber of layers did not cause differences in PMAE performance
for all positions. Furthermore, the PMAEs of the R and T po-
sitions were sufficiently small. The major cause of larger
PMAEs for the Q and S positions than the other positions
was considered to be the detection error of the Q and S posi-
tions by NeuroKit225 shown in Table 2.

The PSNRs calculated on the test data for the combination
of the number of layers in the proposed network and the size
of latent variable are illustrated in Figure 4. The higher PSNR
represents the better performance of the proposed method.
We found that the differences of the latent variable sizes
and the number of layers affected the PSNR performance
of the proposed model. The overall tendency of the PSNR
heatmaps is similar for all leads and increasing the latent var-
iable size of the proposed network improved the PSNR per-
formance. In fact, the mean PSNRs of the individual leads are
60.60, 56.61, 58.23, 59.44, 60.69, 57.80, 57.03, 54.69, 54.38,
55.00, 58.87, and 59.76, and the standard deviation calcu-
lated from these mean PSNRs is 2.15, which is sufficiently
smaller than the mean PSNRs. The best performance is ob-
tained for all leads when the size of the latent variable is
128. The number of layers with the best PSNR performance
depends on each lead and ranges from 5 to 7. Figure 2B
shows the example ECG with the lowest PSNR of lead I
among the ECGs generated the proposed VAE with the
size of the latent variable of 128 and the number of layers
of 7. The lowest PSNR of 55.53 has a gap of more than
3s5 6:15, where s is the standard deviation of the PSNRs,
from the mean PSNR of 64.84 in Figure 4I, and this gap
would be due to the estimation error around 0.01 seconds.
The other parts of the estimated ECG waveform are close
to the ground-truth waveform.

The PMAE and PSNR calculated for the different cardiac
parameters are illustrated in Figures 5 and 6. As shown in
these figures, the value of the parameter does not seem to
affect the error significantly in most cases. The most notable
exception was the effect of INa on PMAE for Q and S posi-
tions, where there was a significant difference in PMAE (P
5 .05) between INa 5 100% and INa 5 70%.
Discussion
This study examines the effectiveness of a computationally
inexpensive machine learning model for reproducing an ac-
curate but expensive process of ECG synthesis using an



Figure 5 Position mean absolute errors (PMAE) obtained for the different cardiac parameter values. The 8 graphs correspond to the first 8 rows of Table 1,
respectively. The vertical and horizontal axes of each graph represent the PMAE and the values that the cardiac parameter can take. The blue, orange, green, and
red lines show the PMAEdifferences of the Q, R, S, and T positions, respectively. The vertical lines on the dots of the line plots represent the standard deviations of
PMAEs.
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elaborate physical heart model based on the FEM. We
confirmed that the VAE model achieved sufficient reproduc-
ibility in the objective measure of PSNR for 576 test data
when the number of dimensions and layers were set to 128
and 5–8, respectively. Furthermore, whereas UT-Heart21

takes approximately 350 node-hours to synthesize 1 12-
lead ECG on the supercomputer Fugaku, the proposed
VAEmethod takes only a few seconds on a standard personal
computer with Intel� Core� i7-1065G7 CPU and 16 GB
memory. This result suggests that it is feasible, in terms of
computational cost, to create an encyclopedia of ECGs for
given cardiac parameters by exhaustively applying the pro-
posed method to the cardiac parameters in advance. An added
benefit of the proposed method is sharp reduction in the elec-
tric power required to synthesize ECGs, which in turn re-
duces the cost of this approach relative to FEM-based ECG
synthesis and reduces associated carbon dioxide (CO2) emis-
sions.

One important byproduct obtained from the proposed
VAE machine learning process is the knowledge that can
be gleaned about hidden structures in the ECG. When the
latent variable dimension is increased, the accuracy of repro-
ducing the ECG is also increased. We also confirmed that
good reproduction accuracy could be achieved, especially
when the number of dimensions is set to about 128. This
result indicates that reasonably rich model representation
capability and model complexity are required to reproduce
reliable synthetic ECGs, taking into consideration the full
range of factors affecting ECG signals owing to real-world
patient variations in heart condition and body shape. This im-
plies that it may be feasible in the future to find significant
new clues within the ECG to suggest heart condition and
body type.

A remaining challenge for this research is further analysis
of the extrapolation capability. The present study confirmed
that the proposed lightweight model has sufficient extrapola-
tion capability to replicate the ECG data synthesized by the
elaborate FEM-based UT-Heart physical/electrical heart
model. However, we still need to verify the validity of the
ECGs synthesized by the general-purpose machine learning
model from parameters that deviate significantly from those
used in this study. To improve such capability, we consider
that it is important to efficiently select a small amount of
training data to best train general-purpose machine learning
models.

Another challenge is to improve the proposed method,
which increased the speed of ECG synthesis, so that it can
support the discovery of new clinical knowledge and insights
and be used in actual medical practice. We dealt with only
synthetic ECGs in this paper, but the real ECGs may contain
deviations that do not appear in the synthetic data and are
caused by factors not represented by the cardiac parameters.



Figure 6 Peak signal-to-noise ratios (PSNR) of lead I obtained for the different cardiac parameter values. The 8 graphs correspond to the first 8 rows of Table 1,
respectively. The vertical and horizontal axes of each graph represent the PSNR and the values that the cardiac parameter can take.
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Therefore, to address the challenge, we will extend our
framework for extracting clinical knowledge and insights
from real ECGs by integrating the framework with an addi-
tional estimator of labels useful for other ECG analysis. We
anticipate that the dramatic increase presented here in simu-
lation speed will facilitate analysis and comparison to real-
world ECGs.

We expect that this study will suggest new research per-
spectives in ECG analysis beyond just creating an ECG ency-
clopedia for diagnostic reference—for example, research into
ways of estimating a patient’s cardiac parameters backwards
from their actual ECG signals. Because this study has
confirmed that ECGs can be adequately represented by
general-purpose machine learning models such as VAE, the
direct mapping from ECGs to cardiac parameters could
also potentially be learned as inputs and outputs of general-
purpose machine learning models. If such is confirmed to
be practical, it could help automate and expand the search
for clinically useful cues to cardiovascular health from real-
world ECGs.
Conclusion
This paper proposed the conditional VAE-based method that
synthesizes 12-lead ECGs from the cardiac parameters. The
experimental results showed that the proposed method could
efficiently synthesize accurate ECGs and can be used as an
alternative to the FEM-based heart simulator, which requires
much time and computational resources. This research opens
the door to practical implementation of a comprehensive
ECG encyclopedia, needed to bridge the model-based simu-
lation and the real ECG observations, by exhaustively syn-
thesizing ECGs for a wide range of cardiac parameter sets
within a reasonable time and cost. Further investigation is
needed to determine whether our experimental model main-
tains its accuracy on a wider range of cardiac parameters
beyond the specific parameters used to train our VAE ma-
chine learning model so far. In the future, we hope to develop
a scheme in which the FEM model and the machine learning
model can improve each other, using active learning and self-
supervised learning frameworks to improve the accuracy of
our VAE-based ECG synthesis tool. We will also investigate
the potential of our VAE approach to extrapolate salient syn-
thetic ECG training data from sparse source data of various
types.
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