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Abstract
Immunotherapy against cancer, through immune checkpoint inhibitors targeting the 
programmed cell death- 1/programmed cell death- ligand 1 axis, is particularly suc-
cessful in tumors by relieving the immune escape. However, interindividual responses 
to immunotherapy are often heterogeneous. Therefore, it is essential to screen out 
predictive tumor biomarkers. In this study, we analyzed the commensal microbiota 
in stool samples and paired sputum samples from 75 metastatic non- small- cell lung 
cancer (NSCLC) patients at baseline and during treatment with immune checkpoint 
inhibitors. Results showed distinct microbes’ signatures between the gut microbiota 
and paired respiratory microbiota. The alpha diversity between the gut and respira-
tory microbiota was uncorrelated, and only the gut microbiota alpha diversity was 
associated with anti- programmed cell death- 1 response. Higher gut microbiota alpha 
diversity indicated better response and more prolonged progression- free survival. 
Comparison of bacterial communities between responders and nonresponders 
showed some favorable/unfavorable microbes enriched in responders/nonrespond-
ers, indicating that commensal microbiota had potential predictive value for the re-
sponse to immune checkpoint inhibitors. Generally, some rare low abundance gut 
microbes and high abundance respiratory microbes lead to discrepancies in microbial 
composition between responders and nonresponders. A significant positive correla-
tion was observed between the abundance of Streptococcus and CD8+ T cells. These 
results highlighted the intimate relationship between commensal microbiota and the 
response to immunotherapy in NSCLC patients. Gut microbiota and respiratory mi-
crobiota are promising biomarkers to screen suitable candidates who are likely to 
benefit from immune checkpoint inhibitor- based immunotherapy.
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1  | INTRODUC TION

The development and progression of cancer are associated with the 
failure of immune surveillance. Immune checkpoint inhibitor- based 
immunotherapy is capable of relieving the immune escape and has 
since been approved by NCCN guidelines.1- 5 T lymphocyte- mediated 
responses can potentially be unleashed by ICIs via inhibiting the in-
teraction between T cell inhibitory receptors and their homologous 
ligands on tumor cells.6 However, interindividual responses to ICIs 
are often heterogeneous.7,8 Primary resistance has been attributed 
to low PD- L1 tumor proportion score,9 low TMB,10 poor intrinsic an-
tigenicity of tumor cells,11 local immunosuppression by extracellular 
metabolites,12 defective antigen presentation during the priming 
phase,13 and functional exhaustion of tumor- infiltrating lympho-
cytes.14,15 In recent years, increasing evidence has revealed that the 
commensal microbiota is an important biological factor contributing 
to interindividual heterogeneity of response to ICIs. Clinical/preclini-
cal studies have indicated that the composition of the gut microbiota 
can exert a significant influence on antitumor immunity and immu-
notherapy efficacy.16- 19

However, current studies seem to lack consensus on what are 
the favorable or unfavorable microbes to ICIs. Sivan et al found 
that commensal gut Bifidobacterium promoted antitumor immunity 
and facilitated anti- PD- L1 efficacy for melanoma cancer.19 Matson 
et al found high abundant gut Bifidobacterium longum, Collinsella aer-
ofaciens, and Enterococcus faecium were associated with better anti- 
PD- 1 efficacy in metastatic melanoma patients.18 Jin et al found that 
clinical responses to ICIs were associated with the relative abun-
dance of Alistipes putredinis, Bifidobacterium longum, Prevotella copri, 
and unclassified Ruminococcus in NSCLC.20 Therefore, these mixed 
results from limited eligible studies need more in- depth research on 
the relationship between gut microbiota and the response to ICIs in 
cancer patients. Additionally, nearly all research has predominantly 
focused on gut microbiota and its influence on host immunity. The 
relationship between respiratory microbiota and the response to 
ICIs in NSCLC has not been widely explored, even though the re-
spiratory microbiota has been found to provoke inflammation asso-
ciated with lung cancer.21 The respiratory tract can be divided into 
the URT and LRT. The URT includes the portion of the larynx above 
the vocal cords, oropharynx, nasopharynx, paranasal sinuses, nasal 
passages, and anterior nares. The LRT includes the portion of the lar-
ynx below the vocal cords, the trachea, smaller airways, and alveoli. 
Respiratory microbiota can be defined as the microbe community 
present in the respiratory tract. This study was designed to evaluate 
the relationship between the commensal microbiota (gut microbiota 
and paired respiratory microbiota) and the clinical efficacy of ICIs in 
advanced NSCLC patients and also assess their potential value as 
new biomarkers in predicting the response to immunotherapy.

2  | MATERIAL S AND METHODS

2.1 | Patient cohort

Metastatic NSCLC patients suffering from a failure of platinum- based 
chemotherapy and were to receive anti- PD- 1 monotherapy were en-
rolled in this study between May 2019 and January 2021 at Shandong 
Cancer Hospital (Figure 1). All the study participants had measurable le-
sions according to RECIST 1.1.22 Patients with active or not pretreated 
brain metastases were excluded from this study. Baseline patients who 
had not recovered from physical symptoms of acute diarrhea were also 
excluded from this analysis. Medical images were reviewed indepen-
dently by two radiologists for appraisal of clinical response according to 
the updated RECIST 1.1.23 Patients were classified as R if they achieved 
complete response, PR, or SD lasting at least 6 months, and patients 
were classified as NR if they suffered PD (confirmed by a subsequent 
assessment no less than 4 weeks from the first evaluation) or SD last-
ing less than 6 months. This classification considers those patients who 
would benefit from immunotherapy over the long term despite not 
achieving a RECIST response. It is more accurate and rigorous in esti-
mating disease progression for a subset of patients who suffer pseudo-
progression, which is defined as a more than 30% decrease in the total 
size of tumor target lesions from the baseline after PD. This classifica-
tion method is widely used in published studies.24,25 Patients’ demo-
graphic, clinical, pathological, and molecular data were extracted from 
the medical records, including tumor characteristics, the number of 
metastatic sites, PD- L1 expression when available, previous treatment, 
driver mutation, and ECOG PS scores. All patients had been given full 
access to information and consented to participate in this observational 
study. The procedures involved in the collection and analysis of stool 
samples, sputum samples, and biopsy samples were approved by the 
ethics committee of Shandong Cancer Hospital. All the procedures 
were carried out following the principals of the Declaration of Helsinki.

2.2 | Stool samples and paired sputum 
samples collection

At least 1 g of stool and paired sputum samples were collected in ster-
ile specimen containers before anti- PD- 1 treatment. Considering that 
sputum samples were inevitably contaminated by the oral cavity during 
the sampling process, we took additional samples in the oral cavity as 
controls in some patients. For oral cavity sampling, we used a swab to 
quickly wipe the oral cavity mucosa on the medial side of the cheek, and 
put the swab into a sterile tube. The samples were transported to the 
laboratory within 2 hours after collection. Eligible patients were provided 
with a Fecal Sample Collection Kit (CY- 98000PFB) and Sputum Sample 
Collection Kit (CY- 98000A) (Huachenyang) for collection of stool and 
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sputum samples at home. These kits maintain microbial DNA stability at 
15- 30℃ for up to 12 months. All samples were frozen at −80℃ before 
DNA extraction and analysis. Usually, stool samples should be collected 
in the mid- posterior section of the feces; sputum samples should be col-
lected in the early morning after a deeply forceful cough. All sampling time 
points have avoided special cases, such as emerging diarrhea. For details 
such as DNA extraction, PCR amplification, Illumina MiSeq sequencing, 
and bioinformatics analysis, see Materials in Supporting Information.

2.3 | Statistical analyses

Statistical analyses were undertaken using SPSS 22.0 (IBM). Patients’ 
baseline characteristics are described according to the objective re-
sponse of anti- PD- 1 treatment and data compared using Pearson’s χ2 
test or continuous correction χ2 test. In general, the nonparametric 
Kruskal- Wallis test or MW test was used to compare abundance and 
alpha diversity between groups. Spearman’s rank correlation test was 
used to detect the correlation of pairwise data. Kaplan- Meier survival 
analysis was used to assess median PFS in each group, and any differ-
ences in PFS were evaluated with a stratified log- rank (Mantel- Cox) test. 
The Friedman test was used to compare the Shannon index at different 
time points. Beta diversity analysis of the differences in microbiota com-
munity between R and NR was carried out using analysis of similarities.

3  | RESULTS

3.1 | Baseline patient characteristics

An initial cohort of 91 patients with advanced NSCLC was included 
in this study. Patients who received PD- 1 inhibitors combined with 

targeted therapy (n = 8) or radiotherapy (n = 8) in the treatment 
course were excluded from this analysis. Finally, 75 patients were 
eligible for analysis (Figure 1). The 75 patients were classified into R 
(n = 25, including 21 PR patients and 4 SD patients) and NR (n = 50, 
including 20 SD patients and 30 PD patients). A total of 75 stool sam-
ples and 57 sputum samples were collected at baseline (Figure 1). 
Baseline characteristics of the 75 patients are presented in Table 1. 
Variables that are considered to influence the anti- PD- 1 effect, such 
as smoking,17 steroid use,26 antibiotic use,27 radiotherapy history,28 
and EGFR mutations status29 were relatively balanced between R 
and NR. Increasing evidence has indicated that PD- L1 TPS and TMB 
are factors influencing anti- PD- 1 treatment; thus, we recorded TMB 
and detected PD- L1 status in eligible patients. Of the 75 patients, 
67 patients’ biopsies qualified for high- quality PD- L1 analysis by im-
munohistochemistry. Forty- two patients showed positive expres-
sion (PD- L1 TPS ≥ 1), of which 16 patients showed high positive 
expression (PD- L1 TPS ≥ 50%), and 26 patients showed low positive 
expression (1% ≤ PD- L1 TPS < 50%). There was no statistical differ-
ence between groups. Thirteen patients underwent TMB detection 
by next generation sequencing in tumor tissue specimens, and the 
results showed that TMB ranged from 15.8/Mb to 53.4/Mb. No dif-
ferences in TMB were observed between R and NR (Figure S1).

3.2 | Differences in commensal microbiota 
landscape and abundance between gut 
microbiota and respiratory microbiota

Microbes are well- annotated at kingdom, phylum, class, order, family, 
and genus level (Figure S2). We first compared the microbiota diver-
sity by 16S sequencing based on paired samples (stool samples and 
paired sputum samples) from 15 patients, noting that both gut and 

F I G U R E  1   Schema of patient 
enrollment and sample collection. 
NSCLC, non- small- cell lung cancer; PD- 1, 
programmed cell death- 1
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respiratory microbiota were relatively diverse (Shannon index > 5) 
(Figure 2A). No significant difference in Shannon alpha diversity was 
observed between the two groups. However, the landscape of the 
20 genus microbes ranking the top 20 abundance at baseline var-
ied markedly (Figure 2B). Only a small fraction of microbial species 
were shared between the gut and respiratory microbiota (Figure 2C). 
ANCOM showed that the abundance of most of the common spe-
cies was significantly different between the two communities 
(Figure 2D). Beta diversity analysis and clustering based on microbe 
abundance confirmed a distinct microbiota community composition 
between the gut and respiratory microbiota (Figure 2D,E).

3.3 | Gut microbiota diversity is associated with 
anti- PD- 1 response

Previous discoveries have indicated that the gut microbiota has a sig-
nificant influence on the efficacy of ICIs in melanoma. Therefore, we 
sought to ascertain whether this influence existed in NSCLC; in par-
ticular, to identify the relationship between respiratory microbiota 
and anti- PD- 1 response. We analyzed the diversity of gut and respir-
atory microbiota at baseline. Results showed that the alpha diversity 
(measured by the Chao1 index and Shannon index) of the gut micro-
biota was significantly higher in R than NR. However, no significant 
difference was observed when referred to the Simpson alpha diver-
sity index (Figure 3A). No statistical difference of alpha diversity was 
observed between R and NR in respiratory microbiota (P > .05, MW 
test). Further research on the 15 stool samples and paired sputum 
samples showed that alpha diversity between the two microbial 
communities was uncorrelated (P > .05, Spearman’s test). Subgroup 
analysis revealed that the differences in the gut microbiota between 
R and NR were mainly caused by PR and PD patients when meas-
ured by Chao1 index and Shannon index (Figure 3B). The patients 
were stratified into two cohorts based on the cut- off value (Shannon 
index = 5.75) obtained from the ROC curve (Figure S3). Results 

TA B L E  1   Baseline characteristics of 75 patients with advanced 
non- small- cell lung cancer classified as treatment responders (R) or 
nonresponders (NR)

Characteristic R (n = 25) NR (n = 50)
P 
value

Age, years

≤60 15 (60.0) 27 (54.0) .62

>60 10 (40.0) 23 (46.0)

Gender

Male 16 (64.0) 29 (58.0) .62

Female 9 (36.0) 21 (42.0)

Smoking history

Yes 11 (44.0) 21 (42.0) .87

Never 14 (56.0) 29 (58.0)

Alcohol drinking history

Yes 16 (64.0) 28 (56.0) .51

No 9 (36.0) 22 (44.0)

BMI

>24 6 (24.0) 15 (30.0) .59

≤24 19 (76.0) 35 (70.0)

Histopathology

Squamous 
carcinoma

13 (52.0) 27 (54.0) .87

Adenomatous 
carcinoma

12 (48.0) 23 (46.0)

ECOG PS scores

≤1 18 (72.0) 34 (62.0) .72

>1 7 (28.0) 16 (38.0)

History of steroid hormone use

Yes 8 (32.0) 20 (40.0) .50

No 17 (68.0) 30 (60.0)

History of antibiotic use

Yes 10 (40.0) 17 (34.0) .61

No 15 (60.0) 33 (66.0)

Number of metastatic sites

≤3 15 (60.0) 21 (42.0) .14

>3 10 (40.0) 29 (58.0)

EGFR mutation status

WT 22 (88.0) 45 (90.0) 1.0

Mutant type 3 (12.0) 5 (10.0)

History of radiotherapy

Yes 15 (60.0) 21 (42.0) .14

No 10 (40.0) 29 (58.0)

Type of PD- 1 inhibitor

Nivolumab 11 (44.0) 25 (50.0) .62

Pembrolumab 14 (56.0) 25 (50.0)

PD- L1 status

(Continues)

Characteristic R (n = 25) NR (n = 50)
P 
value

PD- L1 TPS ≥ 50% 
(high expression)

7 (31.8) 9 (20.0) .35

1%≤ PD- L1 
TPS < 50% (low 
expression)

6 (27.3) 20 (44.4)

PD- L1 TPS < 1% 
(negative 
expression)

9 (40.9) 16 (35.6)

Note: Data are shown as n (%). Patient classification: NR, progressive 
disease, or stable disease for <6 months; R, complete response, partial 
response, or stable disease for ≥6 months.
Abbreviations: BMI, body mass index; PD- 1, programmed cell death- 1; 
PD- L1, programmed cell death- ligand 1; PS, performance status; TPS, 
tumor proportion score.
aHistory of drug use limited to within 1 mo.

TA B L E  1   (Continued)
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showed that patients harboring a higher alpha diversity had a higher 
response rate (60.0% vs 22.5%, P < .01) and significantly prolonged 
median PFS (4.6 months vs 3.3 months, P = .02) (Figure 3C,D). It is 
also important to note that the Simpson index, compared with other 
alpha diversity indices, showed minimal differences between the 
two groups (Figure 3A,B). According to the formula used to calculate 
the indices, rare low abundance microbes had minimal weights on 
the Simpson index relative to Chao1 and Shannon indices.30,31 Thus, 
we assumed that the alpha diversity difference between R and NR 
might be caused by the rare low abundance microbes. This assump-
tion was consistent with a previous finding that rare low abundance 
microbes were associated with anti- PD- 1 response and CD8+ T cell 
immunity in melanoma cancer.16,32

We estimated the beta diversity of the gut microbiota in R and 
NR. Through visual comparison by PCoA based on unweighted 
UniFrac and supervised partial least squares- discriminant analysis, 
we found that there was a statistical difference between R and NR, 
even though the unweighted PCoA showed a less obvious cluster-
ing effect (Figure S4A). However, weighted UniFrac PCoA showed 

no difference in beta diversity between R and NR. Different results 
from unweighted and weighted PCoA analyses indicated that low 
abundance microbe composition might differ between the two 
groups. The relationship between respiratory microbiota and the 
different anti- PD- 1 response was estimated. Unlike the gut micro-
biota, the weighted UniFrac PCoA showed a statistical difference in 
beta diversity between R and NR (Figure S4B), indicating that some 
respiratory microbes with high abundance might greatly contribute 
to the difference in beta diversity between R and NR.

3.4 | Featured microbes in R and NR

To further investigate the featured microbes in R and NR, we 
used LEfSe. Results indicated differentially abundant gut mi-
crobes in R versus NR to anti- PD- 1 response, with Desulfovibrio, 
Actinomycetales, Bifidobacterium, Odoribacteraceae, Anaerostipes, 
Rikenellaceae, Faecalibacterium, and Alistipes enriched in R, whereas 
Fusobacterales, Fusobacteriia, Fusobacterium, Fusobacteria, and 

F I G U R E  2   Difference in composition between gut and respiratory microbiota in patients with non- small- cell lung cancer. All microbial 
data are obtained from stool samples and paired sputum samples in 15 patients. A, Boxplot of Shannon index (alpha diversity). Shannon 
diversity index for gut microbiota and respiratory microbiota is 5.61 and 5.76, respectively. ns, P > .05 by Mann- Whitney test. B, Microbial 
landscape and the relative abundance of gut microbes and respiratory microbes at the genus level. C, Venn diagrams showing common 
species. Two circles represent species counts of gut species (n = 1505) and respiratory species (n = 1415). Overlap area represents common 
species (n = 204). D, Analysis of composition of microbiomes (ANCOM) by volcano plot to compare the differences in the abundance of 
common species. Each plot in the diagram represents a compared species. E, Heatmap of unsupervised hierarchical clustering of microbes 
at the genus level. Gradation of color represents the level of microbes’ relative abundance (log10). W value from ANCOM is a statistic that 
measures the significance of differences between groups, and the clr value from ANCOM represents the degree of abundance difference 
between groups
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F I G U R E  3   Alpha diversity of the gut microbiota in patients with non- small- cell lung cancer is associated with anti-  PD- 1 response and 
progression- free survival (PFS). A, Diversity index between treatment responders (R) and nonresponders (NR). Three graphs from left to 
right show the Chao1, Shannon, and Simpson index, respectively. *P < .05, **P < .01 by Mann- Whitney (MW) test. B, Subgroup analysis 
of diversity in the gut microbiota among patients with partial response (PR), stable disease (SD), and progressive disease (PD). *P < .05, 
**P < .01 by MW test. C, Response rate in the high diversity group (n = 35) vs low diversity group (n = 40) with a cut- off value of the 
Shannon index (5.75) from the receiver operating characteristic curve. **P < .01 by Pearson’s χ2 test. D, Kaplan- Meier survival analysis of 
PFS in the high and low diversity groups. The median PFS of the high diversity and low diversity group was 4.6 and 3.3 mo, respectively. 
P = .02 by log- rank Mantel- Cox test; hazard ratio, 0.54 (95% confidence interval, 0.30- 0.97). ns, P > .05
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Fusobacteriaceae were enriched in NR (Figure 4A,B). We analyzed 
the relative abundance of these microbes in the corresponding taxon 
level and found that nearly all were in low abundance (Table S1). 
However, respiratory microbiota showed the opposite character-
istics, where some featured microbes in R and NR were abundant, 
such as Firmicutes and Proteobacteria (Figure 4C,D and Table S1). 

These results further supported the suggestion that some gut mi-
crobes with low abundance and respiratory microbes with high 
abundance might lead to the discrepancy in bacterial composition 
between R and NR.

To assess the value of the featured microbes as biomarkers 
in predicting the anti- PD- 1 response, we evaluated all featured 

F I G U R E  4   Featured microbes in patients with non- small- cell lung cancer classified as treatment responders (R) or nonresponders (NR). A, 
C, Linear discriminant analysis (LDA) histogram from linear discriminant analysis effect size (LefSe). The length of the histogram represents 
LDA scores computed for differentially abundant microbes in (A) gut microbiota and (C) respiratory microbiota of R (red) and NR (blue). 
P = .05 by Kruskal- Wallis test; LDA score >2. B, D, Taxonomic cladogram from LEfSe showing differences in (B) gut microbiota and (D) 
respiratory microbiota. Dot size is proportional to the abundance of the microbe. Red dots indicate a significant difference in abundance 
between the two groups (P < .05 by Kruskal- Wallis test). Yellow dots indicate no significant difference in abundance between the two 
groups. E, Multi- index receiver operating characteristic (ROC) curves to assess the value of microbes of featured genera as biomarkers in 
predicting anti- PD- 1 response. AUC, area under the ROC curve; CI, confidence interval



3012  |     ZHANG et Al.

genera of gut microbes (Fusobacterium, Anaerostipes, Desulfovibrio, 
Bifidobacterium, Faecalibacterium, and Alistipes) and respiratory 
microbes (Atopobium, Bulleidia, and Streptococcus) by ROC curves. 
Results showed a good predictive value of the abundance of these 
featured microbes, except Desulfovibrio and Bulleidia (Figure 4E). 
According to cut- off values from ROC curves, the patients were di-
vided into two groups, and we compared response rates and PFS 
between groups. We found a significant difference in response 
rate between groups for most microbes (Table S2). However, only 
Fusobacterium (gut microbiota) and Streptococcus (respiratory micro-
biota) showed differences in median PFS between the high and low 
abundance groups.

3.5 | Diversity and abundance of gut and 
respiratory microbes maintain stability during anti- 
PD- 1 treatment

As described above, the baseline gut and respiratory microbiota 
profiles were associated with anti- PD- 1 response in NSCLC. We 

attempted to investigate further whether the profiles were steady 
throughout the entire treatment. Therefore, a longitudinal sampling 
strategy was carried out to dynamically evaluate the gut and res-
piratory microbe landscape and abundance in 15 eligible patients. 
Sampling time points were at baseline before treatment (T0), from 
the first to fourth treatment cycle (T1- T4), and when the disease 
progressed (Tp). Alpha and beta diversity at different time points 
were analyzed. Results showed that there was no significant differ-
ence in alpha diversity among T0, T1, T2, T3, T4, and Tp time points 
for both gut and paired respiratory microbiota (P >.05) (Figure 5A). 
Additionally, there was no significant difference in beta diversity 
and no pronounced clustering effect between T0 and Tp time points 
(Figure 5B,C), indicating that no significant alterations occurred in 
the phylogenetic tree throughout the anti- PD- 1 treatment. Finally, 
20 microbes were selected, all ranked in the top 20 most abundant 
at baseline, and their variation in abundance in each patient was ob-
served at the Tp time point. Intuitively, the relative abundance of 
these microbes changed little (Figure 5D,E). These results indicated 
that gut and respiratory microbiota profiles maintain relative stabil-
ity during the entire anti- PD- 1 treatment.

F I G U R E  5   Alpha diversity and abundance of the gut and respiratory microbiota maintain stability during anti- PD- 1 treatment in patients 
with non- small- cell lung cancer. A, Alpha diversity (measured by Shannon index) of gut and respiratory microbiota at different time points 
(from baseline [T0] to disease progression [Tp]). P > .05 by Friedman test. B, C, Beta diversity (measured by principal coordinate analysis) 
comparison at T0 and Tp time points for (B) gut microbiota and (C) respiratory microbiota. P > .05 by analysis of similarities. D, E, Abundance 
variation of 20 microbes at T0 and Tp time points in 15 patients. Each microbe was ranked in the top 20 in terms of average abundance at 
baseline in the gut and respiratory microbiota. For every patient (1– 15), the bar plot on the left represents the T0 time point, and on the right 
represents the Tp time point
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3.6 | Relationship between commensal microbiota, 
anti- PD- 1 response, and clinical variables

As baseline gut and respiratory microbiota profiles were asso-
ciated with an anti- PD- 1 response, we sought to ascertain the 
possible clinical variables that influenced the distribution of 
microbes between R and NR. In this study, several clinical vari-
ables we put into consideration, such as ECOG PS scores, age, 
smoking index, average alcohol consumption, and BMI. Results 
of redundancy analysis showed that PS scores, alcohol consump-
tion, and BMI were important clinical variables that influenced 
the distribution of gut microbes between R and NR (Figure 6A). 
Interestingly, we found that nearly all gut microbes featured in R 
or NR at the genus level were influenced by PS scores (Figure 6B). 
Better PS indicated a higher abundance of favorable microbes 
(eg, Alistipes, Anaerostipes, and Desulfovibrio) that featured in 
R and a lower abundance of unfavorable microbes (such as 
Fusobacterium) that featured in NR. Smoking and alcohol con-
sumption were associated with a lower abundance of favorable 
microbes, such as Bifidobacterium and Anaerostipes. Alcohol con-
sumption was also associated with a higher abundance of unfa-
vorable Fusobacterium, and elderly patients were associated with 
a lower abundance of favorable Bifidobacterium. Better physical 
condition, young age, less smoking, and less alcohol consump-
tion seemed to improve the abundance of favorable microbes 
featured in R or reduce the abundance of unfavorable microbes 
featured in NR.

However, no clinical variable was observed for respiratory mi-
crobiota to affect the distribution of microbes between R and NR 
(Figure 6C). Those respiratory microbes at the genus level featured 
in R and NR were also unaffected by the above clinical variables 
(Figure 6D).

3.7 | Relationship between respiratory 
microbes and TILs

As the gut microbiota has been confirmed to control anti- PD- 1 
response by regulating the tumor microenvironment,16,19,33 we 
investigated tumor- associated TILs by immunohistochemistry. 
Consistent with previous reports, we observed a high density 
of CD8+ T cells in R versus NR (Figure 7A). We then undertook 
pairwise comparisons using Spearman rank correlations between 
CD8+ T cells, CD4+ T cells, IFN- γ+CD4+ T cells (Th1), IL- 4+CD4+ 
T cells (Th2), FoxP3+CD4+ T cells (Treg cells), and the abundance 
of respiratory microbes featured in R or NR. A statistically signifi-
cant positive correlation was observed between the abundance of 
Streptococcus and CD8+ T cells density (Figure 7B,C). No associa-
tions were seen between other genus respiratory microbes and the 
density of CD8+ T cells. Representative CD8+ immunohistochemis-
try images in high and low abundance of Streptococcus groups are 
presented in Figure 7D.

4  | DISCUSSION

This study found that the alpha diversity between the gut and res-
piratory microbiota was uncorrelated in patients with NSCLC, and 
only the gut microbiota alpha diversity was associated with anti- 
PD- 1 response and PFS. The beta diversity in both the gut and 
respiratory microbiota was statistically different between R and 
NR. The diversity of microbiota is affected by biotic and abiotic 
drivers and, in turn, affects ecosystem functioning. Nevertheless, 
patterns of diversity in host- associated microbiota are poorly 
studied. Diet, age, lifestyle, drugs, and body size are generally 
considered to affect diversity in the gut, but gut physiology is 
deemed the most important driver.34,35 Respiratory microbiota 
was also influenced by host and environmental factors, such as 
genetics, smoking, vaccination, infection, and antibiotics.36 In gen-
eral, the diversity difference among individuals is the result of the 
interaction of many factors. Compared with other tumor biomark-
ers, such as PD- L1 and TMB, the commensal microbiota is plas-
tic. Evidence showed that anti- PD- 1 response could be improved 
by increasing the alpha diversity or improving the abundance of 
specific microbes.16,17,19 Some rare low abundance gut microbes 
and high abundance respiratory microbes might contribute to the 
discrepancy in diversity between R and NR. Our findings were 
not consistent with results reported in previous studies regard-
ing what were the favorable or unfavorable gut microbes. In 
this study, Alistipes, Anaerostipes, Desulfovibrio, Faecalibacterium, 
and Bifidobacterium were favorable, whereas Fusobacterium was 
an unfavorable microbe for anti- PD- 1 treatment. A high abun-
dance of Alistipes, Faecalibacterium, and Bifidobacterium has also 
been found to be associated with better anti- PD- 1 response in 
other studies.16,19,20 Currently, the mechanisms that favorable 
gut microbes use to modulate antitumor immunity are not clear. 
However, some studies have shown that favorable gut microbes 
affect antigen processing and presentation within the tumor mi-
croenvironment.16,19,20 Favorable gut microbes enhance systemic 
and antitumor immune responses mediated by increased antigen 
presentation and improved effector T cell function in the periph-
ery and tumor microenvironment. However, there is a dearth of 
information about what are unfavorable gut microbes for ICIs. Our 
results showed that Fusobacterium was an important unfavorable 
gut microbe (Figure 5A). Fusobacterium was found highly enriched 
in primary and paired metastasis in colorectal cancer patients and 
involved in tumor metastasis.37,38 Fusobacterium increases tumor 
multiplicity and selectively recruits tumor- infiltrating myeloid cells, 
promoting tumor progression.39 Fusobacterium also promotes can-
cer resistance to chemotherapy by modulating autophagy.40 Thus, 
Fusobacterium seems to be an unfavorable factor for tumor preven-
tion and treatment. However, further investigations are required 
to reveal the relationship between Fusobacterium and anti- PD- 1 
response. For respiratory microbiota, few studies have addressed 
the relationship between respiratory microbiota and anti- PD- 1 re-
sponse. However, we found that some microbes were enriched in 
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R or NR, even though there was no difference in alpha diversity 
between R and NR (Figure 5C,D). Featured microbes might poten-
tially influence the anti- PD- 1 response through the tumor immune 
microenvironment, as we observed a positive correlation between 

the abundance of Streptococcus and CD8+ T cells. Thus, this is 
an attractive direction that warrants further research. However, 
there is a certain flaw in our study, that is, our sputum samples 
were inevitably contaminated with saliva. Although sampling 

F I G U R E  6   Redundancy analysis (RDA) and correlation heatmap showing clinical variables influencing the distribution of microbes in 
patients with non- small- cell lung cancer classified as treatment responders (R) or nonresponders (NR). A, C, RDA of clinical variables in (A) 
gut microbiota and (C) respiratory microbiota. Each dot represents a microbe at the genus level. Dot size is proportional to the abundance of 
the microbe. *Clinical variables with a statistical influence on the distribution of microbes between R and NR; P < .05 by permutation test. 
Gray dots without labeling represent low abundance microbes. B, D, Correlation heatmap between microbe abundance (B, gut microbiota; 
D, respiratory microbiota) and clinical variables. Spearman’s correlation coefficients (r value) are shown with continuous gradient colors. 
*0.01 ≤ P < .05, **0.001 ≤ P < .01, ***P < .001. Red boxes indicate favorable gut microbes featured in R; blue boxes indicate unfavorable gut 
microbes featured in NR. BMI, body mass index; PS, performance status
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bronchial lavage fluid by bronchoscope can avoid the problem, it 
only reflects the LRT microbiota and is challenging to carry out, 
with poor patient compliance. Sampling on the posterior pharyn-
geal wall with a pharyngeal swab can only can reflect the URT mi-
crobiota, and there was also the great possibility that the samples 
were contaminated by oral microbiota. Given all these concerns, 

we took sputum samples as the research medium based on the 
following considerations: sputum could reflect the whole respira-
tory microbiota landscape to the greatest extent as sputum ex-
pectorates from the LRT to URT. Oral microbiota has been found 
not related to the anti- PD- 1 response.16 We additionally compared 
profiles between the oral microbiota and sputum microbiota in 24 

F I G U R E  7   Relationship between respiratory microbiota and tumor infiltrating lymphocytes in patients with non- small- cell lung cancer. 
A, Boxplot of CD8+ T cell density in treatment responders (R) and nonresponders (NR). **0.001 ≤ P < .01 by Mann- Whitney test. B, Pairwise 
Spearman’s rank correlation heatmap between featured respiratory microbes and CD4+ T cells, CD8+ T cells, IFN- γ+CD4+ T cells (Th1), 
IL- 4+CD4+ T cells (Th2), FoxP3+CD4+ T cells (Treg). **0.001 ≤ P < .01. C, Univariate linear regression between CD8+ T cell density and the 
abundance of Streptococcus. D, Representative CD8+ immunohistochemistry images showing high and low abundance of Streptococcus 
groups
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patients. Results showed that there was a difference between 
the two. A clustering heatmap analysis of the top 20 most abun-
dant microbes showed that some microbes between the two 
groups seemed unbalanced (Figure S5A). The featured microbes 
in the two groups were presented by LEfSe analysis (Figure S5B). 
Although there was no difference in alpha diversity between the 
two, beta diversity analysis by PCoA based on weighted UniFrac 
distance showed a significant difference (P < .01), which indicated 
that the two communities had different species evolution patterns 
(Figure S5C,D).

In this study, we found that the abundance of nearly all favorable 
microbes featured in R and unfavorable microbes featured in NR at 
the genus level were significantly correlated with PS scores. Better 
PS seemed to potentially boost favorable microbes or decrease 
unfavorable microbes to improve anti- PD- 1 response. According 
to our results, patients with better PS seem to be more likely to 
be recommended for anti- PD- 1 treatment from the gut microbiota 
perspective. These findings are consistent with NCCN guidelines 
recommending patients with better PS (PS scores 0- 1) to receive 
anti- PD- 1 treatment.

In conclusion, as a biomarker with the ability to maintain rela-
tively stable characteristics during anti- PD- 1 treatment, the gut 
and paired respiratory microbiota are important in identifying 
suitable candidates who could benefit from anti- PD- 1 treatment. 
Additionally, considering the characteristic of plasticity, the com-
mensal microbiota might be an alternative option to regulate the 
clinical effects of ICIs.
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