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Abstract 59 

Altered function and gene regulation of pancreatic islet beta cells is a hallmark of type 2 60 

diabetes (T2D), but a comprehensive understanding of mechanisms driving T2D is still 61 

missing. Here we integrate information from measurements of chromatin activity, gene 62 

expression and function in single beta cells with genetic association data to identify 63 

disease-causal gene regulatory changes in T2D. Using machine learning on chromatin 64 

accessibility data from 34 non-diabetic, pre-T2D and T2D donors, we robustly identify two 65 

transcriptionally and functionally distinct beta cell subtypes that undergo an abundance 66 

shift in T2D. Subtype-defining active chromatin is enriched for T2D risk variants, 67 

suggesting a causal contribution of subtype identity to T2D. Both subtypes exhibit 68 

activation of a stress-response transcriptional program and functional impairment in T2D, 69 

which is likely induced by the T2D-associated metabolic environment. Our findings 70 

demonstrate the power of multimodal single-cell measurements combined with machine 71 

learning for identifying mechanisms of complex diseases.   72 
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Introduction 73 

Pancreatic islets are comprised of multiple endocrine cell types with distinct functions in 74 

the regulation of glucose homeostasis and metabolism1. Islet endocrine cell types, in 75 

particular the insulin-producing beta cells, are known to exhibit substantial functional 76 

heterogeneity2-4. For example, in human islets, ~20% of beta cells account for greater 77 

than 90% of the total insulin secreted at basal glucose levels2. Furthermore, gene 78 

expression studies at single-cell level have identified beta cell populations with distinct 79 

transcriptomic profiles5. Our group recently showed that beta cell subtypes can also be 80 

distinguished by chromatin activity in islets from non-diabetic (ND) donors6. Moreover, 81 

there is indication that beta cell subtypes could have relevance in type 2 diabetes (T2D), 82 

supported by the observation that subtypes defined by cell surface marker expression 83 

undergo an abundance shift in T2D7. How subtype-specific chromatin, transcriptomic and 84 

functional features relate to each and how changes in gene regulatory programs of beta 85 

cell subtypes could drive T2D pathogenesis is unknown.  86 

T2D results from the interplay of both genetic and environmental factors. A change in 87 

beta cell function is a hallmark feature of pre-T2D8,9, culminating in functional failure and 88 

eventual beta cell loss in T2D. To gain insight into mechanisms of beta cell failure in T2D, 89 

numerous studies have compared gene expression in islets from ND and T2D donors at 90 

both bulk10,11 and single-cell level5,12-14. However, these studies, including those at single-91 

cell level, analyzed beta cells in aggregate, leaving unclear whether gene expression 92 

changes can be attributed to beta cell subtype shifts. Furthermore, it has been difficult to 93 

identify gene regulatory programs that are regulated in T2D across independent studies 94 

and cohorts, as evidenced by a meta-analysis15. Different islet procurement methods as 95 

well as heterogeneity due to confounding factors unrelated to disease impose analytical 96 

challenges of separating disease pathology from experimental noise. Given these 97 

limitations and challenges, insights into the gene regulatory changes causal to beta cell 98 

dysfunction in T2D will necessitate integration of information from single-cell 99 

measurements of chromatin activity, gene expression, and function with genetic 100 

association data, as well as analysis methods that minimize effects driven by disease-101 

unrelated factors.  102 
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In this study, we measured chromatin activity and gene expression at single-cell level in 103 

a total of 34 islet preparations from ND, pre-T2D and T2D donors, using single nucleus 104 

ATAC-seq (snATAC-seq) and single nucleus RNA-seq (snRNA-seq). We developed a 105 

classifier based on machine learning from snATAC-seq data as an unbiased approach 106 

for identifying beta cell subtypes in heterogenous samples across disease. This approach 107 

identified two beta cell subtypes that change in abundance in T2D and can be reliably 108 

distinguished in data sets from independent cohorts. Using Patch-seq, which links cell 109 

electrophysiology as a proxy for insulin exocytosis to gene expression at single-cell 110 

level16,17, we show that the two beta cell subtypes are functionally distinct in ND donors 111 

and impaired in function in T2D. Through gene regulatory network (GRN) analysis, we 112 

distinguish gene regulatory programs driving beta cell subtype identity from subtype-113 

independent, T2D-associated changes. Finally, we describe the relationship of these 114 

gene regulatory programs to genetic risk of T2D which reveals a causal contribution of 115 

beta cell subtype identity to T2D pathogenesis.   116 
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Results 117 

T2D affects chromatin state in beta cells  118 

To map accessible chromatin in pancreatic islet cell types in healthy individuals and 119 

during T2D progression, we collected pancreatic islets from 11 ND, 8 pre-T2D and 15 120 

T2D donors (34 total; Supplementary Table 1a) and profiled chromatin accessibility of 121 

individual cells by snATAC-seq (Figure 1a). After rigorous quality control (Methods and 122 

Supplementary Figure 1a-g), we annotated cell type identities based on chromatin 123 

accessibility at the promoter regions of known marker genes (Figure 1b, Supplementary 124 

Figure 1h,i and Supplementary Table 1a,b) and identified a total of 412,113 non-125 

overlapping candidate cis regulatory elements (cCREs) (Supplementary Table 2).  126 

Long-term T2D leads to beta cell loss18, and therefore we assessed changes in cell type 127 

composition between islets from ND, pre-T2D and T2D donors. Cell type composition 128 

exhibited substantial donor heterogeneity (Figure 1c), consistent with previous reports11. 129 

Relative beta cell numbers were significantly reduced in T2D compared to ND donor islets 130 

(P=0.006, ANOVA test), whereas relative alpha cell numbers were increased (P=0.007, 131 

ANOVA test; Figure 1d). By contrast, relative delta or gamma cell numbers were similar 132 

between ND and disease groups (Figure 1d).  133 

Characterization of cell type-resolved changes in chromatin accessibility during T2D 134 

progression can reveal gene regulatory mechanisms leading to T2D. Considering 135 

biological (age, sex, BMI) and technical (islet index, fraction of reads overlapping TSS, 136 

total read counts) covariates (Methods and Supplementary Figure 2), we identified 137 

cCREs with differential activity between ND, pre-T2D and T2D donors in aggregate beta 138 

cells (“pseudo-bulk”)19. We observed substantial differences in beta cell chromatin activity 139 

between ND and T2D donors, where 3,097 and 3,614 cCREs gained and lost accessibility 140 

in T2D, respectively (FDR<0.1, p-values adjusted with the Benjamini-Hochberg method; 141 

Figure 1e and Supplementary Table 3a). Of the 6,711 differential cCREs in our cohort, 142 

78.8% (5,291/6,711) showed consistent changes in an independent cohort of ND (n=15) 143 

and T2D donors (n=5) (P<2.2×10-16, Binominal test; Supplementary Figure 3; see 144 

Methods for data source), demonstrating robustness of our findings. There were no beta 145 

cell differential cCREs between ND and pre-T2D donors, and only a few between pre-146 
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T2D and T2D donors (Supplementary Table 3b). The same result was obtained after 147 

down-sampling to match donor numbers in the ND, pre-T2D and T2D groups 148 

(Supplementary Table 3c-h). To explore whether intermediate chromatin activity 149 

changes were present in pre-T2D samples, we calculated the percentage of T2D versus 150 

ND differential beta cell cCREs exhibiting directionally concordant changes in pre-T2D. 151 

We found that 96% of cCREs gaining (2975/3097; P<2.2×10-16, Binominal test) and 97% 152 

of cCREs losing (3614/3614; P<2.2×10-16, Binominal test) accessibility in T2D exhibited 153 

directionally concordant changes in pre-T2D and T2D (Figure 1e). Therefore, although 154 

T2D-relevant changes in beta cell chromatin activity are subtly present in pre-T2D, 155 

chromatin activity more closely resembles ND than T2D donors.  156 

To identify potential effects of T2D on chromatin in non-beta islet cell types, we tested 157 

cCREs for differential activity in alpha, delta and gamma cells, but found no or very few 158 

regulated cCREs (13 differential alpha cell cCREs between ND and T2D donors; 159 

Supplementary Table 4). We next sought to determine whether this is due to a lack of 160 

power as a result of lower cell numbers, and therefore down-sampled beta cell numbers 161 

to more closely match the numbers of alpha and delta cells. Down-sampling to 15,000 162 

beta cells identified 1,070 differential cCREs, whereas no differential cCREs were 163 

identified in similar numbers of alpha and delta cells (FDR<0.1; Supplementary Figure 164 

4). To confirm disease-specificity of the identified beta cell differential cCREs, we further 165 

called differential cCREs after shuffling the disease status of donors (FDR<0.1, p-values 166 

adjusted with the Benjamini-Hochberg method); however, we identified no differential 167 

cCREs in either beta or alpha cells. This analysis supports the conclusion that effects of 168 

T2D on chromatin accessibility are more subtle in non-beta islet cell types compared to 169 

beta cells.  170 

 171 

Machine learning identifies two beta cell subtypes based on chromatin activity  172 

The T2D-associated chromatin activity changes in aggregate beta cells (Figure 1e) could 173 

be due to a shift in beta cell subpopulations, a shift in chromatin activity in individual beta 174 

cells, or both (Figure 2a). To distinguish between these possibilities, we first re-clustered 175 

beta cells and identified three beta cell clusters (Supplementary Figure 5a). However, 176 

none of the clusters showed a preference for beta cells from pre-T2D or T2D donors 177 
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(Supplementary Figure 5b). A shortcoming of clustering and dimensionality reduction is 178 

that factors unrelated to disease can drive subtype identity in the clustering and obscure 179 

disease-relevant shifts. To circumvent these limitations, we applied machine learning20 180 

(see Methods) by training a classifier on individual beta cells and testing its ability to 181 

distinguish beta cell chromatin profiles from ND, pre-T2D and T2D donors (~240k cCREs 182 

across all 34 donors). To eliminate donor-specific effects during model training and to test 183 

whether beta cells from ND, pre-T2D and T2D donors can be distinguished, we removed 184 

beta cells from one donor at a time in the testing group while using remaining donors as 185 

a training group. To determine the accuracy of the classifier for predicting disease state, 186 

we compared predictions of the classifier to the annotated disease state for each donor. 187 

If chromatin activity changes gradually in individual beta cells during progression from the 188 

ND to the pre-T2D and T2D state (Scenario 2, Supplementary Figure 5c), the classifier 189 

should exhibit high prediction accuracy in all three states. By contrast, if T2D progression 190 

is associated with a shift in beta cell subtypes (Scenario 3, Supplementary Figure 5c), 191 

prediction accuracy will depend on the prevalence of the dominant beta cell subtype. The 192 

classifier predicted beta cells from ND and T2D donors with ~60% accuracy, while the 193 

prediction accuracy of beta cells from pre-T2D donors was only at ~5% (Supplementary 194 

Figure 5d,e). This indicates presence of two major beta cell subtypes, one being enriched 195 

in ND donors and the other being enriched in donors with T2D (Scenario 3). Confirming 196 

this conclusion, similar prediction accuracies (ND = 48.4%, pre-T2D = 16.2%, T2D = 197 

49.0%) were observed after down-sampling beta cells from ND and T2D donors to 198 

numbers from pre-T2D donors.  199 

The same analysis for alpha and delta cells showed prediction accuracies for ND, pre-200 

T2D and T2D of 20-30% (Supplementary Figure 5f-i), which is close to randomness 201 

(Scenario 1, Supplementary Figure 5c). This suggests that alpha and delta cells from 202 

ND, pre-T2D and T2D donors are indistinguishable, agreeing with the finding that there 203 

were no differentially active cCREs.  204 

By applying reiterative training and testing steps on beta cells from only ND and T2D 205 

donors (Methods, Supplementary Figure 5j), we next established a classifier capable of 206 

distinguishing the beta cell subtype enriched in ND donors (hereafter beta-1) and T2D 207 
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donors (hereafter beta-2; Supplementary Table 5) and calculated their relative 208 

abundance in each donor (Figure 2b). Beta-1 cells were less abundant in T2D donors 209 

(28.3±3.7% of beta cells) compared to ND donors (67.2±2.8% of beta cells), whereas 210 

beta-2 cells were more abundant in T2D donors (32.7±2.8% beta-2 in ND and 71.7±3.8% 211 

beta-2 in T2D; Figure 2c). There was a small, non-significant decrease in beta-1 and 212 

increase in beta-2 cells in pre-T2D compared to ND donors (Figure 2c), suggesting that 213 

the subtype shift mostly occurs in T2D. At the level of individual donors, the abundance 214 

of beta-2 cells positively correlated with HbA1c (Figure 2d), which is an index for long-215 

term glycemic control. The percentage of beta-2 cells was unrelated to sex, BMI, or the 216 

islet index as a technical confounding factor, but showed a nominal but small positive 217 

correlation with age (Supplementary Figure 6a-d).  218 

To further confirm that beta cell subtype identity shifts in T2D, we validated our findings 219 

using independent data sets and analysis methods. Testing our classifier on snATAC-seq 220 

data from another cohort (15 ND and 5 T2D; data source see Methods) revealed similar 221 

proportions of beta-1 and beta-2 cells in ND and T2D donors as observed in our cohort 222 

(Supplementary Figure 6e,f). As in our cohort, the abundance of beta-1 cells decreased 223 

and beta-2 cells increased in T2D, showing robustness of our classifier for identifying beta 224 

cell subtypes and T2D-associated changes. Next, we tested whether methods other than 225 

machine learning can confirm the presence of the two beta cell subtypes. Since the 226 

machine learning approach identified the subtype shift as the most prominent gene 227 

regulatory change in T2D, we predicted that many of the differentially active cCREs in 228 

aggregate beta cells from ND and T2D donors (see Figure 1e) represent subtype-specific 229 

cCREs. To test this, we clustered beta cells based on cCREs with differential activity in 230 

aggregate beta cells from T2D donors. Indeed, this clustering identified two beta cell 231 

populations with differential abundance in T2D (Supplementary Figure 6g-k). 232 

Importantly, beta cells in cluster 1 and cluster 2, respectively, overlapped significantly with 233 

beta-1 and beta-2 cells identified by machine learning (P < 2.2e-16, exact binomial test; 234 

Supplementary Figure 6l), showing robustness of subtype identity assignments across 235 

methods. 236 

 237 

The two beta cell subtypes are transcriptionally and functionally distinct  238 
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To understand the gene expression programs that distinguish the two beta cell subtypes, 239 

we profiled gene expression and chromatin accessibility jointly from the same nuclei 240 

(Single-cell Multiome, 10x Genomics) in a subset of donors (6 ND, 8 pre-T2D, 6 T2D; 241 

Supplementary Table 1a). We (i) isolated beta cells by independently clustering based 242 

on snATAC-seq and snRNA-seq data (Supplementary Figure 7a,b), (ii) showed that 243 

clustering beta cells based on genes linked to cCREs with differential activity in T2D (see 244 

Figure 1e) separates beta-1 and beta-2 subtypes defined by snATAC-seq 245 

(Supplementary Figure 7c,d) and (iii) identified differential cCREs (n=34 donors) and 246 

differentially expressed genes (n=20 donors) between beta-1 and beta-2 cells (Methods 247 

and Figure 3a,b). Changes in distal and promoter cCRE activity positively correlated with 248 

changes in gene expression (Methods and Supplementary Figure 7e,f). Genes with 249 

higher expression and chromatin accessibility in beta-2 compared to beta-1 cells included 250 

insulin (INS) and positive regulators of insulin secretion, such as synaptotagmin 1 (SYT1) 251 

and glucokinase (GCK), as well as the transcription factor (TF) PAX6 which positively 252 

regulates insulin gene transcription21 (Figure 3b,c, Supplementary Figure 7g and 253 

Supplementary Table 6). Beta-1 cells expressed higher levels of the TFs HNF1A and 254 

HNF4A (Figure 3b,c and Supplementary Table 6). Accordingly, HNF1A and HNF4A 255 

motifs were enriched at cCREs with higher activity in beta-1 than beta-2 cells, while 256 

NEUROD1, E2A and NF1 motifs were enriched at cCREs more active in beta-2 cells 257 

(Figure 3d and Supplementary Table 7). Together, this analysis identifies concordant 258 

gene regulatory and transcriptomic features that distinguish the two beta cell subtypes. 259 

We further validated the beta cell subtypes using human islet scRNA-seq data from three 260 

independent cohorts5,12,22 (Methods). In each cohort, clustering of beta cells based on 261 

beta-1 versus beta-2 differentially expressed genes identified two beta cell populations 262 

(Supplementary Figure 8a,d,g) with directionally similar gene expression differences as 263 

in beta-1 versus beta-2 cells (Supplementary Figure 8b,e,h). Furthermore, the relative 264 

abundance of beta-1 and beta-2 cells in ND and T2D donors was consistent with the 265 

observations in our cohort (Supplementary Figure 8c,f,i). 266 

The higher expression of insulin and genes associated with insulin secretion in beta-2 267 

cells indicates possible functional differences between the beta cell subtypes. To test this, 268 

we leveraged Patch-seq (electrophysiological measurements + scRNA-seq) data from 269 
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human islets (15 ND donors; Figure 3a) in which we confirmed the two beta cell subtypes 270 

(Supplementary Figure 8j-l). Comparison of exocytosis in beta-1 and beta-2 cells from 271 

ND donors revealed higher exocytosis in beta-2 than beta-1 cells in high glucose (10 mM) 272 

(Figure 3e-g). This finding suggests that beta-2 cells, which is the minority population in 273 

ND donors (Figure 2c), release more insulin in response to glucose than beta-1 cells. In 274 

sum, these results demonstrate that a classifier based on machine learning of epigenomic 275 

profiles can discern beta cell subtypes with distinct transcriptomic and functional features. 276 

The less abundant beta cell subtype in ND donors expresses insulin and exocytotic genes 277 

at higher levels and exhibits increased exocytosis under high glucose conditions in ND 278 

donors.  279 

 280 

A bistable transcriptional circuit maintains the two beta cell subtypes 281 

The presence of two distinct beta cell subtypes raises the question of how the two beta 282 

cell states are maintained. To uncover transcriptional mechanisms of beta subtype 283 

maintenance, we inferred beta cell GRNs, linking TFs to cCREs and their target genes 284 

(Methods and Figure 4a). Briefly, we performed TF binding motif analysis at beta cell 285 

cCREs, focused on TFs expressed in beta cells, linked cCREs to genes based on 286 

proximity and co-accessibility, and calculated the correlation between TF and gene 287 

expression in aggregate beta-1 and beta-2 cells for each donor from our multiome data 288 

(n=20 donors; Methods). For each TF (total of 266 TFs) we identified target genes with 289 

positive or negative expression correlation with the TF (Supplementary Table 8). The 290 

positively and negatively regulated TF-gene modules comprised a median number of 600 291 

and 505 target genes, respectively. 292 

Next, we sought to isolate TF-gene modules with differential regulation between beta-1 293 

and beta-2 cells. First, we conducted gene set analysis (GSA)23-25 to identify modules 294 

where genes exhibit a significant difference in expression between beta-1 and beta-2 cells 295 

in both the positively and negatively regulated module for a given TF (P<0.05; Methods). 296 

Second, we filtered TF-gene modules based on TF motifs enriched at cCREs with 297 

differential activity between beta-1 and beta-2 cells (see Figure 3d and Supplementary 298 

Table 7). This analysis revealed gene modules positively and negatively regulated by 299 

HNF1A, HNF4A and HNF4G with higher and lower expression, respectively, in beta-1 300 
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than beta-2 cells; and, conversely, gene modules positively and negatively regulated by 301 

NEUROD1, NFIA and TCF4 with higher and lower expression, respectively, in beta-2 302 

than beta-1 cells (Figure 4b,c). Among the genes positively regulated by HNF1A, HNF4A 303 

and HNF4G were known regulators of insulin secretion, including the glucose transporter 304 

SLC2A226, the suppressor of cytokine signaling SOCS627, the calcium binding protein 305 

S100A1028, and the ligand-gated calcium channel ITPR129 (Figure 4b, Supplementary 306 

Figure 9a and Supplementary Table 8). Likewise, positively regulated targets of 307 

NEUROD1, NFIA and TCF4 included many genes with established roles in beta cell 308 

function (SLC30A8, RFX6, ABCC8, INS, GCK, PCSK1) (Figure 4b, Supplementary 309 

Figure 9b and Supplementary Table 8).  310 

To identify mechanisms that reinforce beta cell subtype identity, we analyzed how the 311 

beta-1 and beta-2 subtype-defining TFs are regulated. For HNF1A, HNF4A and HNF4G, 312 

promoter chromatin accessibility and expression were higher in beta-1 than beta-2 cells 313 

(Supplementary Figure 9c,d). Conversely, TCF4 and NFIA exhibited higher promoter 314 

accessibility and expression in beta-2 cells (Supplementary Figure 9e,f). The beta cell 315 

subtype enrichment of each one of these TFs appears to be reinforced by auto-regulatory 316 

and cross-regulatory feedback loops. For example, we found beta-1 versus beta-2 317 

differentially active cCREs at HNF1A, HNF4A and HNF4G containing predicted binding 318 

sites for HNF1A, HNF4A and HNF4G (Supplementary Figure 9g) and observed positive 319 

correlation in expression between these TFs in beta cells across donors (Figure 4d). 320 

Similar positive feedback loops were identified between NEUROD1, NFIA and TCF4 321 

(Supplementary Figure 9h and Figure 4e). HNF1A and TCF4 showed negative 322 

feedback (Supplementary Figure 9i and Figure 4f), suggesting that beta cell subtype 323 

identity is maintained by a bistable transcriptional switch between HNF1A and TCF4 324 

which is reinforced by positive feedback loops between beta subtype-defining TFs 325 

(Figure 4g). Together, this analysis identifies a core network of TFs and their target genes 326 

governing beta cell subtype identity. 327 

 328 

T2D-related functional and gene regulatory changes in beta cells  329 

Beta-2 cells exhibit higher insulin exocytosis than beta-1 cells in ND donors (Figure 3e-330 

g); however, beta-2 cells increase in abundance in T2D (Figure 2c). These observations 331 
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are difficult to reconcile with the T2D-associated decline in beta cell function8,16. To 332 

determine whether beta-1 and/or beta-2 cells undergo functional change during T2D 333 

progression, we compared insulin exocytosis in beta-1 and beta-2 cells from ND (n=15), 334 

pre-T2D (n=16), and T2D (n=14) donors using Patch-seq. There was no difference in 335 

exocytosis at stimulatory glucose (5 mM and 10 mM) between ND and pre-T2D donors 336 

in either beta-1 and beta-2 cells. By contrast, both beta-1 and beta-2 cells exhibited 337 

decreased exocytosis in T2D compared to pre-T2D donors (Figure 5a,b). Thus, both 338 

beta-1 and beta-2 cells exhibit functional impairment in T2D, consistent with an overall 339 

decline in beta cell function in T2D.  340 

To understand the molecular basis of these functional changes in beta cells in T2D, we 341 

analyzed T2D-associated alterations in gene regulatory programs within beta-1 and beta-342 

2 cell populations. To this end, we identified differentially active cCREs in beta-1 and 343 

beta-2 cells between ND, pre-T2D and T2D donors (Methods and Supplementary Table 344 

9). Both beta-1 and beta-2 cells exhibited significant changes in chromatin activity 345 

between ND and T2D donors (Supplementary Figure 10a,b). Consistent with the 346 

findings in aggregate beta cells (Figure 1e), there were few differential cCREs between 347 

ND and pre-T2D or pre-T2D and T2D donors (Supplementary Table 9). However, both 348 

beta cell subtypes showed subtle changes in chromatin activity in pre-T2D that were 349 

directionally concordant with T2D-associated changes (beta-1 and beta-2: 99% and 98% 350 

of cCREs losing and gaining activity, respectively; P<2.2×10-16, Binominal test).  351 

To further characterize T2D-induced gene regulatory changes in each beta cell subtype, 352 

we inferred T2D-regulated GRNs by identifying TF-gene modules in beta-1 and beta-2 353 

cells with changes in T2D (Methods; Figure 5c,d, Supplementary Figure 10c,d and 354 

Supplementary Table 10). Consistent with our analysis of chromatin accessibility, there 355 

were no modules with differential regulation between ND and pre-T2D. The analysis 356 

revealed TFs that regulate gene modules in both beta cell subtypes as well as TFs 357 

regulating gene modules in only one subtype in T2D. TFs driving T2D-associated gene 358 

expression changes in both subtypes included the signal-dependent TFs DBP, ELF3, 359 

XBP1, TFEB, ETV6, and ATF6 (Figure 5c,d). These TFs are regulated by cell extrinsic 360 

stimuli including nutrients and circadian cues and are known mediators of the cellular 361 
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stress response30-32. This suggests that T2D-associated changes in the extracellular 362 

environment, such as elevated glucose, affect gene expression in both beta cell subtypes. 363 

Interestingly, we observed regulation of HNF1A- and NFIA-driven gene modules in T2D 364 

in beta-1 but not beta-2 cells (Figure 5c,d and Supplementary Figure 10c,d). Down-365 

regulation of the HNF1A module and up-regulation of the NFIA module in beta-1 cells 366 

indicates that beta-1 cells shift towards beta-2 identity in T2D, in accordance with the 367 

T2D-associated decrease in beta-1 cell abundance (Figure 2c).  368 

Processes associated with genes regulated in both beta cell subtypes in T2D included 369 

protein translation and protein quality control, cAMP signaling, oxidative phosphorylation, 370 

vesicle trafficking, and lipid metabolism (Figure 5c,d, Supplementary Figure 10c,d and 371 

Supplementary Table 11). These processes are known to be affected by the stress 372 

response in beta cells and to alter beta cell function33, consistent with the functional 373 

changes of beta cells in T2D. For example, downregulated modules in T2D included 374 

genes encoding mitochondrial electron transport chain proteins (NDUFS6, NDUFS8, 375 

ATP5G2), syntaxins (STX5), and multiple ribosomal proteins important for protein 376 

translation (RPL3, EEF2, EIF3I,) (Figure 5c-e and Supplementary Figure 10c,d). These 377 

gene expression changes are predicted to reduce insulin production and secretion. By 378 

contrast, gene modules with increased expression in T2D included negative regulators of 379 

cAMP signaling (PDE4B, PDE7A) (Figure 5c,d,f and Supplementary Figure 10c,d), 380 

known to dampen glucose-stimulated insulin secretion34. Furthermore, we observed 381 

upregulation of regulators of insulin secretion including KATP channel subunits (ABCC9)35 382 

and P4-ATPases (ATP8A1, ATP8A2)36 as well as lipogenic enzymes (ELOVL6, ELOVL7) 383 

which module the endoplasmic reticulum (ER) stress response37 and inhibit insulin 384 

secretion38 (Figure 5c,d,f and Supplementary Figure 10c,d). Of interest, distinct TFs 385 

regulated similar genes in the two beta cell subtypes, exemplified by MAX regulating 386 

RPL5, NDUFS6, PDE7B, and ELOVL6 in beta-1 cells and TFAP2E regulating the same 387 

genes in beta-2 cells. Thus, our analysis identifies a core gene regulatory program 388 

comprised of signal-dependent TFs associated with the stress response that converge 389 

on similar genes that are dysregulated in T2D.  390 
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To understand the gene regulatory mechanisms leading to functional changes in T2D, we 391 

defined the regulatory relationship between the TFs driving gene expression changes in 392 

both beta cell subtypes. We observed positive correlation in expression across donors 393 

among TFs downregulated (XBP1, ELF3) and upregulated (ETV6, TFEB, ATF6) in T2D, 394 

respectively (Supplementary Figure 10e,f), as well as negative correlation between TFs 395 

changing in opposite directions in T2D (Supplementary Figure 10g). This suggests that 396 

positive and negative feedback loops between these TFs reinforce T2D-related gene 397 

expression changes. Donor-specific quantification of gene activity in each TF-gene 398 

module across disease states revealed subtle changes between ND and pre-T2D donors 399 

and more pronounced changes between pre-T2D and T2D (Figure 5g), consistent with 400 

observed patterns of chromatin activity.  401 

 402 

Genetic risk of T2D affects beta cell subtype regulation 403 

Hundreds of genetic risk loci have been identified for T2D, many of which impact beta cell 404 

function39. We thus leveraged the highly polygenic inheritance of T2D to determine the 405 

beta cell transcriptional programs that contribute to T2D risk. We tested for enrichment of 406 

fine-mapped T2D risk variants in cCREs with increased activity in the beta-1 against the 407 

beta-2 subtype and vice versa compared to a background of permuted cCREs derived 408 

from all beta cell cCREs. We observed strong enrichment of T2D risk variants in cCREs 409 

with increased activity for both beta-1 and beta-2 subtypes compared to background 410 

cCREs (beta-1 logOR=1.33, P=1.8x10-3; beta-2 logOR=1.75, P=1.5x10-4; Figure 6a). 411 

Next, we tested for enrichment of fine-mapped T2D risk variants in cCREs with increased 412 

or decreased activity in beta-1 and beta-2 subtypes across the T2D disease state. We 413 

did not observe significant enrichment of these cCREs for T2D risk variants, although 414 

there was nominal evidence (P<.05) for enrichment of beta-2 cCREs with higher activity 415 

in T2D (Supplementary Figure 11). 416 

Given enrichment of T2D risk in cCREs defining the beta-1 and beta-2 subtypes, we next 417 

determined whether specific TFs that maintain subtype identity mediate this risk. Of the 418 

six TFs that maintain beta-1 and beta-2 subtype identity, genes encoding four of the TFs 419 

(HNF1A, HNF4A, NEUROD1, TCF4) harbor mutations known to cause Maturity Onset 420 

Diabetes of the Young (MODY), a monogenic form of diabetes40, and three of these TFs 421 
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(HNF1A, HNF4A, TCF4) additionally map to known T2D risk loci39. We next determined 422 

whether subtype-defining binding sites for these TFs were enriched for T2D risk variants. 423 

There was significant enrichment for cCREs defining beta-1 identity bound by HNF4A and 424 

HNF4G (logOR=1.32, P=8.1x10-3; logOR=1.32, P=8.0x10-3) as well as nominal 425 

enrichment for cCREs bound by HNF1A (logOR=1.07, P=.033; Figure 6b). Similarly, 426 

there was significant enrichment for cCREs defining beta-2 identity bound by TCF4, 427 

NEUROD1 and NFIA (logOR=1.86, P=1.6x10-4; logOR=1.81, P=3.8x10-4; logOR=1.97, 428 

P=5.9x10-4). There was no corresponding evidence for enrichment (P>.05) in subtype-429 

defining cCREs not bound by these TFs (Figure 6b). 430 

In total there were 43 fine-mapped T2D variants that overlapped a cCRE defining beta-1 431 

or beta-2 identity, including high-probability variants at the GLIS3, RASGRP1, ZFPM1, 432 

SLC12A8, FAIM2, and SIX2/3 loci (Supplementary Table 12). We determined whether 433 

the T2D risk alleles of variants in cCREs defining beta-1 or beta-2 identity were correlated 434 

with increased or decreased chromatin accessibility using allelic imbalance mapping 435 

(Methods and Supplementary Table 12). Among fine-mapped T2D variants in cCREs 436 

defining beta-1 identity, T2D risk alleles were significantly more likely to reduce beta-1 437 

accessibility than expected (obs=.86, exp.=.50, binomial P=0.013). We observed the 438 

same pattern among T2D-associated variants genome-wide in cCREs defining beta-1 439 

identity (obs=.59, exp.=.50, binomial P=0.043). For example, at the 12p24 locus, 440 

rs1617434 overlapped a cCRE defining beta-1 identity where the T2D risk allele 441 

significantly (FDR<.10) decreased beta-1 accessibility (beta-1 allelic effect []=.27, 95% 442 

CI=.12,.46; q-value=.048) and was predicted to disrupt a HNF4A motif (Figure 6c). 443 

Furthermore, the same allele was associated with reduced expression of ABCB9 444 

(P=1.46x10-7), RILPL2 (P=1.23x10-6), and MPHOSPH9 (P=1.87x10-3), as well as other 445 

genes in islet expression QTL data41. By comparison, T2D risk alleles of variants in 446 

cCREs defining beta-2 identity were more likely to increase beta-2 accessibility than 447 

expected by chance (fine-mapped variants; obs=.67, exp.=.50, binomial P=.51; genome-448 

wide variants; obs=.69, exp.=.50, binomial P=.011). 449 

We finally identified T2D variants with heterogeneity in allelic effects on beta cell subtype 450 

activity that may modulate subtype identity. In total, we identified 163 fine-mapped T2D 451 
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risk variants with at least nominal evidence for heterogeneity (P<.05) in beta-1 and beta-452 

2 subtype chromatin accessibility (Supplementary Table 13). For example, at the 4q31 453 

locus, fine-mapped T2D variant rs6813195 had heterogeneous effects on beta cell 454 

subtype chromatin accessibility (beta-1 =.56, beta-2 =.64, P=.024), where the T2D risk 455 

allele had increased accessibility in beta-2 compared to beta-1 cells (Figure 6d). The risk 456 

allele was also predicted to create a binding site for PAX6 and was associated with 457 

increased islet expression of FBXW7 (P=7.49x10-4). In another example, at the 14q32 458 

locus, fine-mapped T2D variant rs56330734 had heterogeneity in effects on beta cell 459 

subtype chromatin (beta-1 =0, beta-2 =.91, P=5.2x10-5). The T2D risk allele had 460 

increased accessibility in beta-2 compared to beta-1 cells and was predicted to create a 461 

NKX2-2 motif. In each of these examples, both the TFs and target genes affected by 462 

variant activity were involved in the NEUROD1-related GRN, suggesting that the variants 463 

may affect T2D risk by promoting beta-2 subtype identity.  464 

Together, our analysis identifies two functionally distinct beta cell subtypes in human 465 

islets that are maintained by HNF1A, HNF4A and HNF4G and NEUROD1, TCF4 and 466 

NFIA, respectively (Figure 6e). We provide genetic evidence that the transcriptional 467 

programs maintaining beta cell subtype identity likely play a causal role in the 468 

pathogenesis of T2D. In T2D, there is an abundance shift between the two beta cell 469 

subtypes. Both subtypes are functionally impaired in T2D, and these functional changes 470 

are driven by signal-dependent TFs implicated in the cellular stress response.   471 
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Discussion 472 

Despite substantial efforts to define the molecular events underlying T2D pathogenesis 473 

in pancreatic islets, we still lack a thorough understanding of the gene regulatory 474 

programs driving T2D progression in beta cells and other islet cell types. Our study 475 

demonstrates the power of combining single-cell multiome data from a large sample 476 

number at different stages of disease with machine learning approaches, genetic 477 

association data, and single-cell functional measurements to define islet cell type and 478 

subtype gene regulatory programs involved in T2D pathogenesis. With the application of 479 

additional computational tools, our data can be further leveraged to improve fine-mapping 480 

of T2D risk loci, explore gene regulatory networks, and infer cell-cell interactions.   481 

We used machine learning to identify beta cell subtypes and detected two beta cell 482 

subtypes in healthy donors which are functionally distinct and undergo a substantial 483 

abundance shift in T2D. Several studies have described beta cell subtypes based on cell 484 

surface markers7, gene expression5, chromatin activity42 and function using Patch-seq16. 485 

Core beta cell subtype-defining molecular features identified in our study are shared with 486 

those described in prior studies, indicating robustness of these subtypes across different 487 

cohorts and data types. For example, of the 28 most significant genes differentially 488 

expressed between beta subtypes based on cell surface marker expression7, 11 are 489 

differentially expressed between the two beta cell subtypes and another 11 genes showed 490 

the same sign of change albeit below our significance threshold. The same study7 also 491 

reported different insulin secretory activity of beta cell subtypes and an abundance shift 492 

in T2D concordant with our findings. A consistent observation across studies is the 493 

association of high insulin secretory capacity with high expression of insulin itself and 494 

genes involved in stimulus secretion coupling (e.g., GCK, SYT1). Our study expands prior 495 

studies by defining the GRNs that maintain the different beta cell subtypes. We show that 496 

feedback loops between TFs establish beta cell subtype identity. Specifically, we identify 497 

HNF1A, HNF4A and HNF4G as the core TFs maintaining the majority subtype in ND 498 

donors, whereas TCF4, NEUROD1 and NFIA maintain the minority subtype. Identification 499 

of these beta cell subtype-defining TFs can inform strategies for manipulating beta cell 500 

states for therapeutic intervention in T2D.  501 
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Our identification of two beta cell subtypes and their molecular and functional 502 

characterization in ND and T2D states provides novel insight into understanding T2D 503 

pathogenesis. Previous measurements of single-cell gene expression and exocytosis in 504 

beta cells by Patch-seq have shown that genes positively correlated with exocytosis in 505 

beta cells from ND donors are upregulated in T2D despite decreased exocytosis in T2D16. 506 

By identifying two distinct gene regulatory changes in T2D, our analysis provides a 507 

mechanistic understanding of this unexplained phenomenon. The most prominent gene 508 

regulatory change in T2D is an increase in the abundance of the beta cell subtype that in 509 

ND donors is the more highly exocytotic of the two subtypes, explaining why genes 510 

positively correlated with exocytosis are highly expressed in beta cells from T2D donors16. 511 

The second T2D-induced gene regulatory change occurs across both beta cell subtypes 512 

and is associated with decreased exocytosis. Thus, resolving beta cell subtypes allowed 513 

us to distinguish changes caused by the subtype shift from changes that occur in all beta 514 

cells in T2D. 515 

The T2D-induced gene expression changes across both beta cell subtypes are driven by 516 

signal-dependent TFs, many of which (e.g., XBP1, ATF6, TFEB, and DBP) are 517 

downstream effectors of the ER stress and integrated stress response30-32. Experimental 518 

models provide evidence that these TFs are regulated by elevated glucose and free fatty 519 

acid levels33, indicating that the activity change of these TFs in beta cells from T2D donors 520 

is likely a consequence of T2D-associated metabolic abnormalities. Downstream of these 521 

TFs, we identify a network of genes involved in processes relevant for beta cell function, 522 

including protein translation and protein quality control, oxidative phosphorylation, and 523 

vesicle trafficking. Given evidence from in vitro models that high glucose and free fatty 524 

acids impair beta cell function and lead to similar gene expression changes33 as we 525 

observed in T2D, the identified “stress response GRN” likely causes impaired exocytosis 526 

in T2D. This view is further supported by evidence that decreased DBP31 and XBP143 or 527 

increased ATF644 activity impair beta cell function. Our findings suggest that reversal of 528 

the changes induced by these signal-dependent TFs will be essential for reversing beta 529 

cell dysfunction in T2D.  530 

The most prominent change in T2D is the shift from the beta cell subtype that is less 531 

exocytotic to the one that is more exocytotic in ND individuals. This raises the question of 532 
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whether the subtype shift represents a compensatory mechanism early in disease or 533 

whether it contributes to T2D pathogenesis. Several observations support the view that 534 

the subtype shift could have a causal rather than compensatory role in disease. First, our 535 

genetic evidence supports causality for T2D. We found that active chromatin 536 

distinguishing the two beta cell subtypes is preferentially enriched for T2D risk variants 537 

compared to general beta cell active chromatin. In addition, among T2D variants in active 538 

chromatin defining the less exocytotic subtype, the T2D risk alleles are correlated with 539 

reduced chromatin activity, indicating that T2D risk alleles favor a transition toward the 540 

more exocytotic beta cell subtype. Further arguing against a compensatory role of the 541 

beta cell subtype shift, we observed no significant difference in beta cell subtype 542 

composition between pre-T2D and ND donors, suggesting that the shift is a later event in 543 

disease progression and not present early when compensatory mechanisms might 544 

operate.  545 

We identify HNF4A as central to the GRN that defines the less secretory beta cell subtype 546 

and show enrichment of T2D risk variants in HNF4A binding sites in this subtype, 547 

suggesting that reduced HNF4A activity could trigger a shift toward the more exocytotic 548 

beta cell subtype. HNF4A loss-of-function mutations cause MODY-1 in humans, which is 549 

characterized by early insulin hypersecretion followed by progression to beta cell 550 

dysfunction and diabetes later in life40. Thus, our results and clinical findings in MODY-1 551 

patients support a mechanism whereby loss of HNF4A activity could be a causal event in 552 

T2D pathogenesis leading to increased insulin secretion. How a shift toward a more 553 

secretory beta cell subtype leads to beta cell failure is still an open question. It is possible 554 

that the beta cell subtype-defining GRN and the T2D-induced “stress response GRN” are 555 

intricately linked and that both gene regulatory changes occur simultaneously during T2D 556 

progression. This view is supported by evidence showing that loss of HNF1A function 557 

reduces XBP1 and sensitizes beta cells to ER stress45. Conversely, genetic reduction of 558 

insulin dosage - akin of forcing beta cells into a less exocytotic subtype - alleviates beta 559 

cell ER stress46. Therefore, the more highly exocytotic beta cell subtype may ultimately 560 

be more vulnerable and prone to fail in the face of metabolic stress. However, given the 561 

heterogeneity of human islet samples, it will be important to validate inferences made 562 

from the GRNs on additional human islet data sets. 563 
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Another major advance of our study is the development of a classifier based on machine 564 

learning to identify disease-associated patterns in single-cell data. The heterogeneity of 565 

human samples imposes challenges for analyzing and interpreting single-cell data from 566 

primary human tissues. We demonstrate that our classifier robustly identifies cell 567 

subtypes across different human islet data sets. Notably, these subtypes could not be 568 

identified by standard and widely used unsupervised dimensionality reduction methods 569 

likely due to donor-specific confounding factors. The machine learning approach 570 

presented here should have broad applications for identifying disease-relevant patterns 571 

in single-cell data also from other primary human tissues.   572 
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Methods 573 

 574 

Human islets  575 

We obtained islet preparations for 34 donors from 4 resource centers (22 from City of 576 

Hope National Medical Center, 9 from Scharp-Lacy Research Institute, 2 from the 577 

University of Pennsylvania, and 1 from the University of Wisconsin). Characteristics (i.e., 578 

age, sex, BMI, HbA1c, ethnicity) and available clinical information for individual donors 579 

are listed in Supplementary Table 1a. The mean age, BMI, and HbA1c, as well as number 580 

of donors by sex and ethnicity in each disease group are summarized in Supplementary 581 

Table 1b. Classification of donors as non-diabetic (ND), pre-T2D or T2D was based on 582 

the person’s medical record or post-mortem HbA1c value. Donors with prior T2D 583 

diagnosis per medical record or HbA1c ≥ 6.5 were classified as T2D, donors without prior 584 

T2D diagnosis and 5.7 ≤ HbA1c ≤ 6.4 as pre-T2D, and donors without prior T2D diagnosis 585 

and HbA1c ≤ 5.6 (or HbA1c unavailable) as ND. Islet preparations were further enriched 586 

using zinc-dithizone staining followed by hand picking, and snap frozen with liquid 587 

nitrogen or dry ice. Studies were given exempt status by the Institutional Review Board 588 

(IRB) of the University of California San Diego. 589 

 590 

Generation of snATAC-seq data using the 10x Chromium platform 591 

Approximately 1,000 islet equivalents (~1,000 cells per IEQ) were resuspended in 1 mL 592 

nuclei permeabilization buffer (10 mM Tris-HCL (pH 7.5), 10 mM NaCl, 3mM MgCl2, 0.1% 593 

Tween-20 (Sigma), 0.1% IGEPAL-CA630 (Sigma), 0.01% Digitonin (Promega) and 1% 594 

fatty acid-free BSA (Proliant 68700) in molecular biology-grade water) and homogenized 595 

using 1 mL glass dounce homogenizer with a tight-fitting pestle (Wheaton, EF24835AA) 596 

for 10-20 strokes until the solution was homogeneous. Homogenized islets were filtered 597 

with 30 µm filter (CellTrics, Sysmex) and then incubated for 10 min at 4°C on a rotator. 598 

Nuclei were pelleted with a swinging bucket centrifuge (500 x g, 5 min, 4°C; 5920R, 599 

Eppendorf) and washed with Wash buffer (10 mM Tris-HCL (pH 7.5), 10 mM NaCl, 3 mM 600 

MgCl2, 0.1% Tween-20, and 1% BSA (Proliant 68700) in molecular biology-grade water). 601 

Nuclei were pelleted and resuspended in 30 µL of 1x Nuclei Buffer (10x Genomics). 602 

Nuclei were counted using a hemocytometer, and 15,360 nuclei were used for 603 
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tagmentation. Single-cell ATAC-seq libraries were generated using the Chromium Single 604 

Cell ATAC Library & Gel Bead Kit (10x Genomics, 1000110), Chromium Chip E Single 605 

Cell ATAC kit (10x Genomics, 1000086) and indexes (Chromium i7 Multiplex Kit N, Set 606 

A, 10x Genomics, 1000084) following manufacturer instructions. Final libraries were 607 

quantified using a Qubit fluorimeter (Life Technologies) and the nucleosomal pattern was 608 

verified using a Tapestation (High Sensitivity D1000, Agilent). Libraries were sequenced 609 

on NextSeq 500, HiSeq 4000 and NovaSeq 6000 sequencers (Illumina) with following 610 

read lengths: 50 + 8 + 16 + 50 (Read1 + Index1 + Index2 + Read2).  611 

 612 

Generation of joint single nucleus RNA and ATAC-seq data using Chromium 613 

Single-cell Multiome ATAC + Gene Expression (10x Genomics) 614 

Islets were resuspended in 1 mL wash buffer (10mM Tris-HCL (pH 7.4), 10mM NaCl, 615 

3mM MgCl2, 0.1% Tween-20 (Sigma), 1% fatty acid-free BSA (Proliant, 68700), 1 mM 616 

DTT (Sigma), 1x protease inhibitors (Thermo Fisher Scientific, PIA32965), 1U/µl RNAsin 617 

(Promega, N2515) in molecular biology-grade water) and homogenized using 1 mL glass 618 

dounce homogenizer with a tight-fitting pestle (Wheaton, EF24835AA) for 10-20 strokes 619 

until the solution was homogeneous. Homogenized islets were filtered with 30 µm filter 620 

(CellTrics, Sysmex) and pelleted with a swinging bucket centrifuge (500 x g, 5 min, 4°C; 621 

5920R, Eppendorf). Nuclei were resuspended in 400 µL of sort buffer (1% fatty acid-free 622 

BSA, 1x protease inhibitors (Thermo Fisher Scientific, PIA32965), 1U/µl RNAsin 623 

(Promega, N2515) in PBS) and stained with 7-AAD (1 µM; Thermo Fisher Scientific, 624 

A1310). 120,000 nuclei were sorted using an SH800 sorter (Sony) into 87.5 μl of 625 

collection buffer (1U/µl RNAsin (Promega, N2515), 5% fatty acid-free BSA (Proliant, 626 

68700) in PBS). Nuclei suspension was mixed in a ratio of 4:1 with 5x permeabilization 627 

buffer (50 mM Tris-HCL (pH 7.4), 50 mM NaCl, 15 mM MgCl2, 0.5% Tween-20 (Sigma), 628 

0.5% IGEPAL-CA630 (Sigma), 0.05% Digitonin (Promega), 5% fatty acid-free BSA 629 

(Proliant, 68700), 5 mM DTT (Sigma), 5x protease inhibitors (Thermo Fisher Scientific, 630 

PIA32965), 1U/µl RNAsin (Promega, N2515) in molecular biology-grade water) and 631 

incubated on ice for 1 min before pelleting with a swinging-bucket centrifuge (500 x g, 5 632 

min, 4°C; 5920R, Eppendorf). Supernatant was gently removed and ~50 µl were left 633 

behind to increase nuclei recovery. 650 µl of wash buffer (10mM Tris-HCL (pH 7.4), 10mM 634 
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NaCl, 3mM MgCl2, 0.1% Tween-20 (Sigma), 1% fatty acid-free BSA (Proliant, 68700), 1 635 

mM DTT (Sigma), 1x protease inhibitors (Thermo Fisher Scientific, PIA32965), 1U/µl 636 

RNAsin (Promega, N2515) in molecular biology-grade water) were added without 637 

disturbing the pellet and nuclei were pelleted with a swinging bucket centrifuge (500 x g, 638 

5 min, 4°C; 5920R, Eppendorf). Supernatant was gently removed without disturbing the 639 

pellet and leaving ~2-3 µl behind. 7-10 µl of 1x Nuclei Buffer (10x Genomics) was added 640 

and nuclei gently resuspended. Nuclei were counted using a hemocytometer, and 16,550-641 

18,000 nuclei were used as input for tagmentation. Single-cell Multiome ATAC + Gene 642 

Expression libraries were generated following manufacturer instructions (Chromium Next 643 

GEM Single-cell Multiome ATAC + Gene Expression Reagent Bundle, 1000283; 644 

Chromium Next GEM Chip J Single cell, 1000234; Dual Index Kit TT Set A, 1000215; 645 

Single Index Kit N Set A, 1000212; 10x Genomics) with these PCR cycles: 7 cycles for 646 

ATAC index PCR, 7 cycles for cDNA amplification, 13-16 cycles for RNA index PCR. Final 647 

libraries were quantified using a Qubit fluorimeter (Life Technologies) and the size 648 

distribution was checked using a Tapestation (High Sensitivity D1000, Agilent). Libraries 649 

were sequenced on NextSeq 500 and NovaSeq 6000 sequencers (Illumina) with following 650 

read lengths (Read1 + Index1 + Index2 + Read2): ATAC (NovaSeq 6000) 50 + 8 + 24 + 651 

50; ATAC (NextSeq 500 with custom recipe) 50 + 8 + 16 + 50; RNA (NextSeq 500, 652 

NovaSeq 6000): 28 + 10 + 10 + 90.  653 

 654 

Raw data processing and quality control 655 

Data processing using Cell Ranger ATAC and ARC software 656 

Alignment to the hg19 genome and initial processing were performed using the 10x 657 

Genomics Cell Ranger ATAC v1.1.0 and multiome ARC v.2.0.0 pipelines. We filtered 658 

reads with MAPQ<30, secondary or unmapped reads, and duplicate reads from the 659 

resulting bam files using samtools47. Sample information and a summary of the Cell 660 

Ranger ATAC-seq and mutiome quality metrics are provided in Supplementary Table 661 

1a. 662 

Filtering barcode doublets and low-quality cells for each individual donor 663 

Cell barcodes from the 10x Chromium snATAC-seq assay may have barcode multiplets 664 

that have more than one oligonucleotide sequence48. We used 665 
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‘clean_barcode_multiplets_1.1.py’ script from 10x to identify barcode multiplets for each 666 

donor and excluded these barcodes from further analysis. We then filtered low quality 667 

snATAC-seq profiles by total UMIs (<1,000), fraction of reads overlapping TSS (<15%), 668 

fraction of reads overlapping called peaks (<30%), and fraction of reads overlapping 669 

mitochondrial DNA (>10%) according to the distribution of these metrics for all barcodes. 670 

We also excluded profiles that had extremely high unique nuclear reads (top 1%), fraction 671 

of reads overlapping TSS (top 1%) and called peaks (top 1%) to minimize the contribution 672 

of these barcodes to our analysis. Representative cell filtering from donor JYH809 is 673 

shown in Supplementary Figure 1b. For multiome data, we used identical cutoffs to filter 674 

cells with low quality ATAC profiles and used total UMIs (<1,000) and fraction of reads 675 

overlapping mitochondrial DNA (>10%) to filter cells with low quality RNA profiles.  676 

Cell clustering 677 

After filtering low quality cells, we checked data quality from each sample by performing 678 

an initial clustering using Scanpy (v.1.6.0)49. We partitioned the hg19 genome into 5 kb 679 

sliding windows and removing windows overlapping blacklisted regions from 680 

ENCODE50,51 (https://www.encodeproject.org/annotations/ENCSR636HFF/). Using 5 kb 681 

sliding windows as features, we produced a barcode-by-feature count matrix consisting 682 

of the counts of reads within each feature region for each barcode. We normalized each 683 

barcode to a uniform read depth and extracted highly variable windows. Then, we 684 

regressed out the total read depth for each cell, performed PCA, and extracted the top 50 685 

principal components to calculate the nearest 30 neighbors using the cosine metric, which 686 

were subsequently used for UMAP dimensionality reduction with the parameters 687 

‘min_dist=0.3’ and Leiden52 clustering with the parameters ‘resolution=0.8’. 688 

Representative cell clustering and marker gene promoter accessibility from donor 689 

JYH809 are shown in Supplementary Figure 1c,d. 690 

We then performed initial cell clustering for 255,598 cells from all donors using similar 691 

methods to cluster cells for each donor. Of note, we extracted highly variable windows 692 

across cells from all experiments. Since read depth was a technical covariate specific to 693 

each experiment, we regressed this out on a per-experiment basis. We also used 694 

Harmony53 to adjust for batch effects across experiments.  695 
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We identified clusters and subclusters (‘resolution’=1.5) with significantly different total 696 

UMIs, fraction of reads overlapping TSS, or fraction of reads overlapping called peaks 697 

compared to other clusters and subclusters. We excluded these clusters and subclusters 698 

from further analysis, exemplified in by cluster 14 and subcluster 1 from cluster 6 in 699 

Supplementary Figure 1f. We also used marker hormones for alpha (GCG), beta (INS-700 

IGF2), and delta (SST) cells to identify and remove potential doublets that have chromatin 701 

accessibility in more than one marker gene promoter. We retained 218,973 barcodes after 702 

excluding 22,929 cells in low-quality clusters and subclusters (8.9%) and 13,696 potential 703 

doublets (5.3%) and used identical methods to cluster these retained barcodes. UMAPs 704 

for cell clustering and marker gene promoter accessibility are shown in Supplementary 705 

Figure 1g,h. 706 

We aggregated reads within each cluster (Supplementary Figure 1e) and called peaks 707 

for each cluster using the MACS2 call peak command with parameters ‘--nomodel --708 

extsize 200 –shift 0 --keep-dup all -q 0.05’ and filtered these peaks by the ENCODE hg19 709 

blacklist. Then, we merged peaks from all clusters to get a union peak set containing the 710 

peaks observed across all clusters. We used these union peaks as features to generate 711 

a barcode-by-feature count matrix consisting of the counts of reads within each feature 712 

region for each barcode. We performed cell clustering using identical methods for initial 713 

clustering of all cells and identified 13 cell clusters (Figure 1b). We determined the cell 714 

type represented by each cluster by examining chromatin accessibility at the promoter 715 

regions of known marker genes for alpha (GCG), beta (INS-IGF2), delta (SST), gamma 716 

(PPY), acinar (REG1A), ductal (CFTR), stellate (PDGFRB), endothelial (CLEC14A), and 717 

immune cells (CCL3).  718 

 719 

Generating fixed-width and nonoverlapping peaks that represent open chromatin 720 

sites across all cell types 721 

We called peaks for each cell type in Figure 1b using the MACS2 call peak command 722 

with parameters ‘--nomodel --extsize 200 –shift 0 --keep-dup all -q 0.05’ and filtered these 723 

peaks by the ENCODE hg19 blacklist. For each cell type, we generated fixed-width peaks 724 

(summits of these peaks from macs2 were extended by 250 bp on either side to a final 725 

width of 501 bp), as previously described54. We quantified the significance of these fixed-726 
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width peaks in each cell type by converting the MACS2 peak scores (−log10(Q value)) to 727 

a ‘score quantile’. Then, fixed-width peaks for each cell type were combined into a 728 

cumulative peak set. As there are overlapping peaks across cell types, we retained the 729 

most significant peak and any peak that directly overlapped with that significant peak was 730 

removed. This process was iterated to the next most significant peak and so on until all 731 

peaks were either kept or removed due to direct overlap with a more significant peak. In 732 

total, we got 412,113 fixed-width (501 bp) and nonoverlapping peaks. By identifying fixed-733 

width peaks that have overlap with peaks for each cell type from MACS2, we got fixed-734 

width peaks for alpha (246,919 peaks), beta (230,573 peaks), delta (168,925 peaks), 735 

gamma (121,170 peaks), acinar (157,284 peaks), ductal (135,264 peaks), EC (81,953 736 

peaks), immune (87,203 peaks), and stellate cells (120,114 peaks). 737 

 738 

Identification of beta cell subtypes using machine learning 739 

Train and test classifier to distinguish beta cells from different disease states 740 

We used chromatin accessibility of 224,563 beta cell autosomal cCREs to characterize 741 

individual beta cells. 90,290 beta cells (35,103 beta cells from 11 ND, 19,682 beta cells 742 

from pre-T2D, 35,505 beta cells from T2D donors) were retained after excluding beta cells 743 

with less than 1,000 reads within beta cell autosomal cCREs. We used beta cells from 744 

one donor at a time as a testing group while using beta cells from remaining donors as a 745 

training group (Supplementary Figure 5c). Using the chromatin accessibility profiles of 746 

training beta cells and their disease state annotation, we trained a classifier using 747 

XGBOOST20 (v.0.80.1) to distinguish beta cells from ND, pre-T2D and T2D donors. We 748 

then predicted the disease state of beta cells from donors in the testing group using the 749 

trained classifier and compared predictions to the annotated disease state of testing 750 

donors to calculate the prediction accuracy. We used each donor as a testing group and 751 

obtained prediction accuracies for each donor. We down-sampled beta cells from ND and 752 

T2D donors to numbers from pre-T2D donors and repeated the training and testing steps 753 

to test the effect of cell numbers.  754 

Train classifier to predict two beta cell subtypes 755 

After recognizing two major beta cell subtypes enriched in either ND (beta-1 subtype) or 756 

T2D (beta-2 subtype) donors, we used reiterative training and testing steps to obtain a 757 
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classifier distinguishing the two beta cell subtypes (Supplementary Figure 5j). Using 758 

beta cells from ND (11 donors, 35,103 beta cells) and T2D (15 donors, 35,505 beta cells) 759 

donors, we trained and tested the classifier as described above. Since beta-1 and beta-760 

2 cells coexisted in each donor, we used reiterative model training and testing to identify 761 

the dominant beta cell subtype in ND (beta-1) and T2D (beta-2) donors. For each round 762 

of training and testing, we used beta cells whose disease state was correctly predicted 763 

for the next round of training and testing until the disease state of all selected beta cells 764 

was correctly predicted. Using this methodology, we obtained the final classifier to 765 

distinguish beta-1 and beta-2 cells and used the classifier to predict subtype identity of 766 

beta cells from pre-T2D donors in our snATAC-seq data and in an independent islet 767 

snATAC-seq dataset from ND and T2D donors from the Human Pancreas Analysis 768 

Program (HPAP) (see below). 769 

 770 

Computing co-accessibility using Cicero 771 

For each endocrine cell type, we used Cicero55 (v.1.3.4.10) to calculate co-accessibility 772 

scores for pairs of peaks for alpha, beta, delta, and gamma cells. We started from the 773 

merged peak by cell sparse binary matrix, extracted alpha cells, and filtered out peaks 774 

that were not present in alpha cells. We used the ‘make_cicero_cds’ function to aggregate 775 

cells based on the 50 nearest neighbors. We then used Cicero to calculate co-776 

accessibility scores using a window size of 1 Mb and a distance constraint of 250 kb. We 777 

then repeated the same procedure for beta, delta, and gamma cells. We used a co-778 

accessibility threshold of 0.05 to define pairs of peaks as co-accessible. Peaks within and 779 

outside ± 5 kb of a TSS in GENCODE V19 were considered proximal and distal, 780 

respectively. Peaks within ± 500 bp of a TSS in GENCODE V19 were defined as 781 

promoter. Co-accessible pairs were assigned to one of three groups: distal-to-distal, 782 

distal-to-proximal and proximal-to-proximal. Distal-to-proximal co-accessible pairs were 783 

defined as potential enhancer-promoter connections. Genes linked to proximal or distal 784 

cCREs were identified. 785 

 786 

Differential peak and gene expression analysis 787 

Identification of independent confounding factors in snATAC-seq data using PCA 788 
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To determine the factors that account for sample variability in our data, we conducted 789 

principle component analysis (PCA) on cell type-specific pseudo-bulk profiles generated 790 

from each of the 34 donors. Here, features were fixed-width peaks for each cell type and 791 

donor. Next, we calculated total-count normalized matrices, applied PCA to the 792 

normalized matrices using prcomp in R, and visualized the position of each donor using 793 

the autoplot function in R. In addition to disease status (ND, pre-T2D, T2D), we 794 

considered HbA1c, age, body mass index (BMI), and sex as biological covariates as well 795 

as islet index, islet purity, sequencing depth, total read counts, and the fraction of reads 796 

overlapping TSS as technical covariates. We calculated the absolute Spearman 797 

correlation coefficient between the first 6 PCs and each biological or technical variable. 798 

We used an absolute Spearman correlation threshold of 0.4 as a cutoff to identify factors 799 

that have high correlation with each PC. We further identified independent confounding 800 

factors by calculating the pairwise Spearman correlation coefficients between factors. As 801 

high pairwise association (Spearman’s ρ >0.9) represents dependencies between factors 802 

such as disease status and HAb1c level, we only retained one of them. In beta cells, we 803 

found a high correlation of the fraction of reads overlapping TSS with PC1; the islet index 804 

with PC2; disease status, Hba1c, and total read counts with PC3, disease status and 805 

Hba1c with PC4; and the fraction of reads overlapping TSS with PC5 (Supplementary 806 

Figure 2a,b). Calculation of the pairwise Spearman correlation coefficients between 807 

variates revealed a high degree of correlation between interdependent variables, such as 808 

HAb1c levels and disease status, and identified the fraction of reads overlapping TSS, 809 

the islet index, and total read counts as independent confounding factors in our data 810 

(Supplementary Figure 2c). We obtained similar results for alpha, delta, and gamma 811 

cells (Supplementary Figure 2d-l).  812 

Identification of differential peaks in cell type pseudo-bulk data with DESeq2 813 

For each cell type, we called differential peaks between disease groups (i.e., pre-T2D vs 814 

ND, T2D vs pre-T2D and T2D vs ND) using DESeq219 in the R package. We used the 815 

cell type-specific pseudo-bulk feature-by-donor matrix (11 ND, 8 pre-T2D and 15 T2D 816 

donors) as input and major biological and technical confounding factors (age, BMI, sex, 817 

islet index, fraction of reads overlapping TSS, and total reads) as covariates. An FDR 818 

<0.1 (p-values adjustment with the Benjamini-Hochberg method) was used as the cutoff 819 
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to identify differential peaks. We also identified differential peaks based on age, sex, and 820 

BMI. We used CEAS56 to annotate differential sites. Of note, we found very few (0-301) 821 

differential peaks in each islet cell type based on sex, age, and BMI, suggesting no 822 

consistent effect on chromatin accessibility in our data. We performed down-sampling to 823 

match cell numbers for alpha, beta and delta cells. We down-sampled alpha, beta, delta 824 

cells by randomly selecting 15,000 and 5,000 cells. Then, we called differential cCREs 825 

using down-sampled cells. We also performed down-sampling to match donor numbers 826 

in the ND, pre-T2D and T2D groups. We down-sampled ND and T2D donors by randomly 827 

selecting 8 donors from all ND and T2D donors. Then, we called beta cell differential 828 

cCREs with identical sample size (n=8) for ND, pre-T2D and T2D groups. We repeated 829 

this process by randomly selecting six different combinations of 8 ND and T2D donors. 830 

Identification of differential peaks and genes between beta cell subtypes using paired t-831 

test 832 

We generated beta-1 and beta-2 pseudo-bulk accessibility profiles (34 total, n = 11 ND, 833 

n = 8 pre-T2D, n = 15 T2D donors) from snATAC-seq data and gene expression profiles 834 

from multiome data (20 total, n = 6 ND, n = 8 pre-T2D, n = 6 T2D donors). Using these 835 

pseudo-bulk profiles, we performed paired t-test to identify differential cCREs (FDR<.05, 836 

p-values adjusted with the Benjamini-Hochberg method) and genes (FDR<.15, p-values 837 

adjusted with the Benjamini-Hochberg method) between beta cell subtypes. We 838 

calculated the Pearson correction between log2 differences (beta-2/beta-1) in chromatin 839 

accessibility at differential cCREs and log2 differences (beta-2/beta-1) in gene expression 840 

of cCRE target genes with differential expression. To identify high confidence differentially 841 

expressed genes between beta cell subtypes, we only focused on differential expressed 842 

genes that also have significant changes in proximal (within ± 5 kb of a TSS in GENCODE 843 

V19) or distal cCREs accessibility (defined in “Computing co-accessibility and identifying 844 

distal cCREs using Cicero” section) between beta cell subtypes. 845 

 846 

TF motif enrichment analysis 847 

Using the barcode-by-peaks (501 bp fixed-width peaks) count matrix as input, we inferred 848 

enrichment of TF motifs for each barcode using chromVAR57 (v.1.4.1). We filtered cells 849 

with minimal reads less than 1500 (min_depth=1500) and peaks with fraction of reads 850 
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less than 0.15 (min_in_peaks=0.15) by using ‘filterSamplesPlot’ function from chromVAR. 851 

We also corrected GC bias based on ‘BSgenome.Hsapiens.UCSC.hg19’ using the 852 

‘addGCBias’ function. Then, we used the TF binding profiles database JASPAR 2020 853 

motifs58 and calculated the deviation z-scores for each TF motif in each cell by using the 854 

‘computeDeviations’ function. High-variance TF motifs across all cell types were selected 855 

using the ‘computeVariability’ function with the cut-off 1.15 (n=255). For each of these 856 

variable motifs, we calculated the mean z-score for each cell type and normalized the 857 

values to 0 (minimal) and 1 (maximal). 858 

We performed both de novo and known motif enrichment analysis using HOMER59 859 

(v.4.11) command ‘findMotifsGenome.pl’. We focused on significantly enriched de novo 860 

motifs and assigned the best matched known TF motifs to de novo motifs. 861 

 862 
Gene ontology enrichment analysis 863 

We performed gene ontology enrichment analysis using R package Enrichr60. Library 864 

“GO_Biological_Process_2018” was used with default parameters. 865 

 866 

Inferring gene regulatory networks from multiome data  867 

We first used a position frequency matrix (PFMatrixList object) of TF DNA-binding 868 

preferences from the JASPAR 2020 database58 and width-fixed peaks as input to perform 869 

TF binding motif analysis. We used the ‘matchMotifs’ function in the R package 870 

motifmatchr to infer beta cell cCREs occupied by 264 TFs expressed in beta cells (mean 871 

TPM across donors >4). We linked beta cell cCREs occupied by each TF to target genes 872 

based on proximity to the gene promoter (within ± 5 kb of a TSS in GENCODE V19) or 873 

co-accessibility between the distal cCRE and gene promoter across single beta cells 874 

(defined in “Computing co-accessibility and identifying distal cCREs using Cicero” 875 

section). We further calculated gene expression correlations between each TF and its 876 

target genes in aggregate beta-1 and beta-2 cells for each donor from multiome data 877 

(n=20 donors). For each TF, we identified target genes that have significant positive and 878 

negative gene expression Pearson correlation with the TF (FDR<0.05, p-values adjusted 879 

with the Benjamini-Hochberg method) and defined positively correlated TF-gene modules 880 

and negatively correlated TF-gene modules. 881 
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 882 

Identification of differential TF-gene modules 883 

We performed gene set analysis using R package GSA23 (v.1.3.1) to evaluate changes 884 

of individual TF-gene modules (using all genes in the TF-gene module) between beta cell 885 

subtypes and during T2D progression (20 total, n=6 ND, n=8 pre-T2D, n=6 T2D donors, 886 

each donor has beta-1 and beta-2 pseudo-bulk gene expression profiles). We used a p-887 

value<0.05 and enrichment score to identify significantly up (enrichment score>0.6) or 888 

down (enrichment score < -0.6) regulated TF-gene modules between beta cell subtypes. 889 

We further filtered these TF-gene modules by intersecting with enriched TF motifs in 890 

cCREs with higher accessibility in beta-1 or beta-2. For each beta cell subtype, we used 891 

a p-value<0.05 and enrichment score to identify significantly up (enrichment score>1.3) 892 

or down (enrichment score < -1.3) regulated TF-gene modules during T2D progression. 893 

We further filtered the TFs by intersecting with enriched TF motifs in cCREs with 894 

significant changes in beta-1 or beta-2 during T2D progression. 895 

 896 

Public human islet snATAC-seq and scRNA-seq data 897 

We downloaded public human islet snATAC-seq data from Human Pancreas Analysis 898 

Program (HPAP, https://hpap.pmacs.upenn.edu/; V2.0.0, data download date: 899 

07/09/2021). We processed and analyzed the data using the pipeline described above. 900 

After quality control, snATAC-seq data were used to validate results from our snATAC-901 

seq data. Donor characteristics are summarized in Supplementary Table 14a. More 902 

information about these donors is available via 903 

https://hpap.pmacs.upenn.edu/explore/donor?by_donor.  904 

We downloaded scRNA-seq data and metadata of donors from three public islet scRNA-905 

seq datasets5,12,22. We processed and analyzed the data using the pipeline described 906 

above. Donor characteristics are available in the original publications and summarized in 907 

Supplementary Table 14b-d. 908 

To classify donors from public islet datasets analyzed in this study as ND, pre-T2D or 909 

T2D we applied the same classification criteria as used for classifying the 34 donors from 910 

the cohort profiled in this study (see “Human islets”). In some cases, our classification 911 
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criteria differed from the criteria used in the original studies leading to reclassification of 912 

select donors (see Supplementary Table 14). 913 

 914 

GWAS enrichment analysis 915 

We tested for enrichment of fine-mapped T2D risk variants from the DIAMANTE 916 

consortium for beta cell cCREs defining the beta-1 and beta-2 subtype as well as cCREs 917 

with differential activity in T2D. For each set of cCREs, we calculated the cumulative 918 

posterior probability of association (cPPA) of all fine-mapped variants overlapping cCREs. 919 

We then generated a null distribution of cPPA by randomly selecting the same number of 920 

cCREs from the set of all beta cell cCREs across 100,000 permutations. We calculated 921 

a p-value as the number of permutations with a higher cPPA than for the observed set of 922 

cCREs. We further computed an odds ratio as cPPAobs*(cPPAmax-923 

cPPAmean)/cPPAmean*(cPPAmax-cPPAobs), where cPPAobs was the observed cPPA, cPPAmax 924 

is the maximum possible cPPA for that number of sites and cPPAmean is the average cPPA 925 

from the null distribution, and took the natural log of the odds ratio. 926 

 927 

Genotyping and imputation 928 

1000-3000 IEQ human islets pellets were resuspended in 200 µL PBS and treated with 929 

20 µL 10 mg/mL Rnase A (Invitrogen) and 20 µL Protein Kinase K (Qiagen) for 30 min at 930 

RT followed by the steps as described in the protocol of Dneasy Blood & Tissue Kit 931 

(QIAGEN). 200-500 ng DNA was used for genotyping using the Infinium Omni2.5-8v1-4 932 

and the Infinium Omni2.5-8v1-5 Genotyping BeadChip (Illumina) at the UCSD IGM core. 933 

We called genotypes with GenomeStudio (v.2.0.4) using default settings. For genotypes 934 

that passed quality filters (missing<0.05, minor allele frequency (MAF>0.01), non-935 

ambiguous alleles defined by AT/GC variants with MAF>40%), we imputed genotypes 936 

into the TOPMed r2 reference panel61 using the TOPMed Imputation Server62. Post-937 

imputation, we removed genotypes with low imputation quality (R2<0.3) and used 938 

liftOver63 to map the coordinates back to hg19. 939 

 940 

Allelic imbalance analysis 941 
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To estimate cell type-specific chromatin accessibility allelic imbalance (AI), we modified 942 

the WASP64 pipeline for single-cell analysis by re-mapping reads using phase information 943 

and removing duplicate reads within each cell. For each sample, we aggregated re-944 

mapped reads for cells from each beta cell subtype. We assessed AI at each 945 

heterozygous variant using a binomial test, assuming a null hypothesis of equal 946 

proportions of reads for each allele. We meta-analyzed z-scores across all samples using 947 

Stouffer’s z-score method with re-mapped read depth as a weight. We used AI z-scores 948 

to calculate 2-sided p-values. We annotated fine-mapped T2D variants in 99% credible 949 

sets from DIAMANTE65 overlapping cCREs defining beta cell subtype identity with AI z-950 

scores, and calculated q-values for these variants using Storey’s method (R package 951 

qvalue v2.16.0). For each subtype, we identified the most probable fine-mapped variant 952 

per T2D signal overlapping cCREs defining identity of that subtype. We then determined 953 

whether the proportion of T2D risk alleles for these variants with decreased subtype 954 

accessibility differed from the expected proportion of .50 using a binomial test. We further 955 

identified all variants with P<.0001 in DIAMANTE65 overlapping cCREs defining beta cell 956 

subtype identity, and again determined whether the proportion of T2D risk alleles for these 957 

variants with decreased accessibility differed from the expected proportion using a 958 

binomial test.  959 

For the analyses comparing AI between beta cell subtypes, we retained variants tested 960 

for AI in at least two samples for each subtype and used two-sided binomial proportion 961 

tests to compare AI z-scores between subtypes. We obtained islet eQTL data from the 962 

TIGER database (tiger.bsc.es).  963 

 964 

Data availability 965 

Single nucleus ATAC sequencing data and processed data are available through the 966 

Gene Expression Omnibus under accession GSE169453, and single nucleus multiome 967 

data under accession GSE200044 and genotyping data under accession GSE170763. 968 

UCSC genome browser sessions of aggregated snATAC-seq data are available at: 969 

https://genome.ucsc.edu/s/gaowei/hg19_cell_type, 970 

https://genome.ucsc.edu/s/gaowei/hg19_beta_cell. Previously published16,17 Patch-seq 971 

data are available as raw sequencing reads in NCBI GEO under accession numbers 972 
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GSE124742 and GSE164875. Additional Patch-seq data are accessible at the HPAP 973 

database URL- https://hpap.pmacs.upenn.edu. 974 

 975 

Code availability 976 

Custom codes for main analysis used in this study have been deposited on GitHub: 977 

https://github.com/gaoweiwang/Islet_snATACseq. 978 
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Main Figures 1165 

 1166 

 1167 
Figure 1. Beta cells exhibit changes in chromatin activity in type 2 diabetes.  1168 
(a) Schematic outlining study design. snATAC-seq was performed on nuclei from 1169 
pancreatic islets from 11 non-diabetic (ND), 8 pre-diabetic (pre-T2D) and 15 type 2 1170 
diabetic (T2D) human donors. Single nucleus multiome (ATAC+RNA) analysis was 1171 
performed on a subset of donors (6 ND, 8 pre-T2D, 6 T2D). We used machine learning 1172 
to identify classifiers for beta cells in ND, pre-T2D and T2D, inferred gene regulatory 1173 
networks (GRNs), linked molecular signatures to beta cell function using Patch-seq, and 1174 
identified T2D causal gene regulatory programs. (b) Clustering of chromatin accessibility 1175 
profiles from 218,973 nuclei from non-diabetic, pre-diabetic, and T2D donor islets. Cells 1176 
are plotted using the first two UMAP components. Clusters are assigned cell type 1177 
identities based on promoter accessibility of known marker genes. The number of cells 1178 
for each cell type cluster is shown in parentheses. EC, endothelial cells. (c) Relative 1179 
abundance of each cell type based on UMAP annotation in Figure 1b. Each column 1180 
represents cells from one donor. (d) Relative abundance of each islet endocrine cell type 1181 
in ND, pre-T2D and T2D donor islets. Data are shown as mean ± S.E.M. (n = 11 ND, n = 8 1182 
pre-T2D, n = 15 T2D donors), dots denote data points from individual donors.  ***P < .001, 1183 
**P < .01, *P < .05; ANOVA test with age, sex, BMI, and islet index as covariates. (e) 1184 
Heatmap showing chromatin accessibility at cCREs with differential accessibility in beta 1185 
cells from ND and T2D donors. Columns represent beta cells from each donor (ND, n=11; 1186 
pre-diabetic, pre-T2D, n=8; T2D, n=15) and all ND, pre-T2D and T2D donors with 1187 
accessibility of peaks normalized by CPM (counts per million).  1188 
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 1189 

Figure 2. Machine learning identifies two beta cell subtypes with differential 1190 
abundance in T2D.  1191 
(a) Schematic outlining the machine learning-based approach to distinguish two models 1192 
that could account for gene regulatory changes in beta cells in T2D. (b) Relative 1193 
abundance of beta-1 and beta-2 cells identified by machine learning. Each column 1194 
represents cells from one donor. (c) Relative abundance of each beta cell subtype in ND, 1195 
pre-T2D and T2D donor islets. Data are shown as mean ± S.E.M. (n = 11 ND, n = 8 pre-1196 
T2D, n = 15 T2D donors), dots denote data points from individual donors. ***P < .001; 1197 
ANOVA test with age, sex, BMI, and islet index as covariates. (d) Pearson correlation 1198 
between relative abundance of beta-2 cells and HbA1c across donors (n = 11 ND, n = 8 1199 
pre-T2D, n = 15 T2D donors).   1200 
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 1201 

 1202 
Figure 3. The two beta cell subtypes are distinguished by chromatin activity, gene 1203 
expression and function.  1204 
(a) Workflow to link beta cell subtype chromatin activity to gene expression using islet 1205 
single nucleus multiome (ATAC+RNA) data and gene expression to function using Patch-1206 
seq. (b) Heatmap showing log2 differences (beta-2/beta-1) in chromatin accessibility at 1207 
cCREs with differential accessibility between beta cell subtypes (left, paired t-test, FDR < 1208 
0.05, P-values adjusted with the Benjamini-Hochberg method) and log2 differences (beta-1209 
2/beta-1) in gene expression of cCRE target genes with differential expression between 1210 
beta cell subtypes (right, paired t-test, FDR < 0.15, P-values adjusted with the Benjamini-1211 
Hochberg method). Rows represent differential cCREs or genes, columns represent 1212 
donors (total 20, ND, n=6; pre-T2D, n=8; T2D, n=6). Representative genes are 1213 
highlighted. Accessibility of cCREs is normalized by CPM (counts per million) and gene 1214 
expression by TPM (transcripts per million). (c) Bar plots showing cCRE accessibility (top) 1215 
and gene expression (bottom) of representative genes in beta-1 and beta-2 cells. 1216 
Proximal region of INS (chr11:2182331-2182831), SYT1 (chr12:79257483-79257983), 1217 
GCK (chr7:44190078-44190578), PAX6 (chr11:31847583-31848083). Accessibility of 1218 
peaks is normalized by CPM and gene expression by TPM. Paired t-test. (d) Transcription 1219 
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factor (TF) motif enrichment at cCREs with higher accessibility in beta-1 compared to 1220 
beta-2 cells (left) or higher accessibility in beta-2 compared to beta-1 cells (right) against 1221 
a background of all cCREs in beta cells using HOMER. The top three enriched de novo 1222 
motifs, their P-values, and best matched known TF motif are shown. (e) Bar plots from 1223 
Patch-seq analysis showing early, late and total exocytosis in beta-1 (10 cells from 4 ND 1224 
donors) and beta-2 cells (4 cells from 4 ND donors) stimulated with 1 mM glucose. Data 1225 
are shown as mean ± S.E.M., dots denote data points from individual cells. ANOVA test 1226 
with age, sex, and BMI as covariates. (f) Bar plots from Patch-seq analysis showing early, 1227 
late and total exocytosis in beta-1 (26 cells from 10 ND donors) and beta-2 cells (20 cells 1228 
from 9 ND donors) stimulated with 5 mM glucose. ANOVA test with age, sex, and BMI as 1229 
covariates. (g) Bar plots from Patch-seq analysis showing early, late and total exocytosis 1230 
in beta-1 (42 cells from 5 ND donors) and beta-2 cells (23 cells from 6 ND donors) 1231 
stimulated with 10 mM glucose. *P < .05, ANOVA test with age, sex, and BMI as 1232 
covariates.   1233 
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 1234 

 1235 

Figure 4. Gene regulatory networks defining the two beta cell subtypes. 1236 
(a) Schematic outlining the inference of beta cell gene regulatory networks and differential 1237 
gene regulatory programs (TF-gene modules) between beta cell subtypes. (b) Heatmap 1238 
showing log2 differences (beta-2/beta-1) in expression for genes positively regulated by 1239 
TFs (HNF1A, HNF4A, HNF4G) with higher activity in beta-1 compared to beta-2 cells and 1240 
TFs (NEUROD1, NFIA and TCF4) with higher activity in beta-2 compared to beta-1 cells 1241 
(see Methods). Representative target genes of individual TFs are highlighted. Gene 1242 
expression is normalized by TPM (transcripts per million). (c) Heatmap showing log2 1243 
differences (beta-2/beta-1) in expression for genes negatively regulated by TFs (HNF1A, 1244 
HNF4A, HNF4G) with higher activity in beta-1 compared to beta-2 cells and TFs 1245 
(NEUROD1, NFIA, TCF4) with higher activity in beta-2 compared to beta-1 cells (see 1246 
Methods). Representative target genes of individual TFs are highlighted. Gene 1247 
expression is normalized by TPM (transcripts per million). (d, e, f) Pearson correlation of 1248 
expression levels between indicated TFs across pseudo-bulk RNA profiles from each 1249 
beta cell subtype (40 dots in total: 20 donors including n = 6 ND, n = 8 pre-T2D, n = 6 1250 
T2D). (g) A bistable circuit established by positive feedback between HNF1A, HNF4A and 1251 
HNF4G, positive feedback between NEUROD1, NFIA and TCF4, and mutual repression 1252 
between HNF1A and TCF4.  1253 
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Figure 5. Beta cell functional and gene regulatory changes in T2D. 1256 
(a) Bar plots from Patch-seq analysis showing early, late and total exocytosis in beta-1 1257 
cells from ND (68 cells from 11 donors), pre-T2D (91 cells from 14 donors) and T2D 1258 
donors (35 cells from 7 donors) stimulated with 5 mM or 10 mM glucose. Data are shown 1259 
as mean ± S.E.M., dots denote data points from individual cells. *P < .05, ANOVA test 1260 
with age, sex, and BMI as covariates. (b) Bar plots from Patch-seq analysis showing 1261 
early, late and total exocytosis in beta-2 cells from ND (43 cells from 10 donors), pre-T2D 1262 
(57 cells from 14 donors) and T2D donors (131 cells from 14 donors) stimulated with 5 1263 
mM or 10 mM glucose. *P < .05, **P < .01, ANOVA test with age, sex, and BMI as 1264 
covariates. (c) Heatmap showing expression of genes positively regulated by TFs (green) 1265 
with higher activity in ND compared to T2D beta-1 cells (see Methods) and TFs (red) with 1266 
lower activity in ND compared to T2D beta-1 cells (n=6 ND, n=8 pre-T2D, n=6 T2D 1267 
donors). Representative target genes of individual TFs are highlighted and classified by 1268 
biological processes. Gene expression is normalized by TPM (transcripts per million). # 1269 
denotes TFs with decreased or increased expression in T2D in both beta-1 and beta-2 1270 
cells. (d) Heatmap showing expression of genes positively regulated by TFs (green) with 1271 
higher activity in ND compared to T2D beta-2 cells (see Methods) and TFs (red) with 1272 
lower activity in ND compared to T2D beta-2 cells (n=6 ND, n=8 pre-T2D, n=6 T2D 1273 
donors). Representative target genes of individual TFs are highlighted and classified by 1274 
biological processes. Gene expression is normalized by TPM (transcripts per million). # 1275 
denotes TFs with decreased or increased expression in T2D in both beta-1 and beta-2 1276 
cells. (e) Genome browser tracks showing aggregate RNA and ATAC read density at 1277 
representative genes (RPL3, EEF2, NDUFS6) downregulated in T2D relative to ND for 1278 
both beta-1 and beta-2 cells. Downregulated regions in T2D beta cells are indicated by 1279 
grey shaded boxes. Beta cell cCREs with binding sites for downregulated TFs in both 1280 
beta-1 and beta-2 cells (DBP, XBP1, ELF3) are shown. All tracks are scaled to uniform 1281 
1x106 read depth. (f) Genome browser tracks showing aggregate RNA and ATAC read 1282 
density at representative genes (PDE4B, ATP8A1, ABCC9) upregulated in T2D relative 1283 
to ND for both beta-1 and beta-2 cells. Upregulated regions in T2D beta cells are indicated 1284 
by grey shaded boxes. Beta cell cCREs with binding sites for upregulated TFs in both 1285 
beta-1 and beta-2 cells (ETV6, TFEB, ATF6) are shown. All tracks are scaled to uniform 1286 
1x106 read depth. (g) Cross regulation between TFs with activity change in T2D in both 1287 
beta cell subtypes (from Figure 5c,d). The color code for TFs in ND, pre-T2D and T2D 1288 
donors reflects their expression change during T2D progression.   1289 
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 1290 
 1291 
Figure 6. T2D risk variants affect beta cell subtype chromatin activity. 1292 
(a) Enrichment of fine-mapped T2D risk variants for cCREs defining the beta-1 and beta-1293 
2 subtype. Values represent log odds ratios and 95% confidence intervals. (b) Enrichment 1294 
of fine-mapped T2D risk variants for cCREs defining the beta-1 and beta-2 subtype bound 1295 
by each TF, or not bound by any of the listed TFs (‘no TF’). Values represent log odds 1296 
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ratios and 95% confidence intervals. (c) Fine-mapped T2D risk variant rs1617434 at the 1297 
MPHOSPH9 locus overlaps a cCRE defining the beta-1 subtype. The T2D risk allele of 1298 
this variant decreases beta-1 chromatin accessibility and disrupts a predicted binding site 1299 
for HNF4A. The values for allelic imbalance represent the fraction of reads from the risk 1300 
allele and the 95% confidence interval. On the left is a schematic describing allelic 1301 
imbalance mapping in reads from the beta-1 subtype. (d) Fine-mapped T2D risk variant 1302 
rs6813185 at the TMEM154/FBXW7 locus overlaps a cCRE active in both the beta-1 and 1303 
beta-2 subtype. This variant has significant heterogeneity in allelic imbalance in beta-2 1304 
and beta-2 chromatin accessibility, where the T2D risk allele has larger effect in beta-2 1305 
compared to beta-1. The values for allelic imbalance represent the fraction of reads from 1306 
the risk allele and the 95% confidence interval. On the left is a schematic describing allelic 1307 
imbalance mapping in reads from the beta-1 and beta-2 subtype. * P<.05. (e) Schematic 1308 
showing abundance and functional changes of beta cell subtypes during T2D 1309 
progression. The TFs maintaining beta cell subtype identity as well as TFs mediating 1310 
T2D-associated changes are shown.   1311 
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Supplementary Figures 1312 
 1313 

 1314 
 1315 
Supplementary Figure 1. Quality control of snATAC-seq data. 1316 
(a) Steps for snATAC-seq data processing and quality control. (b) Representative quality 1317 
control (QC) metrics for each donor. Log10 total UMIs, fraction of reads overlapping 1318 
promoters, fraction of reads overlapping peaks, and fraction of reads overlapping 1319 
mitochondria DNA distribution of cells from T2D donor JYH809 as example. Blue vertical 1320 
lines denote thresholds of 1000 minimal fragment number, 15% fragments overlapping 1321 
promoters, 30% fragments overlapping peaks, and 10% fraction of reads overlapping 1322 
mitochondria DNA, respectively. Red vertical lines denote thresholds to identify top 1% 1323 
barcodes with extremely high total fragment number and fraction of reads overlapping 1324 
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promoters and peaks, respectively. (c) Representative cell clustering from donor JYH809 1325 
conducted for each donor. Cells are plotted using the first two UMAP components. (d) 1326 
Promoter chromatin accessibility in a 5 kb window around TSS for endocrine marker 1327 
genes for each profiled cell from donor JYH809. Total counts normalization and log-1328 
transformation were applied. (e) Cell clustering of chromatin accessibility profiles from all 1329 
donors. Cells are plotted using the first two UMAP components. (f) Representative low-1330 
quality cluster and subcluster. Log10 total UMIs distribution of cells from each cluster. Cells 1331 
in cluster 14 (top, highlighted in red) have significantly lower unique fragment than cells 1332 
in other clusters. Fraction of reads overlapping peaks distribution of cells from each 1333 
subcluster of main cluster 6. Cells in subcluster 1 (bottom, highlighted in red) have 1334 
significantly lower fraction of reads overlapping peaks than cells in other clusters. (g) 1335 
Log10 total UMIs, fraction of reads overlapping peaks and fraction of reads in promoters 1336 
of cells from each cluster in Figure 1b, showing that these metrics do not drive single-cell 1337 
grouping in UMAP space. (h) Promoter chromatin accessibility in a 5 kb window around 1338 
TSS for selected endocrine and non-endocrine marker genes for each profiled cell (alpha: 1339 
GCG, beta: INS-IGF2, delta: SST, gamma: PPY, acinar: REG1A, ductal: CFTR, stellate: 1340 
PDGFRB, endothelial: CLEC14A, immune: CCL3). Total counts normalization and log-1341 
transformation were applied. (i) Genome browser tracks showing aggregate read density 1342 
(scaled to uniform 1x106 read depth) for cells within each cell type cluster at hormone 1343 
gene loci for endocrine islet cell types. The gene body of each gene is highlighted.  1344 
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 1345 

Supplementary Figure 2. Identification of factors explaining donor variability in 1346 
snATAC-seq data. 1347 
(a,d,g,j) Absolute Spearman correlation coefficient between the first 6 principle 1348 
components (PCs) and each biological or technical variable in beta (a), alpha (d), delta 1349 
(g), and gamma (j) cells. An absolute Spearman correlation threshold of 0.4 was used to 1350 
identify factors having a high correlation with each PC. (b,e,h,k) Principal component 1351 
analysis (PCA) based on cCREs in beta (b), alpha (e), delta (h), and gamma (k) cells from 1352 
individual non-diabetic (ND, n=11), pre-diabetic (pre-T2D, n=8), and type 2 diabetic (T2D, 1353 
n=15) donors which are color-coded by disease status. Each donor in the space is defined 1354 
by the first two principal components (left) and the two principal components (right) that 1355 
show highest correlation with disease status. (c,f,i,l) Pairwise Spearman correlation 1356 
coefficients between biological or technical variables in beta (c), alpha (f), delta (i), and 1357 
gamma (l) cells.   1358 
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 1359 

Supplementary Figure 3. Validation of beta cell T2D-differential cCREs in snATAC-1360 
seq data from an independent cohort of donor islets.  1361 
(a) Clustering of chromatin accessibility profiles from HPAP human islet snATAC-seq data 1362 
(non-diabetic (ND), n=13; pre-T2D, n=2; T2D, n=5). Cells are plotted using the first two 1363 
UMAP components. Clusters are assigned cell type identities based on promoter 1364 
accessibility of known marker genes (see Supplementary Figure 3b). The number of cells 1365 
for each cell type cluster is shown in parentheses. (b) Promoter chromatin accessibility in 1366 
a 5 kb window around TSS for selected endocrine and non-endocrine marker genes for 1367 
each profiled cell (alpha: GCG, beta: INS-IGF2, delta: SST, acinar: REG1A). Total counts 1368 
normalization and log-transformation were applied. (c) Heatmap showing chromatin 1369 
accessibility at differential cCREs identified in Figure 1e in HPAP snATAC-seq data. 1370 
Columns represent beta cells from each donor (ND, n=13; T2D, n=5) and all ND and T2D 1371 
donors with accessibility of peaks normalized by CPM (counts per million).  1372 
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 1373 

 1374 
Supplementary Figure 4. T2D affects chromatin activity more profoundly in beta 1375 
cells than in other endocrine cell types. 1376 
(a) Volcano plot showing differential cCREs in beta cells between type 2 diabetic (T2D) 1377 
and non-diabetic (ND) donors. Panels show all beta cells (left), beta cells down-sampled 1378 
to 15,000 (middle), and 5,000 cells (right). Each dot represents a cCRE. cCREs with FDR 1379 
< .1 after Benjamini-Hochberg correction (red dots) were considered differentially 1380 
accessible. (b) Volcano plot showing differential cCREs in alpha cells between T2D and 1381 
ND donors. Panels show all alpha cells (left), alpha cells down-sampled to 15,000 1382 
(middle), and 5,000 cells (right). Each dot represents a chromatin accessible cCRE. 1383 
cCREs with FDR < .1 after Benjamini-Hochberg correction (red dots) were considered 1384 
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differentially accessible. (c) Volcano plot showing differential cCREs in delta cells 1385 
between T2D and ND donors. Panels show all delta cells (left) and delta cells down-1386 
sampled to 5,000 cells (right). Each dot represents a chromatin accessible cCRE. cCREs 1387 
with FDR < .1 after Benjamini-Hochberg correction (red dots) were considered 1388 
differentially accessible.  1389 
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 1390 

 1391 
Supplementary Figure 5. Machine learning undercovers two beta cell subtypes.  1392 
(a) Clustering of chromatin accessibility profiles from 92,780 beta cells from non-diabetic 1393 
(ND), prediabetic (pre-T2D) and type 2 diabetic (T2D) donor islets using Scanpy 1394 
(resolution=0.5). Cells are plotted using the first two UMAP components. (b) Position of 1395 
beta cells from representative ND (MM80), pre-T2D (MM55), and T2D (MM54) donors on 1396 
the UMPA in panel a. (c) Illustration of process for distinguishing gradual from subtype 1397 
changes in beta cells using machine learning. Possible scenarios for cell changes during 1398 
T2D progression and expected disease state prediction accuracies for each scenario. In 1399 
the case of no T2D-associated changes, the prediction accuracy for each disease state 1400 
would be random (scenario 1), gradual cell state changes would be reflected by high 1401 
prediction accuracy in each disease state (scenario 2), and subtype changes would be 1402 
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reflected by median prediction accuracies (scenario 3, here shown for two cell subtypes). 1403 
(d, f, h) Relative abundance of predicted disease state among beta (d), alpha (f), and 1404 
delta (h) cells from each donor using XGBOOST. Each column represents cells from one 1405 
donor. (e, g, i) Relative abundance of predicted disease state among beta (e), alpha (g), 1406 
and delta (i) cells in ND, pre-T2D and T2D donor islets. Data are shown as mean ± S.E.M. 1407 
(n = 11 ND, n = 8 pre-T2D, n = 15 T2D donors), dots denote data points from individual 1408 
donors. (j) Illustration of process for identifying a classifier capable of distinguishing the 1409 
two beta cell subtypes.  1410 
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 1411 

 1412 
Supplementary Figure 6. Validation of beta cell subtypes using independent data 1413 
and computational methods. 1414 
(a) Relative abundance of beta-1 and beta-2 cells in male and female donor islets. Data 1415 
are shown as mean ± S.E.M. (n = 9 females, n = 25 males), dots denote data points from 1416 
individual donors. ANOVA test with age, disease, BMI, and islet index as covariates. (b) 1417 
Pearson correlation between relative abundance of beta-2 cells and BMI across donors 1418 
(n = 11 ND, n = 8 pre-T2D, n = 15 T2D donors). (c) Pearson correlation between relative 1419 
abundance of beta-2 cells and islet index across donors. (d) Pearson correlation between 1420 
relative abundance of beta-2 cells and age across donors. (e) Relative abundance of 1421 
beta-1 and beta-2 cells in islet snATAC-seq data from an independent cohort (n = 13 ND, 1422 
n = 5 T2D donors). Each column represents cells from one donor. (f) Relative abundance 1423 
of each beta cell subtype in ND and T2D donor islets. Data are shown as mean ± S.E.M 1424 
(n = 13 ND, n = 5 T2D donors). **P < .01; ANOVA test with age, sex, and BMI as 1425 
covariates. (g) Clustering of chromatin accessibility profiles from 92,780 beta cells from 1426 
ND, pre-T2D and T2D donors using beta cell differential cCREs between ND and T2D 1427 
donors from Figure 1e. Cells are plotted using the first two UMAP components. (h) 1428 
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Relative abundance of each beta cell cluster based on UMAP annotation in panel g. Each 1429 
column represents cells from one donor. (i) Position of beta cells from ND, pre-T2D and 1430 
T2D donors on the UMPA in panel g. (j) Position of beta cells from representative ND 1431 
(MM80), pre-T2D (MM55) and T2D (MM54) donors on the UMPA in panel g. (k) Relative 1432 
abundance of each beta cell cluster in ND, pre-T2D and T2D donor islets. Data are shown 1433 
as mean ± S.E.M. (n = 11 ND, n = 8 pre-T2D, n = 15 T2D donors). **P < .01, *P < .05; 1434 
ANOVA test with age, sex, BMI, and islet index as covariates. (l) Overlap between beta 1435 
cell subtypes identified using machine learning and beta cell clusters from UMPA in panel 1436 
g. The overlap is 76.6% between cluster 1 and beta-1 and 74.3% between cluster 2 and 1437 
beta-2. P < 2.2e-16 (Binominal test).  1438 
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 1439 

 1440 
Supplementary Figure 7. Validation and characterization of beta cell subtypes 1441 
using multiome data. 1442 
(a) Clustering of chromatin accessibility profiles of cells from multiome data (n = 6 ND, 1443 
n = 8 pre-T2D, n = 6 T2D). Cells are plotted using the first two UMAP components. 1444 
Clusters are assigned cell type identities based on promoter accessibility of known marker 1445 
genes (alpha: GCG, beta: INS-IGF2, delta: SST, gamma: PPY). The number of cells for 1446 
each cell type cluster is shown in parentheses. (b) Clustering of gene expression profiles 1447 
of cells from multiome data (n = 6 ND, n = 8 pre-T2D, n = 6 T2D). Cells are plotted using 1448 
the first two UMAP components. Clusters are assigned cell type identities based on 1449 
expression levels of known marker genes (alpha: GCG, beta: INS, delta: SST, gamma: 1450 
PPY). The number of cells for each cell type cluster is shown in parentheses. (c) 1451 
Clustering of gene expression profiles of beta cells from multiome data using genes linked 1452 
to differential proximal (within ± 5kb of a TSS in GENCODE V19) and distal (based on 1453 
potential distal cCRE-promoter connections inferred from cicero, see Methods) cCREs 1454 
between ND and T2D beta cells from Figure 1e. Cells are plotted using the first two UMAP 1455 
components. (d) Plots of beta cell subtypes predicted from chromatin accessibility profiles 1456 
of beta cells from multiome data by machine learning. (e) Correlation between changes 1457 
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in proximal cCRE (within ± 5kb of a TSS in GENCODE V19) accessibility and gene 1458 
expression differences between beta-1 and beta-2 cells for differentially expressed genes 1459 
from Figure 3b. There are 544 proximal cCREs and target gene pairs in total, of which 1460 
511 have consistent changes between proximal cCRE accessibility and gene expression. 1461 
(f) Correlation between changes in distal cCRE (potential distal cCRE-promoter 1462 
connections inferred from cicero, see Methods) accessibility and gene expression 1463 
differences between beta-1 and beta-2 cells for differentially expressed genes from Figure 1464 
3b. There are 85 distal cCREs and target gene pairs in total, of which 72 have consistent 1465 
changes between distal cCRE accessibility and gene expression. (g) Enriched gene 1466 
ontology terms among genes (see Figure 3b) with higher (proximal or distal) cCRE 1467 
accessibility and expression in beta-1 compared to beta-2 cells (left) and higher (proximal 1468 
or distal) cCRE accessibility and expression in beta-2 compared to beta-1 cells (right).  1469 
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 1470 

 1471 
Supplementary Figure 8. Beta-1 and beta-2 cell classification analysis in scRNA-1472 
seq data from independent cohorts. 1473 
(a, d, g, j) Clustering of gene expression profiles of beta cells from cohort 15, cohort 212, 1474 
cohort 322, and Patch-seq cohort using differentially expressed genes between beta-1 1475 
and beta-2 from Figure 3b. Cells are plotted using the first two UMAP components. The 1476 
number of donors for each cohort and cells for each cell cluster is shown in parentheses. 1477 
(b, e, h, k) Heatmap showing pseudo-bulk expression levels of differentially expressed 1478 
genes between beta-1 and beta-2 (see Figure 3b) in beta cells from cluster 1 and cluster 1479 
2 of cohort 15, cohort 212, cohort 322, and Patch-seq cohort. Expression levels of genes 1480 
are normalized by TPM (transcripts per million). (c, f, i, l) Relative abundance of each 1481 
beta cell subtype in ND and T2D donor islets in cohort 15, cohort 212, cohort 322, and 1482 
Patch-seq cohort. Data are shown as mean ± S.E.M., dots denote data points from 1483 
individual donors. **P < .01, ***P < .001; ANOVA test with age, sex, and BMI as 1484 
covariates.   1485 
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 1486 

 1487 
Supplementary Figure 9. Transcriptional programs distinguishing the two beta cell 1488 
subtypes. 1489 
(a) Genome browser tracks showing aggregate RNA and ATAC read density at 1490 
representative genes (SLC2A2, SOCS6, S100A10, ITPR1) positively regulated by 1491 
HNF1A, HNF4A or HNF4G. Differential regions between beta-1 and beta-2 are indicated 1492 
by grey shaded boxes. Beta cell cCREs with binding sites for HNF1A, HNF4A and HNF4G 1493 
are shown. All tracks are scaled to uniform 1x106 read depth. (b) Genome browser tracks 1494 
showing aggregate RNA and ATAC read density at representative genes (SLC30A8, 1495 
CACNA2D3, PDE4B, PRKD1) positively regulated by NEUROD1, NFIA or TCF4. 1496 
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Differential regions between beta-1 and beta-2 are indicated by grey shaded boxes. Beta 1497 
cell cCREs with binding sites for NEUROD1, NFIA and TCF4 are shown. All tracks are 1498 
scaled to uniform 1x106 read depth. (c) Bar plots showing accessibility at HNF1A, HNF4A 1499 
and HNF4G proximal cCREs in beta-1 and beta-2 cells. Proximal region of HNF1A 1500 
(chr12:121416081-121416581), HNF4A (chr20:42984069-42984569), HNF4G 1501 
(chr8:76319564-76320064). Accessibility of peaks is normalized by CPM (counts per 1502 
million). Paired t-test. (d) Bar plots showing expression of HNF1A, HNF4A and HNF4G 1503 
in beta-1 and beta-2 cells. Gene expression is normalized by TPM (transcripts per 1504 
million). Paired t-test. (e) Bar plots showing accessibility at NEUROD1, NFIA and TCF4 1505 
proximal cCREs in beta-1 and beta-2 cells. Proximal region of NEUROD1 1506 
(chr2:182545164-182545664), NFIA (chr1:61523320-61523820), TCF4 1507 
(chr18:52969269-52969769). Accessibility of peaks is normalized by CPM. Paired t-test. 1508 
(f) Bar plots showing expression of NEUROD1, NFIA, and TCF4 in beta-1 and beta-2. 1509 
Gene expression is normalized by TPM. Paired t-test. (g) Genome browser tracks 1510 
showing aggregate RNA and ATAC read density at HNF1A, HNF4A and HNF4G in beta-1511 
1 and beta-2 cells. Differential regions between beta-1 and beta-2 are indicated by grey 1512 
shaded boxes. Beta cell cCREs with binding sites for HNF1A, HNF4A and HNF4G are 1513 
shown. All tracks are scaled to uniform 1x106 read depth. (h) Genome browser tracks 1514 
showing aggregate RNA and ATAC read density at NEUROD1, NFIA and TCF4 in beta-1515 
1 and beta-2 cells. Differential regions between beta-1 and beta-2 are indicated by grey 1516 
shaded boxes. Beta cell cCREs with binding sites for NEUROD1, NFIA and TCF4 are 1517 
shown. All tracks are scaled to uniform 1x106 read depth. (i) Genome browser tracks 1518 
showing aggregate RNA and ATAC read density at HNF1A and TCF4 in beta-1 and beta-1519 
2 cells. Differential regions between beta-1 and beta-2 cells are indicated by grey shaded 1520 
boxes. Beta cell cCREs with binding sites for HNF1A and TCF4 are shown. All tracks are 1521 
scaled to uniform 1x106 read depth.   1522 
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 1523 

 1524 
Supplementary Figure 10. Transcriptional programs changed in both beta cell 1525 
subtypes in T2D.  1526 
(a) Heatmap showing chromatin accessibility at cCREs with differential accessibility in 1527 
beta-1 cells from ND and T2D donors. Columns represent beta cells from each donor 1528 
(ND, n=11; pre-diabetic, pre-T2D, n=8; T2D, n=15) with accessibility of peaks normalized 1529 
by CPM (counts per million). (b) Heatmap showing chromatin accessibility at cCREs with 1530 
differential accessibility in beta-2 cells from ND and T2D donors. Columns represent beta 1531 
cells from each donor (ND, n=11; pre-diabetic, pre-T2D, n=8; T2D, n=15) with 1532 
accessibility of peaks normalized by CPM. (c) Heatmap showing expression of genes 1533 
negatively regulated by TFs (green) with higher activity in ND compared to T2D beta-1 1534 
cells (see Methods) and TFs (red) with lower activity in ND compared to T2D beta-1 cells 1535 
(n=6 ND, n=8 pre-T2D, n=6 T2D donors). Representative target genes of individual TFs 1536 
are highlighted and classified by biological processes. Gene expression is normalized by 1537 
TPM (transcripts per million). # denotes TFs with decreased or increased expression in 1538 
T2D in both beta-1 and beta-2 cells. (d) Heatmap showing expression of genes negatively 1539 
regulated by TFs (green) with higher activity in ND compared to T2D beta-2 cells (see 1540 
Methods) and TFs (red) with lower activity in ND compared to T2D beta-2 cells (n=6 ND, 1541 
n=8 pre-T2D, n=6 T2D donors). Representative target genes of individual TFs are 1542 
highlighted and classified by biological processes. Gene expression is normalized by 1543 
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TPM (transcripts per million). # denotes TFs with decreased or increased expression in 1544 
T2D in both beta-1 and beta-2 cells. (e,f,g) Pearson correlation of expression levels 1545 
between indicated TFs across pseudo-bulk RNA profiles from each beta cell subtype (40 1546 
dots in total: 20 donors including n = 6 ND, n = 8 pre-T2D, n = 6 T2D).   1547 
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 1548 

Supplementary Figure 11. T2D risk variant enrichment for cCREs with T2D-1549 
dependent changes in the beta-1 and beta-2 subtype. 1550 
Enrichment of fine-mapped T2D risk variants for cCREs active in the beta-1 and beta-2 1551 
subtype with increased or decreased activity in T2D. Values represent log odds ratios 1552 
and 95% confidence intervals. * P < .05 1553 
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