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Abstract

identify underlying mechanisms and hub genes of PGA.

were validated in a separate dataset.

tial therapeutic targets for PGA.

Background: Asthma is a heterogeneous disease that can be divided into four inflammatory phenotypes: eosino-
philic asthma (EA), neutrophilic asthma (NA), mixed granulocytic asthma (MGA), and paucigranulocytic asthma (PGA).
While research has mainly focused on EA and NA, the understanding of PGA is limited. In this study, we aimed to

Methods: Based on the dataset from Gene Expression Omnibus(GEO), weighted gene coexpression network analysis
(WGCNA), differentially expressed genes (DEGs) analysis and protein—protein interaction (PPI) network analysis were
conducted to construct a gene network and to identify key gene modules and hub genes. Functional enrichment
analyses were performed to investigate the biological process, pathways and immune status of PGA. The hub genes

Results: Compared to non-PGA, PGA had a different gene expression pattern, in which 449 genes were differentially
expressed. One gene module significantly associated with PGA was identified. Intersection between the differentially
expressed genes (DEGs) and the genes from the module that were most relevant to PGA were mainly enriched in
inflammation and immune response regulation. The single sample Gene Set Enrichment Analysis (ssGSEA) suggested
a decreased immune infiltration and function in PGA. Finally six hub genes of PGA were identified, including ADCY2,
CXCL1, FPRL1, GPR109B, GPR109A and ADCY3, which were validated in a separate dataset of GSE137268.

Conclusions: Our study characterized distinct gene expression patterns, biological processes and immune status of
PGA and identified hub genes, which may improve the understanding of underlying mechanism and provide poten-
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Background

Asthma is a heterogeneous disease with different phe-
notypes that vary in natural history, severity of the dis-
ease and response to anti-inflammatory therapy [1].
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According to the airway inflammation subtypes, asthma
can be categorized into four distinct inflammatory phe-
notypes: eosinophilic asthma (EA), neutrophilic asthma
(NA), mixed granulocytic asthma (MGA), and pauci-
granulocytic asthma (PGA) [2]. Recently, extensive atten-
tions have been paid to EA and NA, which have been
successfully applied to clinical research and asthma man-
agement. For instance, airway eosinophilic inflammation
is somewhat related to atopy and EA has a good response
to inhaled corticosteroids (ICS) [3—-6]. While airway
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neutrophilic inflammation is associated with the expo-
sure to environmental pollutants (such as smoking) or
the presence of bacterial or viral infection [7]. Additional
therapy of macrolide may be more suitable for NA with
respect to reducing airway neutrophilic inflammation [8].

However, as one of the most common phenotypes of
asthma, PGA are still poorly understood and researches
on PGA are limited [9]. Some studies considered PGA to
be a special phenotype driven by macrophages or mast
cells other than eosinophils or neutrophils [10, 11]. Other
studies suggested that PGA may represent a non-inflam-
matory type or a phenotype with a low grade of eosino-
philic inflammation [12]. The precise characteristics and
pathobiology of PGA are not well delineated. It is urgent
to unveil inflammatory and immune mechanisms under-
lying PGA.

The rapid development of microarray and high-
throughput sequencing technologies facilitate the study
of asthma in genetic level. An earlier study conducted
a hierarchical cluster analysis based on the transcrip-
tional profiles of asthma and identified three clusters that
showed similarities with the inflammatory phenotypes
of EA, NA and PGA [10]. However, there are no stud-
ies that specifically address the transcriptional features
of PGA. The key gene modules or hub genes of PGA are
still unknown. Traditional methods rely on differential
expression detection to identify potential biomarkers or
targets, but may miss useful genes. Weighted gene coex-
pression network analysis (WGCNA) is a bioinformatic
method to explore complex interactions among gene
expression profiles. According to expression similar-
ity, WGCNA can transform gene expression data into
potentially biologically relevant modules and reveal rela-
tionships between the gene modules and external clini-
cal traits by using an intramodular hub gene or module
eigengene [13]. It is quite helpful in identifying hub genes
or therapeutic targets.

In this study, we sought to identify the hub genes
located in the regulatory center of PGA using WGCNA
and other bioinformatic methods. Additional biological
functional analyses were also conducted to investigate
the biological processes, related pathways and immune
status of PGA. The results will help to shed light on hid-
den mechanisms and identify therapeutic targets of PGA.

Methods

Data collection

Microarray RNA expression dataset of GSE45111 was
downloaded from the Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/). It was generated
from samples of induced sputum in 47 asthma patients.
Adults with stable asthma were recruited and those who
with recent (past month) respiratory tract infection,
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asthma exacerbation, unstable asthma, change in therapy
and current smoking were excluded. All the patients in
the dataset received ICS therapy and they were grouped
according to the inflammatory phenotypes using sputum
cell counts. Patients with a sputum proportion of<61%
neutrophils and <2% eosinophils were classified as PGA,
with > 61% neutrophils and <2% eosinophils classified as
NA, with<61% neutrophils and > 3% eosinophils classi-
fied as EA, and with >61% neutrophils and >3% eosin-
ophils classified as MGA, respectively [2, 14]. All the
asthmatics other than PGA were defined as non-PGA
in our study. The data was log-transformed, normalized
and baseline-converted to the median of all samples. The
dataset was based on the platform GPL6104 (Illumina
human Ref-8 v2.0 expression beadchip, Illumina, Inc.,
San Diego, California, USA).

Weighted gene co-expression network analysis

The gene expression matrix from GSE45111 were used
to perform weighted gene co-expression network analy-
sis (WGCNA). The adjacency matrix was transformed
into a topological overlap matrix (TOM) to estimate the
distance between each gene pair. And then hierarchi-
cal clustering with the average and dynamic methods
were employed to build the cluster tree and to classify
the genes into different modules. The modules that were
most relevant to the paucigranulocytic airway inflam-
mation were selected for subsequent analysis. The soft-
thresholding power B was calculated in the construction
of each module using the pickSoftThreshold function of
WGCNA, which provides a suitable power value for net-
work construction by calculating the scale-free topology
fit index for a set of candidate powers that range from
1 to 20. In this study, a suitable soft threshold of seven
was selected, as it met the degree of independence of
0.85 with the minimum power value (R>=0.851). Then
the WGCNA algorithm implemented in the R package
was used to identify the co-expression gene modules.
The minimum number of genes for each module was set
to 50. The strength of the interactions between modules
was analyzed and visualized by a heatmap. “WGCNA” R
package was used to perform the analysis.

DEG analysis and interactions with the modules of WGCNA
DEGs between PGA and non-PGA were screened with
a threshold of a |fold change (FC)|>1.5 and adjp-value
(false discovery rate, FDR)<0.05. Then intersection of
DEGs and the genes in the modules that were most rel-
evant to PGA were taken. DEGs were screened and visu-
alized by the R package of “limma” and “ggplot2” [15, 16].
“VennDiagram” were applied to perform the intersection
analysis [17].
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Biological function and pathway enrichment analysis
Using the intersection of the DEGs and WGCNA, we
conducted GO (Gene Ontology) and KEGG (Kyoto Ency-
clopedia of Genes and Genomes) enrichment analyses by
"clusterProfiler" R package [18—20]. The analyses were
based on a corrected Fisher's exact test. A p value<0.05
was considered statistically significant. The results were
visualized using “ggplot” R packages.

Immune infiltration analysis

Based on the above-mentioned intersection of the genes,
infiltration of immune cell and related pathway or func-
tion were quantified by ssGSEA, which calculated an
enrichment score that represents the immune cell infil-
tration level and activity of immune related pathways
[21]. Mann—Whitney test with p values adjusted by
Benjamini and Hochberg (BH) correction were used to
compare the ssGSEA scores between the two clusters. R
package of “gsva” was used to conduct the analysis. The
annotated gene set and definition of each immune term
are based on the study by Liang et al. [22].

Protein-protein interaction network

The intersection of the DEGs and WGCNA were
imported to STRING (version 11.0) database (http://
string-db.org) to perform protein—protein interac-
tion (PPI) network analysis [23]. The active interaction
sources included text mining, experiments, databases,
co-expression, neighborhood, gene fusion and co-occur-
rence. The minimum score required for the interaction
was set at the highest level of confidence (0.90). To screen
the hub genes of PGA, topological analysis of Maximal
Clique Centrality (MCC), Edge Percolated Component
(EPC), Maximum Neighborhood Component (MNC),
Closeness and Radiality were applied [22]. The intersec-
tion of the top ten genes with highest scores individu-
ally calculated by each of the five algorithms were finally
selected as hub genes. Cytoscape version 3.4.0 and Cyto-
hubba plugin were used for network visualization and
hub gene identification [24, 25].

Validation of the hub genes

The expression profiles of the hub genes were validated
in a separate dataset of GSE137268. The dataset con-
tained gene expression profiles of the induced sputum
from 16 PGA and 38 non-PGA patients. The data was
log-transformed, normalized and baseline-converted to
the median of all samples. Like the GSE45111, the data-
set was also based on the platform GPL6104 (Illumina
human Ref-8 v2.0 expression beadchip, Illumina, Inc.,
San Diego, California, USA). The expression profile of the
microarray dataset was analyzed using the same methods
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as aforementioned for GSE45111. In addition, receiver
operating characteristic (ROC) curve analysis was con-
ducted for each hub gene. The area under the curve
(AUC) was used to evaluate the diagnostic accuracy of
the six hub genes for PGA.

Results

In total, 47 samples (18 PGA and 29 non-PGA) from
GSE45111 were used to perform WGCNA, DEGs analy-
sis, functional enrichment analysis and PPI analysis. 54
samples from GSE137268 were used to validate the iden-
tified hub genes. The demographic and clinical data of
patients in the two datasets were summarized in Addi-
tional file 1: Table S1. The flowchart of the study is pre-
sented in Fig. 1.

Co-expression network construction and PGA-specific
module identification

The expression profiles of 18,170 genes were used to
conduct WGCNA. Hierarchical cluster analysis of these
samples was then performed with the flashClust func-
tion, and the results are shown in Additional file 1: Fig-
ure S1. A soft-threshold of 7 was chosen to obtain the
approximate scale-free topology with a scale-free topol-
ogy fit index>0.85 (R>=0.851) and the lowest power
(Fig. 2a,b). Using a dynamic tree-cutting algorithm (0.25
as the merging threshold), five modules were finally iden-
tified (Fig. 2c). Of these, the blue model containing 930
genes was significantly associated with paucigranulo-
cytic airway inflammation (r=—0.67, p =3e—7) (Fig. 2d),
which let us to select blue modules for next analysis. No
modules were found to be correlated with age, gender or
smoking status.

DEG analysis and interactions with the PGA-specific
module

DEG analysis between the PGA and non-PGA suggested
that a total of 449 DEGs (161 up-regulated genes and 288
down-regulated genes) were identified with the threshold
of |FC|>1.5 and FDR<0.05. The heatmap and volcano
plot of the DEGs are shown in Fig. 3a and b. The Venn
diagram (Fig. 3¢) exhibited a notable overlap between the
DEGs and the genes in the blue module. The intersection
of the DEGs and genes in this module were used for fur-
ther analysis (430 genes).

Functional analyses of the overlapped genes

Based on the intersection of the DEGs and WGCNA,
GO and KEGG enrichment analyses were performed.
Go analysis suggested that items highly related to the
regulation of immune and inflammatory response, such
as regulation of inflammatory response (GO:0050727),
regulation of immune effector process (GO:0002697) and
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Fig. 1 Flowchart of the bioinformatics methods used in the present study; DEGs, differentially expressed genes; WGCNA, weighted gene
co-expression network analysis; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes enrichment analysis; PPI, protein—protein

regulation of adaptive immune response (GO:0002819),
were significantly enriched. The KEGG pathway enrich-
ment analysis suggested that several items related to
signal transduction, like cytokine-cytokine receptor
interaction (hsa04060), NF-kappa B signaling path-
way (hsa04064), NOD-like receptor signaling pathway
(hsa04621) and chemokine signaling pathway (hsa04062),
were significantly enriched (Fig. 4a, b).

The ssGSEA indicated different immune status
between the PGA and non-PGA. As shown in Fig. 4c and
d, compared with non-PGA, PGA had a lower immune
infiltration score in majority of the immune cells, such
as dendritic cells (DCs), B cells, mast cells, neutrophils,

NK cells and Treg (All p<0.05). Meanwhile, the immune
scores in the immune function were also tend to be lower,
including antigen presentation process (APC) co-stimu-
lation, CCR (chemokine receptors), T-cell co-stimulation
and Type II IFN response (All p<0.05).

Construction of PPl network and hub gene analysis

430 overlapped genes were imported into STRING
to develop a PPI network (Additional file 1: Figure
S2). Based on the intersection of the top ten genes
with highest scores individually calculated by each
of the five algorithms (MCC, EPC, MNC, Closeness
and Radiality), six genes were finally identified as the



Lietal. BMCPulmMed  (2021) 21:343 Page 5 of 12

a Scale independence b Mean connectivity
N o _ -
© - 161718
° 1112131415 1920
8 28910
c
2 o 7 § _
= z
= 3 58 =
g ° 4 g
o c S
S < | 3 c IS
> © Q
o O 2
2 o %
§‘ A 2 g
s |
s S 5
(0] o
o o 7 4
P 6
(0]
T o -1 o - 7 8 91011121314151617181920
B T T T T | | T T
5 10 15 20 5 10 15 20

Soft Threshold (power) Soft Threshold (power)

Gene dendrogram and module colors

Module-trait relationships

® 1
5 | -018 -027 015 003
° MEgreen 02 0.07) (u‘a) (08)
©
o
£ -0051 -023 -002 -0036 —0.5
% g 7 MEyeIIOW (0.7) (0.1) 09) (0.8)
T
©
Q-
-067 028 0.08 0042
o | MEblue (3e-07) (0.06) (us)‘ (038) —0
o
g
S
011 -0.11 -0064 024
MEred (05) (0.5) 0.7) (0.1) —-0.5
Dynamic tree cut
0.021 025 041 -0.19
Merged Dynamic MEgrey ©9) @1 (0.005) ©02) [ 1
(2 \)5
R & & B
& \s & S
O ¢ )
3 &
« «°
QA S
S
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hub genes of PGA, which included: FPRL1, CXCLI, Validation of the hub genes
ADCY2, ADCY3, GPR109A and GPR109B (Fig. 5). The differential expressions of the six hub genes between
the PGA and non-PGA were validated in the GSE137268.
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The results suggested that the expression patterns of
the hub genes in GSE137268 were almost similar to
GSE45111. The expression level of ADCY3 was up-reg-
ulated while the remaining five hub genes were down-
regulated in the PGA. The fold change of the hub genes
between the PGA and non-PGA were also similar in the

two datasets (Additional file 1: Table S2, S3). ROC curve
analysis suggested that the AUC for ADCY2 was 0.85
(p<0.001), followed by CXCLI, GPR109B, GPRI09A,
FPRLI, and ADCY3. The hub genes indicated a moder-
ate discrimination ability between PGA and non-PGA
(Fig. 6).
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Discussion

As one of the most common phenotypes of asthma,
PGA accounts for the 31-51.7% of asthma [2, 26, 27].
However, unlike EA or NA, researches on PGA are lim-
ited and its characteristics have not been well deline-
ated [9]. To the best of our knowledge, this is the first
transcriptomics study on PGA to identify key gene
modules and hub genes. In the present study, we inves-
tigated the transcriptome of 18 asthmatic patients
with a phenotype of PGA and 29 controls of non-PGA.
Using integrated analyses of DEGs, WGCNA and PPI,
we identified and validated six hub genes of PGA,
including ADCY2, CXCL1, FPRLI, GPRI109B, GPR109A
and ADCY3. In comparison with strategies focused
on individual gene, network-based methods are more
suitable to reveal global biological activity. WGCNA

focuses on the correlations between the co-expression
modules and the external clinical traits, not merely the
differences in gene expression patterns, and thus the
results are more reasonable [13]. Consequently, the
analysis allows the identification of candidate genes and
the modules potentially linked to the biological func-
tion of interest. The GO, KEGG and ssGSEA analyses
were further performed to elucidate the potential bio-
logical process, pathways and immune functions that
may be implicated in the pathogenesis of PGA. These
results may enhance the current understanding of the
mechanisms underlying PGA and provide potential
therapeutic targets for newly developed treatments.

It has been previously reported that PGA most likely
represents a “benign” phenotype of asthma and it is asso-
ciated with a good response to anti-asthma treatment.
Several studies have suggested that PGA has distinct
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inflammation features compared with EA or NEA [26, 28,
29]. In the enrichment analysis of our study, GO terms
related to the inflammation response and immune regu-
lation were significantly enriched, such as regulation
of inflammatory response (GO:0050727), regulation of
immune effector process (GO:0002697) and regulation
of adaptive immune response (GO:0002819), indicating
that the inflammatory and immunological characteris-
tics were different between PGA and non-PGA. Ntontsi
et al. found that patients with PGA express lower levels
of inflammatory biomarkers in exhaled air and induced
sputum supernatants compared with other inflammatory
phenotypes, representing a less intense inflammatory
process [26]. Demarche et al. also showed that PGA may
display a low-grade airway inflammation [12]. The results
of ssGSEA in our study showed that the scores of immune
cell infiltration and immune functions were lower in PGA
than non-PGA, which seems to support that PGA repre-
sents a less intense immune response and the viewpoint
that PGA is somewhat a kind of phenotype with low
degree of inflammation [12]. According to Ntontsi et al.
in some patients with PGA, the “absence of inflammatory
response” could possibly be the results of a pre-existing
eosinophilic asthma adequately treated with ICS in which
there is no neutrophilic inflammation. In other words,
some PGA patients may be the result of the success-
ful therapeutic intervention. The hypothesis may partly
explain the low degree of immune response presented
in PGA and its good response to anti-asthma treatment
[26]. However, Deng et al. found that the phenotype of
PGA was stable and that most patients with PGA had not
undergo an inflammatory phenotype transition. Their
study did not support the hypothesis that all subjects with
PGA represent a cross sectional view related to disease
activity or represent a treatment success. Instead, it indi-
cated that most patients with PGA could constitute an
independent phenotype [30]. More studies are required
to address these concerns. Meanwhile, it should be noted
that the immune scores of most immune cells were lower
in PGA except for NK cell. Although the mechanisms of
NK cells in the regulation of inflammation of asthma are
not fully elucidated, recent studies have suggested that
NK cells in asthma inflammation can be protagonistic or
antagonistic, depending on the environmental agent that
is used to elicit the disease (allergen, diesel exhaust parti-
cles and virus) and the phase of the disease (the sensitiza-
tion phase, the effector phase and the resolution phase)
[31-34]. Therefore many factors, including the type of
the environmental trigger, the phase of inflammation and
the cytokine milieu between PGA and non-PGA, should
be further investigated.

Our study suggested the different gene expression pat-
terns between PGA and non-PGA. Six hub genes were
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identified based on the combination analyses of DEGs,
WGCNA and PPI. Of these, ADCY3 was up-regulated
in PGA, while the remaining five hub genes were down-
regulated. The expression patterns were further validated
in a separate dataset (GSE137268). The majority of the
hub genes were involved in the regulation of immune
response and inflammation. For example, the up-regu-
lation of ADCY3 suggests an increase in cAMP forma-
tion, which could suppress inflammatory function in
DCs [35]. FPRLI was reported to be implicated in sev-
eral immune processes, such as chemotactic migration
and the production of reactive oxygen species (ROS) [36].
Several agonistic and antagonistic peptide sequences
for the FPRLI receptor have been investigated as drug
candidates for inflammatory diseases including asthma
[37]. The remaining hub genes were found to be involved
in the migration of inflammatory cells. GPRI09B par-
ticipated in the migration of eosinophils to the sites of
inflammation [38]. CXCLI was found to be a chemoat-
tractant for neutrophil recruitment during tissue inflam-
mation [39]. GPRIO9A was expressed in many immune
cells, including macrophages, monocytes, neutrophils
and DCs. Activation of GPRIO9A has been found to be
implicated in several diseases where inflammation con-
tributes to the underlying pathophysiology such as obe-
sity, colitis and neurodegenerative disorders [40]. But its
role in asthma is still not elucidated. The expression pat-
terns of these genes that related to the immune cells acti-
vation or migration may explain the decreased ssGSEA
score of immune status in PGA. Difference in chemotaxis
and migration of the immune cells between PGA and
non-PGA may be an important factor that leads to the
different inflammatory characteristics of the two asthma
phenotypes.

Our study was different in many respects from the orig-
inal study for GSE45111 [41]. First, the objective of the
study was to find gene signatures that could discriminate
eosinophilic asthma from other phenotypes and to inves-
tigate its predicted value for ICS treatment response. In
our study, we focused on identifying the hub genes for
PGA. Gene signatures in the original study were identi-
fied based on the differential expression analysis, while in
our study the hub genes were identified by the combina-
tion analyses of DEGs, WGCNA and PPI. We conducted
more comprehensive bioinformatic analyses such as GO
and KEGG enrichment analysis, ssGSEA, WGCNA and
PPI analysis. These bioinformatic analyses were not per-
formed in the original study.

It should be mentioned that although the identifica-
tion of asthma inflammatory phenotype in both data-
sets used in our study was based on the cross-sectional
data of induced sputum, asthma inflammatory pheno-
types identified by this method are proved to be stable
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by many studies [30, 42—44]. Actually, induced sputum
is currently the best available noninvasive assessment
of bronchial inflammation in asthma, and it is regarded
as the gold standard for asthma inflammatory pheno-
typing [45]. This method has been widely adopted in
many of studies [46—48]. GINA guideline also recom-
mends to use the method to confirm asthma inflamma-
tory phenotype [49]. Deng et al. particularly focused
on the PGA and found the phenotype of PGA identi-
fied by induced sputum was stable and that majority of
the patients with PGA had not undergone an inflam-
matory phenotype transition after one-month fixed
anti-asthma treatment with ICS [30]. In our study, the
subjects in GSE45111 were stable asthmatics. Those
who with recent (past month) respiratory tract infec-
tion, asthma exacerbation, unstable asthma, change in
therapy and current smoking were excluded [39]. Tak-
ing account of all these factors into consideration, spu-
tum phenotypes in the dataset of GSE45111 could be
considered as stable.

The present study had several limitations. Firstly, we
analyzed a single platform of a dataset and the sample
size relatively was small, which may affect the stability of
our study. Although we have validated our findings in a
separate dataset, the results should be interpreted care-
fully. Besides, more sociodemographic characteristics
and some other important clinical traits, such as pul-
monary function or exacerbation history were absent
in the original datasets, so we cannot perform a more
comprehensive analysis. Finally, our study is based on a
in silico analysis, more studies aimed at elucidating the
further mechanisms of the identified hub genes in PGA
are desired in the future.

Conclusions

In summary, our study suggested that PGA and non-
PGA were different in gene expression patterns, biologi-
cal processes, related pathways and immune status. With
comprehensive analyses of WGCNA and other related
bioinformatic methods, we constructed a weighted co-
expression network and identified a key gene module
that associated with PGA. Finally, six hub genes of PGA
were identified and then validated in a separate dataset.
The different gene expression patterns, biological pro-
cesses and immune status between PGA and non-PGA
indicated the heterogeneity of asthma at level of molecu-
lar biology, suggesting the requirement of individualized
treatment for different phenotypes of asthma. Our results
may improve the understanding the heterogeneity of
asthma and the underlying mechanism of PGA, provid-
ing potential therapeutic targets for patients with PGA.
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