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Pancreatic cancer (PC) represents an unresolved therapeutic challenge, due to the poor prognosis and the reduced response
to currently available treatments. Pancreatic cancer is the most lethal type of digestive cancers, with a median survival of 4–6
months. Only a small proportion of PC patients is curative by surgical resection, whilst standard chemotherapy for patients in
advanced disease generates only modest effects with considerable toxic damages. us, new therapeutic approaches, specially
speci�c treatments such as immunotherapy, are needed. In this paper we analyze recent preclinical and clinical efforts towards
immunotherapy of pancreatic cancer, including passive and active immunotherapy approaches, designed to target pancreatic-
cancer-associated antigens and to elicit an antitumor response in vivo.

1. Introduction

Pancreatic cancer (PC) represents an unresolved therapeutic
challenge, due to the poor prognosis and the reduced re-
sponse to currently available treatments. Pancreatic cancer
is the most lethal type of digestive cancers, with a median
survival (MS) of 4–6 months [1]. ere are three principal
PC types: ductal adenocarcinoma, neuroendocrine tumors
(rare), and cystic neoplasm (less than 1% of pancreatic
cancers) [1]. Pancreatic ductal adenocarcinoma accounts for
90% of cancers of the pancreas and has the poorest outcome,
representing the 4th most common cause of cancer-related
death among men and women [2].

e only potentially curative therapy for pancreatic can-
cer is surgical resection. Unfortunately, only 20% PC patients
are resectable at the time of diagnosis, and among those
patients who undergo resection and have tumor-free mar-
gins, the 5-year survival rate aer surgery is 10% to 25%
[3]. Gemcitabine, with or without erlotinib, represents the
standard chemotherapy but the bene�t is only modest, and
most patients do not survive longer than 6 months [4, 5].

Development of novel agents and approaches is urgent-
ly needed in conjunction with improvement in access to
clinical trials for patients. Since there are different evidences
that pancreatic adenocarcinomas elicit antitumor immune
responses [6–9] speci�c immunotherapy could be of great
importance in the PC treatment. In support of the PC-
speci�c immunotherapy approaches there are numerous data
showing how PC patients generate B and T cells speci�c
to antigens expressed on autologous pancreatic tumor cells
[10–12], such as Wilms’ tumor gene 1 (WT1) (75%) [13],
mucin 1 (MUC1) (over 85%) [14], human telomerase reverse
transcriptase (hTERT) (88%) [15], mutated K-RAS (73%)
[16], survivin (77%) [17], carcinoembryonic antigen (CEA)
(over 90%) [18], HER-2/neu (61.2%) [19], p53 (67%) [20],
and 𝛼𝛼-enolase [21]. Furthermore, the analysis of immune
in�ltrates in human tumors has demonstrated a positive
correlation between prognosis and presence of humoral
response to pancreatic antigens (MUC-1 and mesothelin)
[8, 9, 22] or of tumor-in�ltrating T cells [23].

In this paper we analyze recent preclinical and clin-
ical efforts towards immunotherapy of pancreatic cancer,
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including passive immunotherapy approaches, such as the
use of antibodies or effector cells generated in vitro, and
active immunotherapic strategies, whose goal is to stimulate
an antitumor response in vivo, by means of vaccination.

2. Passive Immunotherapy

2.1. Humoral Immunity: e Role of Monoclonal Antibod-
ies. Speci�c recognition and elimination of pathological
organisms or malignant cells by antibodies were proposed
over a century ago by Paul Ehrlich, who is credited for
conceptualizing the “magic bullet” theory of targeted therapy.
Over the past 30 years, antibody cancer therapeutics have
been developed and used clinically in an effort to realize the
potential of targeted therapy. Antibodies can target antigens
differentially expressed in tumor cells (tumor-associated
antigens (TAAs)) or can be used to block molecules involved
in cancer progression or angiogenesis.e immunoglobulins
can invoke tumor cell death by blocking ligand-receptor
growth and survival pathways. In addition, innate immune
effector mechanisms: antibody-dependent cellular cytotox-
icity (ADCC), complement-mediated cytotoxicity (CMC),
and antibody-dependent cellular phagocytosis (ADCP), are
emerging as equally important [24].

Although unconjugated antibodies have had efficacy,
molecular genetics and chemical modi�cations to mono-
clonal antibodies (mAbs) have advanced their clinical utility.
For example, modi�cation of immune effector engagement
has improved pharmacokinetic pro�les, and conjugating
cytotoxic agents to mAbs has enhanced targeted therapeu-
tic delivery to tumors. e increasing facility of antibody
modi�cations has made it possible to construct diverse and
efficacious mAb-based therapeutics.

e humoral immune response to mesothelin has been
found to be a favorable prognostic factor for pancreatic cancer
[8, 22, 25, 26]. Mesothelin is a 40 kDa protein present in
normalmesothelial cells of the pericardium, pleura, and peri-
toneum, but overexpressed inmesotheliomas ovarian cancers
[27] and detected in 90–100% of pancreatic adenocarcinomas
[28, 29]. Different antibodies tomesothelin have been studied
and in particular SS1P, a murine single-chain Fv, speci�c
for human mesothelin, which has been fused to PE38, a
38 kDa portion of Pseudomonas exotoxin A (PE-A). Aer
binding to mesothelin and subsequent internalization into
cells, it inhibits protein synthesis and results in apoptosis
[30]. In phase I clinical studies SS1P was found to be well
tolerated, with self-limiting pleuritis as the dose-limiting
toxicity. Also, the administration of a version of SS1P with
releasable PEGylation resulted in complete regression of a
mesothelin-expressing human carcinoma in mice with only
a single dose [30–32]. MORAb-009, a monoclonal antibody
against mesothelin, is being tested in a phase I trial of 11
patients (threewith pancreatic cancer) [33]. One of themwho
had previously progressed on gemcitabine showed disease
stabilization on computed tomography (CT) and a drop
in CA19-9 (carbohydrate antigen 19-9). Two fully human,
antihumanmesothelin antibodies,M912 andHN1, have been
developed, which bindmesothelin-positive cells and result in

their lysis via ADCC [34, 35]. Similar to SS1P, HN1 has been
fused to truncated PE-A immunotoxin, although its binding
site on mesothelin probably binds a distinct but overlapping
epitope to that of SS1P [35].

MUC1 (mucin-1, CD227) is a polymorphic, glycosylated
type I transmembrane protein present in glandular
epithelium of different tissues (pancreas, breast, lung) and
overexpressed (aberrantly glycosylated) in 90% of pancreatic
cancers [36, 37]. It inhibits cell-cell and cell-stroma
interactions and functions as a signal transducer in the cancer
progression, including tumor invasion and metastasis [38].
Evidences suggest that circulating anti-MUC1-IgG is a
favorable prognostic factor for pancreatic cancer [22].
Downregulation of MUC1 expression in human PC cell line
S2-013 by RNAi signi�cantly decreased proliferation in vitro
and in nude mice [39]. In a murine model, the use of MUC1-
speci�c 90�ttrium-labelledmoAbPAM4 in combinationwith
gemcitabine as a radiosensitiser [40] increased inhibition of
tumor growth and prolonged animal survival. To date, it is
undergoing phase I trial for stage III or IV PC patients.

In vitro study showed that 213Bi-C595 was speci�cally
cytotoxic to MUC1-expressing PC cells in a concentration-
dependent manner compared to controls. 213Bi-C595 is a
moAb targeting the protein core of MUC1, conjugated with
the 𝛼𝛼-particle-emitting 213bismuth [37].

PankoMab (Glycotope, Germany) is a murine anti-
human MUC-1 antibody that binds to a carbohydrate-
induced conformational tumor epitope of MUC-1, greatly
increasing its tumor speci�city [41]. PankoMab can induce
ADCC of MUC-1 positive cells and can also induce death
following internalization by inhibition of RNA polymerase
when linked to 𝛽𝛽-amanitin. e humanized version of
PankoMab has been shown to react to the tumor expressed
MUC-1 in multiple human carcinomas, although no clinical
trials have been published [42].

e epidermal growth factor receptor 2 (HER2), a
transmembrane receptor tyrosine kinase, is overexpressed
in up to 45% of pancreatic cancer. An anti-Her-2/neu
antibody, known as Herceptin (Genentech Inc., CA, USA)
or trastuzumab, has been used with some success to treat
PC murine models. Treatments with trastuzumab prolonged
survival and reduced liver metastasis in nude mice ortho-
topically challenged with human pancreatic tumor cell lines
that expressed Her-2/neu at low levels. e pancreatic lines
were sensitive to ADCC lysis by trastuzumab in vitro [43].
Similar results were found when nude mice (challenged with
Her-2/neu high expressing human PC cell lines) were treated
with both trastuzumab and 5-�uorouracil [44]. e com-
bination of treatments signi�cantly inhibited tumor growth
compared with either treatment alone. When combined with
matuzumab, an anti-EGFR antibody, trastuzumab treatment,
resulted in inhibited PC growth in a nude mouse [45]. Also,
this combined treatment was more effective than treatment
with either antibody alone or combined with gemcitabine
[46].

Carcinoembryonic antigen (CEA), a member of a family
of cell surface glycoproteins involved in cell adhesion, is
frequently overexpressed in various types of human cancers.
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Many anti-CEA antibodies have been used for immunother-
apy, such as hMN-14 (labetuzumab), which has been shown
to induce ADCC in vitro with CEA+ colon tumor cells
and inhibited growth of lung metastases in nude mice [47].
A phase I/II trial with hMN-14 in PC patients has been
completed but the results have not been published [48].

EGFR is a transmembrane glycoprotein receptor, over-
expressed in 90% of pancreatic tumors [49], which induces
tumor cell proliferation and neovascularization; also this
expression is associated with worse prognosis [50, 51]. Block-
ing EGFR signaling decreases growth and metastasis of pan-
creatic tumor in animal models and enhances the effects of
gemcitabine [52, 53].

Cetuximab (Erbitux or IMC-C225) is a chimeric mono-
clonal antibody generated from fusion of the variable region
of themurine anti-EGFRmonoclonal antibodyM225 and the
human IgG1 constant region. Promising laboratory results
have led cetuximab to be tested in clinical trials. A phase
III randomized study by Southwestern Oncology Group
(SWOG) tested the efficacy of cetuximab and gemcitabine
combination in patients with advanced PC. e median
survival was 6months in the gemcitabine arm and 6.5months
in the combination arm for an overall hazard ratio (HR) of
1.09 (𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃). e corresponding progression free survival
was 3months and 3.5months, respectively.e study failed to
demonstrate a clinically signi�cant advantage of the addition
of cetuximab to gemcitabine [54]. In an ongoing phase II
trial with trimodal therapy of cetuximab, gemcitabine and
intensity modulated radiotherapy (IMRT) for patients with
advanced PC; there was no increase in toxicity pro�le [55].
One-year survival was 57% while median survival has not
been reached.

Matuzumab (EMD72000) is a humanized IgG1 mon-
oclonal antibody to the human EGFR. Laboratory studies
have shown promising inhibitory effects on tumor growth
and angiogenesis, including L3.6pl in an orthotopic rat
model [56]. In a phase I study of combined treatment with
matuzumab and gemcitabine, eight out of 12 patients with
advanced pancreatic adenocarcinoma showed partial re-
sponse or stable disease [57].

Vascular endothelial growth factor (VEGF) plays a pivotal
role in the control of angiogenesis, tumor growth, and
metastasis [58]. VEGF and its receptors are overexpressed
in PC and have been demonstrated to be a poor prognostic
factor. ere is suggestion that elevated serum VEGF levels
correlate with tumor stage, disease recurrence, and survival
[59]. Development of therapeutic strategies directed towards
the VEGFmediated signaling axis has been extensively tested
in patients with advanced PC.

Bevacizumab (Avastin) is a recombinant humanized anti-
VEGF monoclonal antibody. A pilot study demonstrated
that bevacizumab, when added to gemcitabine in patients
with metastatic PC, resulted in a signi�cant improvement in
response, survival, and progression-free survival [60]. is
was immediately followed by a phase III trial by CALGB
comparing gemcitabine plus bevacizumab to gemcitabine
plus placebo and showing no bene�t for bevacizumab addi-
tion [61]. e AviTa phase III trial that examined treatment
with gemcitabine plus erlotinib with either bevacizumab or

placebo has been closed. Bevacizumab, however, may have
a role in palliative treatment of chemotherapy-resistant PC.
In a case report, a patient with stage IV disease initially
unresponsive to gemcitabine, 5-FU, irinotecan, and cisplatin
subsequently responded with the addition of bevacizumab
[62].

2.2. Cellular Mediated Immunity: Adoptive T Cell Transfer.
Adoptive T cell transfer is a form of immunotherapy in which
patient’s own T cells are expanded and reinfused into the
patient. In particular, this method involves harvesting the
patient’s peripheral blood T lymphocytes, stimulating and
expanding the autologous tumor-reactive T cells using IL-2
and CD3-speci�c antibody, before subsequently transferring
them back into the patient. Adoptive T cell therapy depends
on the ability to optimally select or genetically engineer
cells with targeted antigen speci�city and then to induce
the cell proliferation preserving their effector function and
engrament and homing abilities. Currently, there are no
FDA-approved adoptive T cell therapy protocols for cancer,
but T cell therapies have shown activity inmicemodels and in
selected clinical applications. For example, adoptive transfer
of telomerase-speci�c T cells was studied in a syngeneic
PC murine model [63]. T cells were produced in vitro by
coculturing human lymphocytes with telomerase peptide-
pulsed dendritic cells (DCs) or in vivo by injection of peptide
with adjuvant into C57BL/6 mice. Telomerase is a reverse
transcriptase that contains an RNA template used to synthe-
size telomeric repeats onto chromosomal ends. Activation of
telomerase and its maintenance of telomeres play a role in
immortalization of human cancer cells, as telomeres shrink
aer each cell division [64]. Telomerase activity is found
in 92–95% of pancreatic cancers [65, 66] and is associated
with increased potential of invasion and metastasis and poor
prognosis [67, 68]. Upregulation of telomerase may also be
responsible for the development of chemotherapy resistance
[69]. Animals treated with these T cells showed signi�cantly
delayed disease progression [63].

Adoptive transfer of MUC1-speci�c cytotoxic T-
lymphocytes (CTLs) was able to completely eradicate
MUC1-expressing tumors inmice [70]. In this perspective, in
a clinical study, MUC-1-speci�c autologous T cells, isolated
from patient PBMCs (peripheral blood mononuclear cells),
were expanded by incubation with an MUC-1-presenting
cell line prior to administration in PC patients. e mean
survival time for unresectable patients in this study was 5
months [71]. However, patients with resectable pancreatic
cancer had 1-, 2-, and 3-year survival rates of 83.3, 32.4, and
19.4%, respectively, and amean survival time of 17.8 months.
In a similar study, Kondo et al. isolated adherent cells from
patient PBMCs to generatematureDCs that were then pulsed
with MUC-1 peptide. e pulsed DCs were administered,
along with autologous expanded MUC-1-speci�c T cells, to
patients with unresectable or recurrent pancreatic cancer.
Remarkably, a complete response was observed in one
patient with lung metastases, and the MS time of the whole
group was 9.8 months, suggesting that the addition of pulsed
DCs may have improved the outcome [72].
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T 1: Pancreatic cancer-associated antigens for immune targeting.

PC-associated
antigens Characteristics and functions Location Tumor expression References

CEA Glycoprotein, normally expressed only in oncofetal tissues. Functions
as cell-adhesion molecule. First tumor antigen to be described.

Cell surface
(GPI-linked) Overexpressed [148, 152]

Her2-neu A receptor tyrosine kinase, member of the EGF-receptor family,
involved in cell growth and differentiation. Transmembrane Over-expressed [149]

MUC-1

Type I transmembrane glycoprotein, expressed on apical surface of
ductal and glandular epithelial cells at low levels. Extracellular

domain has a polypeptide core with multiple tandem repeats of 20
aminoacids.

Transmembrane Over-expressed,
hypo-glycosylation [37, 153]

P53
Tumor suppressor that regulates cell cycle. Normally inhibits survival
at the transcription level and can initiate apoptosis if DNA damage is

irreparable.
Intracellular Mutated self [154, 155]

Survivin
Member of IAP family. Inhibits caspase activation, is found in most
human tumors and fetal tissue, but is completely absent in terminally

differentiated cells.
Intracellular Over-expressed [150]

K-ras Mutated form of ras, a GTPase important for cell proliferation,
differentiation, and survival. Intracellular Mutated self [156]

Telomerase Ribonucleoprotein that is responsible for RNA-dependent synthesis
of telomeric DNA. TERT is its catalytic subunit. Intracellular Over-expressed [65]

VEGFR2
A tyrosine kinase and member of platelet-derived growth factor

family. Receptor for VEGF with functions in blood vessel
development.

Transmembrane Over-expressed [157]

Mesothelin
GPI-linked glycoprotein, expressed on the surface of mesothelial
cells lining the pleura, peritoneum, and pericardium at low levels.

Binding partner of CA125/MUC16.

Cell surface
(GPI-linked) Over-expressed [27, 158]

Alfa-enolase
Glycolytic enzyme that also acts as a surface plasminogen receptor. Is
found in a variety of tissue, on the cell surface as well as within the

nucleus and cytosol.

Cell surface,
Intracellular

Over-expressed,
post-translational
modi�ed (i.e.,
acetylated)

[21, 151, 159]

3. Active Immunotherapy: Vaccine Strategies

Vaccination involves administering a tumor antigen with
the aim of stimulating tumor-speci�c immunity. Antigens
could be delivered in the form of DNA or peptides, as well
as tumor cells or antigen-pulsed DCs. To be considered an
ideal tumor vaccine candidate, expression of the antigen
must be restricted to the tumor or only minimally expressed
elsewhere in the body. Table 1 summaries a list of major
candidate pancreas tumor-associated antigens for immune
targeting. Additional synergistic help is added to elicit a
more vigorous and effective immune response, such as
cytokines and immunostimulating compounds. Vaccination
against tumor antigens is an attractive approach to adjuvant
treatment aersurgery, when tumor-induced immune sup-
pression is minimal [73–75].

3.1. Vaccines Using Whole Cells. e simplest vaccine ap-
proach that has been applied to cancer is the inoculation of
patients with irradiated tumor cells. is approach remains
a potent vehicle for generating antitumor immunity because
tumor cells express all relevant candidate TAAs, including
both known and unidenti�ed. In the clinical setting, the
use of autologous tumor cell depends on the availability
of an adequate number of them. As only 10–15% of PC

patients diagnosed are eligible for surgical, autologous pan-
creatic cancer cells may not be provided in most of the
patients. Moreover, even if the patients are treated by surgical
resection, it is difficult to prepare sufficient numbers of
tumor cells due to the length of culture time and risk of
contamination [76, 77]. To elude this problem, allogeneic
tumor cell linesmay be used instead of autologous tumor cells
[78]. is strategy has many advantages: (1) speci�c TAAs
do not need to be identi�ed for vaccination, (2) allogeneic
tumor cell lines are well characterized as TAAs source, (3)
allogeneic tumor cell lines can grow well in vitro; thus, there
is no limiting factor for preparation of tumor cells, (4) it
is not necessary to determine HLA typing of patients and
allogeneic tumor cells, because autologous DCs can process
and presentmultiple TAAs from allogeneic tumor cells owing
to cross-presentation in the context of appropriate MHC
class I and II alleles [75, 79], (5) polyclonal antigen-speci�c
T cells (CD4+/CD8+) can be generated, which may protect
against tumor escape variants, and (6) the tumor cell vaccine
platform can be easily modi�ed. For example, tumor cells
can be transduced to express immunomodulatory cytokines
such as granulocyte macrophage colony-stimulating factor
(GM-CSF), which has shown signi�cant antitumor effect in
vivo [80]. GM-CSF is an important growth factor for granu-
locytes and monocytes and has a crucial role in the growth
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and differentiation of DCs. In a phase I clinical trial,
Jaffee et al. [80] used allogeneic GM-CSF-secreting whole-
cell tumor vaccine for pancreatic cancer, based on the
concept that the GM-CSF localization in the implanted
tumor environment together with the shared tumor antigen
expressed by the primary cancer would effectively induce
an antitumor immune response. In this study two PC cell
lines (PANC 10.05 and PANC 6.03) were used as the vaccine,
both genetically modi�ed to express GM-CSF and then
irradiated to prevent further cell division. 14 PC patients
who had undergone pancreatic duodenectomy eight weeks
before were given variable doses of the vaccine intradermally.
ree of the eight patients who received ≥10 × 107 vaccine
cells developed postvaccination delayed-type hypersensitiv-
ity (DTH) responses associated with increased disease-free
survival time and remained disease free for longer than 25
months aer diagnosis. Side effects were mainly limited to
local skin reactions at the site of vaccination.

In a recently completed phase II study 60 patients with
resected pancreatic adenocarcinoma received �ve treatments
of 2.5 × 108 vaccine cells, together with 5-FU and radio-
therapy [81]. e reported MS was 26 months, with a one-
and two-year survival of 88% and 76%, respectively. In
these two studies, a PC cell vaccine induced a CD8+ T cell
response, speci�c to mesothelin, regardless of HLA match
between the tumor vaccine and recipient—demonstrating
that cross-priming had occurred [80, 82]. Mesothelin is a
particularly promising cancer vaccine target owing to its
low level of expression in nontumor tissues and high levels
of expression in pancreatic as well as other cancers (i.e.,
ovarian) [83]. Laheru et al. [84] administrated GMCSF-
secreting allogeneic PC cells in sequence with cyclophos-
phamide in patients with advanced pancreatic cancer. e
approach showed minimal treatment-related toxicity and
mesothelin-speci�c T cell responses. Moreover, combination
of the vaccine and cyclophosphamide resulted in MS in a
gemcitabine-resistant population similar to chemotherapy
alone. It was also reported that combination of the vaccines
and chemoradiation demonstrated an overall survival that
compares favorably with published data for resected pancreas
cancer [85].

Tumor cell vaccines have also been modi�ed to express
epitopes, which increase antibody-mediated uptake by DCs.
Normally, MUC-1 expressed on tumors is immunogenic
owing to overexpression and tumor-restricted hypoglycosy-
lation [86]. e NewLink Genetics Corporation (IA, USA)
has developed a whole-cell vaccine expressing MUC-1 mod-
i�ed to express 𝛼𝛼-gal epitopes, which is the focus of multiple
clinical trials [87–90].is vaccine takes advantage of anti-𝛼𝛼-
gal antibodies that are found in most people due to exposure
to gastrointestinal �ora, resulting in increased uptake of the
vaccine in an antibody-dependent manner [91]. In murine
models, the addition of such 𝛼𝛼-gal epitopes to a Muc-1+ PC
whole-cell vaccine resulted in increased production of anti-
Muc-1 antibodies, enhanced tumor-speci�c T cell responses,
and increased survival aer challenge with Muc-1+ B16 cells
in 𝛼𝛼-gal knockout mice, previously sensitized to 𝛼𝛼-gal [92].

3.2. Peptide Vaccines. Peptide-based cancer vaccines are
preparations made from antigenic protein fragments (called
epitopes), that represent theminimal immunogenic region of
antigens [93, 94], designed to enhance the T cell response,
especially the CD8+. Induction of CTLs needs peptides
derived from TAAs to be presented on the surface of APCs
(antigens presenting cells), such as DCs, in the context of
HLA molecules. e major advantages of peptide vaccines
are that they are simple, stable, safe, economical, and do not
require manipulation of patient tissues, whose availability
may be limited. However, there are also several obstacles that
limit the widespread usefulness of peptide vaccines: (1) a
limited number of known synthesized short peptides cannot
be available in many HLA molecules [95–97], (2) impaired
function ofAPCs in patients with advanced pancreatic cancer
[76, 98], (3) CTLs may be ineffective in reacting with PC cells
downregulated by certain tumor antigens and MHC class I
molecules, which may appear during the course of tumor
progression [99], (4) regulatory T cells (Tregs) or MDSCs
(myeloid-derived suppressor cells) in tumor environment
produce immunosuppressive cytokines such as IL-10 and
TGF-𝛽𝛽 [100].

Anyway, a number of peptide vaccines have under-
gone phase I/II clinical trials [12, 101], showing encourag-
ing results, due to their ability to produce cancer-speci�c
responses in PC patients (Table 2). In a phase I study, vac-
cination with a 100 mer peptide of the MUC-1 extracellular
tandem repeat generated a MUC-1-speci�c T cell response
in some PC patients with two of the 15 patients alive at
61 months [102]. Moreover, in a separate phase I clinical
trial using the same peptide vaccine, the production of anti-
MUC-1 circulating antibodies was detected in patients with
inoperable PC, although no signi�cant impact on survival
was discovered [103].

In a phase I trial, Miyazawa et al. administered a peptide
vaccine for human VEGF receptor, (VEGFR)2-169 epitope,
in patients with advanced PC, in combination with gemc-
itabine, observing an antigen-speci�c DTH and VEGFR2-
speci�c CD8+ cells in 61% patients, with an overall MS
time of 8.7 months [101]. A randomized, placebo-controlled,
multicenter, phase II/III study of this VEGFR2–169 peptide
vaccine therapy, combined with gemcitabine, is currently
underway in patients with unresectable advanced or recur-
rent PC [104]. In similar studies, a telomerase-based vaccine,
consisting of the human telomerase reverse transcriptase
(GV1001) peptide, was found to induce a telomerase-speci�c
immune response in 63% of evaluable patients, as measured
by DTH in unresectable PC.ose with a positive DTHwere
found to live longer than those that did not have a positive
DTH [105]. In addition, augmented immune responses and
prolonged survival were observed following vaccination of
advanced PC patients with telomerase peptide and GM-CSF
[105]. More recently, a phase III clinical trial was performed
in which the effect of gemcitabine treatment on survival was
compared with gemcitabine treatment in combination with
GV1001 therapy in unresectable and metastatic PC patients
[106]. However, the trial was terminated when no survival
bene�t was found.
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T 2: Peptide vaccines-based clinical trial.

Peptide
(Adjuvant) Combination Patients enrolled Phase of

the study Clinical results References

100 mer MUC1
(SB-AS2 adjuvant)

16 with resected or
locally advanced PC I Detectable MUC1-speci�c humoral and T-cell

responses were detected in some patients. [102]

100 mer MUC1
(incomplete
Freund’s adjuvant)

6 with advanced PC I One patient showed a tendency for increased
circulating anti-MUC1 IgG antibody. [103]

VEGFR2-169 Gemcitabine 21 with unresectable PC I

Speci�c cytoto�ic T lymphocytes (CTL) reacting to
the VEGFR2-169 peptide were induced in 11 (61%)
of the 18 evaluable patients. e disease control rate
was 67%, and the median overall survival time was

8.7 months.

[101]

Telomerase
(GM-CSF) 48 with advanced PC I/II

Immune responses were observed in 24 of 38
evaluable patients. One-year survival for the

evaluable patients in the intermediate dose group
was 25%.

[105]

Mutant K-ras
(GM-CSF)

10 with resected and 38
with advanced PC I/II

Immune response to the peptide vaccine showed
prolonged survival compared to nonresponders.
K-ras-speci�c T cells were selectively accumulated

in the tumor.

[77]

Mutant K-ras
(GM-CSF) 24 with resected PC Pilot study

Vaccination proved to be safe and tolerable with
however no elicitable immunogenicity and

unproven efficacy.
[107]

13 mer mutant ras 5 with PC and 7 with
colorectal cancer II

is vaccine is safe, can induce speci�c immune
responses, and it appears to have a positive outcome

in overall survival. e �ve pancreatic cancer
patients have shown a mean disease-free survival
(DFS) of 35.2+ months and a mean overall survival

(OS) of 44.4+ months.

[108]

Mutant ras long
peptide 23 with resected PC I

17 of 20 evaluable patients (85%) responded
immunologically to the vaccine. Ten-year survival

was 20% (four patients out of 20 evaluable).
[111]

Surviving
1 with liver metastasis
of PC refractory to
gemcitabine

Case report
e patient initially underwent partial remission of
liver metastasis which proceeded aer 6 months into
a complete remission with duration of 8 months.

[17]

Personalized
peptide vaccine Gemcitabine 11 with advanced PC I

e 6- and 12-month survival rates for patients who
received >3 vaccinations (𝑛𝑛 𝑛 𝑛𝑛) were 80% and

20%, respectively.
[12]

e most interesting results have come from studies
of K-Ras-targeted peptide vaccines. Gjertsen et al. [77]
�rst reported mutant K-ras peptide vaccines for PC. In a
phase I/II trial involving 48 PC patients, they studied ras
peptide in combination with GM-CSF, since native epitopes
have relatively low immunogenicity [77]. Peptide-speci�c
immunity was induced in 58% of patients. Of patients with
advanced disease, those who responded to treatment showed
increased survival compared to nonresponders. Recently,
another group reported that vaccination of 24 PC patients
with K-ras peptide in combination with GM-CSF proved to
be safe without tumor regression [107]. In another pilot vac-
cine study, pancreatic and colorectal patients were vaccinated
with K-Ras peptides containing patient-speci�c mutations.
ree of the �ve PC patients displayed an antigen-speci�c
immune response to a K-Ras [108]. Disease progression
was observed in the two PC patients that did not respond

to the vaccine, with the responders having no evidence of
disease. Of the PC patients, a mean disease-free survival of
35.2 months and a mean overall survival of 44.4 months
were observed. Such results with peptide vaccines are highly
encouraging.

e more attractive peptide-based vaccines may be syn-
thetic long peptides to induce antigen-speci�c polyclonal
CD8+ andCD4+ Tcells [109]. Long synthetic peptides cannot
bind directly on MHC class I or II molecules, but they need
to be processed and presented by DCs. So, the long peptide
vaccines can present MHC class I- and II-restricted epitopes
for long time, thus eliciting both CD4+- and CD8+-mediated
immune recognition [110] and probably inducing a robust
therapeutic T cell response. In a phase I study using long
synthetic mutant ras peptides, Wedén et al. [111] treated
23 patients who were vaccinated aer surgical PC resection.
Long-term immunologicalmemory responses to the vaccines
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were observed. Strikingly, 10-year survival was 20% (four
patients out of 20 evaluable) versus zero (0/87) in a cohort
of nonvaccinated patient treated in the same period.

To increase the immunogenicity of peptide vaccines,
some groups have mutated key anchor residues in the
peptides such that binding to MHC-I molecules, and conse-
quently the presentation to CD8+ T cells, is increased. is
is particularly important when vaccinating against TAAs, as
they are oen weak or only intermediate binders to HLA
molecules [112–116]. An MUC-1 peptide vaccine modi�ed
in this way was shown to enhance production of IFN-𝛾𝛾 from
patient and normal donor T cells. MUC-1-speci�c T cell
clones, generated by stimulation with this peptide, could lyse
targets pulsed with native Muc-1 epitope as well as HLA-
A2+ MUC-1+ human tumor cells in vitro [117]. Notably, one
case has been reported in which vaccination with a modi�ed
HLA-A2-restricted survivin peptide resulted in remission of
liver metastasis in one PC patient [17].

Another approach in cancer peptide-vaccination consists
in using personalized peptide vaccines based on the tumor-
antigen epitopes that are most immunogenic for a particular
patient. In a phase I clinical trial, Yanagimoto et al. applied
this strategy, in combination with gemcitabine therapy, to
pancreatic cancer. Prior to vaccination, T cells from patient
PBMCs were screened against a panel of tumor antigen-
derived peptides. Patients were vaccinated only with the pep-
tides to which they had a response [12]. An increase in tumor
antigen-speci�c T cell responses was observed from the 13
evaluable patients with no correlation to clinical responses
or humoral responses following vaccination, although 11
patients experienced either reduction in tumor size. Median
survival time was 7.6 months. A similar phase II study was
published in 2010 by the same group, showing an MS time of
9 months and a 1-year survival of 38% [118].

3.3. DNA Vaccination. Vaccination with DNA represents
a simple vehicle for in vivo transfection and antigen pro-
duction. A DNA vaccine is composed of a plasmid DNA
that encodes for a TAA under the control of a mammalian
promoter and can be easily produced in the bacteria [119]. It
can be administered to humans via intramuscular injection
with or without electroporation. Compared with cell-based
vaccines, this vaccination strategy offers more advantages;
in fact, while cell-based vaccines become less effective over
time because the induced immune system recognizes them as
foreign and quickly destroys them,DNAvaccines can provide
prolonged antigen expression, leading to ampli�cation of
immune responses and inducing memory responses against
weakly immunogenic TAAs. Moreover, as DNA might be
taken up by cells and the encoded antigen is processed
through both endogenous and exogenous pathways, DNA
vaccines administered via intramuscular injection allow for
an immune response to multiple potential epitopes within
an antigen to be generated regardless of the recipient’s MHC
pro�le [120]. Actually DNA vaccines are ongoing trials in dif-
ferent tumors [121–123] and being studied inmurinemodels
of pancreatic cancer. In a murine PC study, an MUC-1
DNAvaccinewas able to induce a signi�cantMUC-1-speci�c

CTL response and had both prophylactic and therapeutic
effects in tumor-bearing mice [124]. Similarly, in another
PC murine model, vaccination with either murine or human
full-length survivin DNA generated an antitumor-speci�c
response, increased in�ltration of tumor with lymphocytes
and increased survival [125]. Furthermore, Gaffney et al.
studied the mesothelin DNA vaccine in combination with
the antiglucocorticoid-induced TNF receptor antibody (anti-
GITR) in mice with syngeneic mesothelin-expressing pan-
creatic cancer [126]. 50% of animals treated with mesothelin
were tumor free 25 days aer tumor injection compared to 0%
of nontreatedmice.is increased to 94%with the addition of
anti-GITR. e agonist anti-GITR served to enhance T cell-
mediated response of the vaccine [127, 128].

3.4. Antigen-Pulsed DCs. Antigen-speci�c T cell responses
are initiated by DCs. ey capture antigens secreted or shed
by tumor cells and present peptides in association with the
MHC class I and II molecules. is results in the expression
and upregulation of cytokines and costimulatory molecules
which in turn stimulate CD4+ and CD8+ T cells to mount
an antitumor response [129]. erefore, a major area of
investigation in cancer immunotherapy involves the design
of DCs-based cancer vaccines [130]. Autologous DCs can be
used in tumor vaccination (1) pulsed with synthetic peptide
derived from the known tumor antigens [131], tumor cell
lysates [132], or apoptotic tumor cells [133], (2) transfected
with whole-tumormRNA [134] or with mRNA or cDNA of a
speci�c antigen [135] and (3) fusedwith tumor cells to induce
antigen-speci�c polyclonal CTL responses [136].

DC-based vaccines have been used in different PC
studies. Schmidt et al. intratumorally vaccinated with whole
tumor mRNA transfected DCs and found an antitumor-
speci�c immune response and signi�cantly decreased tumor
volume in a murine PC model [137]. Apoptotic PC lysates
have also been evaluated as a source of antigens and have
been demonstrated to elicit stronger antitumor lytic activity
when used to stimulate autologous human CD8+ T cells
in vitro compared with those stimulated with tumor lysate-
pulsed DCs [138]. In cases in which an immunogenic tumor
antigen is known, autologous DCs have been transfected
with or virally transduced to express, the mRNA or cDNA
of a speci�c tumor antigen (Table 3). A vaccine consist-
ing of liposomal MUC1-transfected autologous DCs was
evaluated in a clinical phase I/II trial. In MUC1 peptide-
loaded DC vaccines in PC patients following resection of
their primary tumors, four of the 12 patients followed for
over four years were alive, all without evidence of recurrence
[139]. Moreover, MUC1-speci�c immune responses were
also observed even in patients with pretreated and advanced
disease, following immunization with DCs transfected with
MUC1 cDNA [140].is technique does not require that the
exact immunogenic epitopes of the antigen be identi�ed, as
full-length protein is transfected.

In another study, three patients with resected PC fol-
lowing neoadjuvant chemoradiotherapy were given monthly
injections of autologous, monocyte-derived DCs loaded with
the mRNA of CEA for six months [141]. No toxicities were
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T 3: DC-based vaccines clinical trial.

DC-based vaccines Patients enrolled Phase of the
study Clinical results References

MUC1 peptide-loaded
DC

12 with resected pancreatic
and biliary cancer I/II 4 of the 12 patients followed for over four years were

alive [139]

DC transfected with
MUC1 cDNA

10 with advanced breast,
pancreatic, or papillary cancer I/II

4 patients showed a 2- to 10-fold increase in the
frequency of MUC1-speci�c IFN-gamma-secreting
CD8+ T cells.

[140]

mRNA CEA-loaded
DC 3 with resected PC Pilot study

e immunizations were well tolerated without
evidence of adverse events. All patients were alive
without evidence of disease at more than 30 months
from the original diagnosis.

[141]

Peptides (mutant p53-
and k-ras-loaded DC

39 patients with several types
of cancer (lung, breast,
pancreatic, ovarian, colon,
others)

I

10 (26%) of 38 patients had detectable CTL against
mutant p53 or K-ras, and 2 patients were positive for
CTL at baseline. Positive IFN-𝛾𝛾 responses occurred in
16 patients (42%) aer vaccination, whereas 4 patients
had positive IFN-𝛾𝛾 reaction before vaccination. Cellular
immunity to mutant p53 and K-ras oncopeptides is
associated with longer survival.

[142]

DC engineered
(secreting IL-2)

17 patients with several types
of cancer (3 metastatic
pancreatic, 5 colorectal, 9 liver,
cancer)

Pilot study

Treatment was well tolerated. DC treatment induced a
marked increase of in�ltrating CD8+ T lymphocytes in
three of 11 tumor biopsies analyzed. A partial response
was observed in one patient with pancreatic carcinoma.

[143]

reported, and all patients remained disease free formore than
30 months from diagnosis.

Pulse can also be performed with peptides from multiple
tumor antigens, as was performed in a Phase I clinical study
by Carbone et al. Patients with various cancers, including
pancreatic cancer, immunized with p53 and K-ras peptide-
pulsed PBMCs, saw increased survival [142]. In addition,
autologous DCs, virally transduced to express IL-12, have
also been used in cancer treatment. One PC patient receiving
this treatment had a partial response in studies by Mazzolini
et al. [143]. As the treatment DCs were not loaded with
tumor antigens, cross-presentation of tumor antigens must
have occurred. Moreover, DCs have been fused with tumor
cells to induce antigen-speci�c polyclonal CTL responses
[136]. In the DC/tumor cell fusion approach, whole TAAs
including those known and those yet unidenti�ed are pro-
cessed endogenously and presented by MHC class I and II
pathways in the context of costimulatory signals [144–146].
In particular, this technique has been used to treat mice in a
PC model, resulting in the generation of CD8+ T cells with
tumor-speci�c cytolytic activity and tumor re�ection [147].

4. Conclusion

Pancreatic cancer is a dismal disease that has a high mor-
bidity and mortality, and at present there are not effective
chemotherapeutic treatments, especially for patients with
advanced and metastatic diseases. For all these reasons
Alphais of prime importance to investigate new pancreatic
cancer treatments. In this paper we have analyzed the various
strategies of the immunotherapeutic approach, some of
which are still used in animal models; others are already
being exploited in clinical trials. Immunotherapy is certainly

a promising treatment for pancreatic cancer, because it is
highly speci�c for cancer cells and therefore without the side
effects associated with traditional chemotherapy. But at the
moment there are not antigens expressed only by PC cells;
in fact the antigens used as the target of immunotherapic
treatments are self-protein or overexpressed [65, 148–150] in
tumor cells or present in acetylated form [151], with the risk
of autoimmune phenomena. However, the data obtained in
different clinical trials showed an increase in the survival of
patients treated with PC immunotherapy alone [72, 105, 108,
111] or in combination with chemotherapy treatments [12,
54, 101], with very minimal autoimmune manifestations. In
conclusion we can say that immunotherapy may be included
among the future treatments for pancreatic cancer, especially
for inoperable patients, but for the effectiveness of this
innovative treatment is essential to overcome some obstacles:
(a) �nding speci�c markers for pancreatic cancer cells, (b)
mitigating the immune suppressive effects of tumor cells, (c)
early diagnosis of the tumor so as to act in a timely manner
before the cancer spreads in other locations.
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