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Abstract

Synaptic plasticity is an important feature of neurons essential for learning and memory. Postsynaptic organization and
composition are dynamically remodeled in response to diverse synaptic inputs during synaptic plasticity. During this
process, the dynamics and localization of postsynaptic proteins are also precisely regulated. NESH/Abi-3 is a member of the
Abl interactor (Abi) protein family. Overexpression of NESH is associated with reduced cell motility and tumor metastasis.
Strong evidence of a close relationship between NESH and the actin cytoskeleton has been documented. Although earlier
studies have shown that NESH is prominently expressed in the brain, its function and characteristics are yet to be
established. Data from the present investigation suggest that synaptic localization of NESH in hippocampal neurons is
regulated in an F-actin-dependent manner. The dynamic fraction of NESH in the dendritic spine was analyzed using FRAP
(fluorescence recovery after photobleaching). Interestingly, F-actin stabilization and disruption significantly affected the
mobile fraction of NESH, possibly through altered interactions of NESH with the F-actin. In addition, NESH was synaptically
targeted from the dendritic shaft to spine after induction of chemical LTP (long-term potentiation) and the translocation
was dependent on F-actin. Our data collectively support the significance of the F-actin cytoskeleton in synaptic targeting of
NESH as well as its dynamics.
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Introduction

Dendritic spines are tiny protrusions that generate most

excitatory synapses by receiving synaptic inputs from presynaptic

terminals of axons and act as crucial sites of receiving, combining,

processing and storing information [1]. Postsynaptic density (PSD)

and actin cytoskeleton are the major components of dendritic

spines. PSD, an electron-dense structure underlying the postsyn-

aptic membrane, acts as a platform where glutamate receptors,

channels, adhesion molecules, scaffolding proteins and signaling

proteins cluster at the postsynaptic site [2,3]. The actin

cytoskeleton plays pivotal roles in the formation, maintenance

and elimination of dendritic spines, and not only affects the overall

structure of spines but also plays key roles in synaptic activity by

organizing the postsynaptic density and anchoring postsynaptic

receptors to transmit synaptic stimuli [4,5]. PSD and the actin

cytoskeleton in dendritic spines undergo remarkable structure and

function remodeling under various synaptic inputs [6]. Remodel-

ing of the dendritic spine is associated with phenomena underlying

synaptic strength and plasticity, such as LTP (long-term potenti-

ation) [7,8]. Information within the brain can be stored by

strengthening or weakening synapses, which is mediated by

molecular reorganization of postsynaptic components, including

PSD constituents and the actin cytoskeleton. These functional and

structural changes in dendritic spines and synapse are believed to

be the neural basis of learning, memory and cognition in the brain

[9,10].

NESH is the third reported member of the Abi (Abl-interactor)

protein family, and hence is also designated Abi-3. NESH was

originally identified as a new human gene that possesses a Src

homology 3 (SH3) domain, and subsequently included as a

member of the Abi family based on its sequence similarity to Abi-1

and -2, which are known regulators of the actin cytoskeleton as

well as tumor suppressors [11,12]. NESH contains several proline-

rich motifs in the middle of its sequence and a SH3 domain in the

C-terminal region. Ectopic expression of NESH in a metastatic

cancer cell line has been shown to suppress cell motility and

metastatic potential in vivo, possibly mediated through regulation of

PAK (p21-activated kinase) [13]. In non-neuronal cells, NESH

forms a complex with the actin regulator, WAVE, which is crucial

for membrane ruffling and lamellipodia formation [14]. Moreover,

NESH interacts with IRSp53 that plays a pivotal role in

lamellipodia formation in motile cells by associating with Rac

GTPase, and its overexpression blocks PDGF-stimulated mem-

brane ruffling to a significant extent in mammalian cells [15].

These findings collectively suggest that NESH is involved in actin

cytoskeleton remodeling during regulation of the cortical mem-

brane and motility. While the molecular and functional charac-

teristics of NESH have been investigated for over a decade, all

earlier experiments were performed on non-neuronal cells.
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Therefore, the significance of NESH in neurons remains to be

established.

In the current study, the characteristics of NESH were

investigated in hippocampal neurons that undergo extensive actin

cytoskeleton remodeling upon synaptic activity and play an

important role in long-term memory. Our experiments revealed

that the localization of NESH in dendrites is dynamically altered

in an F-actin-dependent manner. The dynamics of NESH was

additionally analyzed using the FRAP (fluorescence recovery after

photobleaching) assay, and compared with that of GFP-tagged

actin or postsynaptic scaffold proteins. Moreover, the effects of F-

actin stabilization or disruption on molecular dynamics were

evaluated via FRAP analysis. Remarkably, the F-actin-binding

region of NESH appeared important for the regulation of NESH

mobility. Moreover, induction of chemical LTP (long-term

potentiation) led to synaptic translocation of NESH, and

disruption of the F-actin cytoskeleton blocked the synaptic

accumulation of NESH during LTP. Our results provide evidence

to support the significance of the F-actin cytoskeleton in the

dynamics and synaptic translocation of NESH in dendritic spines.

Results

NESH translocates to the synapse in an F-actin-
dependent manner in hippocampal neurons

Previously, we found that NESH interacts with F-actin

(filamentous actin) (unpublished data). F-actin is predominantly

formed in dendritic spines and plays an important role in

maintaining spine structure and anchoring PSD proteins at the

synapse. Accordingly, we hypothesized that the integrity of the F-

actin cytoskeleton is crucial for NESH localization in hippocampal

neurons. To verify this hypothesis, NESH localization was

examined in hippocampal neurons co-transfected with GFP-

tagged NESH and pLifeact-TagRFP. The F-actin cytoskeleton

was imaged using the Lifeact-TagRFP probe, which was selected

on the basis of its lack of effects on actin polymerization and

depolymerization within cells [16]. Under normal conditions,

NESH was evenly localized throughout dendrites, including the

shaft and spine regions (Fig. 1A). GFP, the control protein, diffused

freely throughout dendrites. Lifeact-TagRFP was predominantly

localized in the dendritic spine, but barely observed in dendritic

shafts. To determine the effects of F-actin stabilization on NESH

localization in hippocampal neurons, transfected neurons were

treated with jasplakinolide, an F-actin-stabilizing reagent, and

localization of NESH examined. Interestingly, localization of

NESH was significantly altered after jasplakinolide treatment,

displaying a marked increase in synaptic translocation into the

dendritic spine. In addition, NESH localization overlapped with

that of F-actin in the dendritic spine. Colocalization is indicated

with white arrows in the merged image. On the other hand, GFP

was not affected by jasplakinolide, and displayed similar

localization to that observed under non-treated conditions. To

quantitatively assess the synaptic translocation of NESH, spine vs.

shaft intensity ratios were analyzed (Fig. 1B). As shown in

Figure 1B, the ratio of F-actin (spine vs. shaft) was greatly

increased after treatment with jasplakinolide, compared with

normal conditions. The ratio of NESH intensity in spine was also

markedly increased in jasplakinolide-treated neurons whereas the

GFP intensity in spine was unchanged. The specificity of anti-

NESH antibody was confirmed by immunoblotting and immu-

nostaining (Fig. S1A, B). pLifeact-TagRFP-transfected neurons

were treated with jasplakinolide for 10 min and then stained with

anti-NESH antibody (Fig. S2A). As the result, the spine vs. shaft

ratio of endogenous NESH was significantly increased in

jasplakinolide-treated neurons (Fig. S2B). These data suggest that

the stabilization of F-actin cytoskeleton leads to synaptic targeting

of NESH.

FRAP analysis of NESH dynamics within a single spine
FRAP analysis was conducted on a single dendritic spine, with a

view to investigating the dynamics of NESH in detail. To analyze

the movement of GFP-NESH, a circular region containing the

spine was selected and photobleached with a laser, and the

recovery of GFP-NESH fluorescence recorded at intervals of 10 s

for 5 min in a time-course experiment (Fig. 2A). The fluorescence

intensity of NESH was consistently maintained before bleaching,

and fluorescence disappeared completely after bleaching for 7 s.

Subsequently, fluorescence intensity was slowly recovered (up to

about 40%) over 5 min (36.665.1% at 310 s), indicative of an

exchangeable portion of NESH (Fig. 2B). To compare NESH

Figure 1. F-actin-dependent synaptic translocation of NESH in hippocampal neurons. (A) The effect of F-actin stabilization on localization
of NESH was investigated. Hippocampal neurons were co-transfected with GFP-NESH (or GFP) and pLifeact-TagRFP at 10–12 DIV. pLifeact-TagRFP was
employed to image the F-actin cytoskeleton within cells. Transfected neurons at 16–18 DIV were treated with jasplakinolide (5 mM for 10 min), fixed,
and imaged. Colocalization between NESH and F-actin is indicated with white arrows in the merged image. (B) Quantitative analysis of the intensity
ratio of spines vs. shafts from data obtained in Fig. 1A (N = 16 neurons for each condition). Data are presented as means 6 SEM. ***p,0.001.
doi:10.1371/journal.pone.0034514.g001
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dynamics with other proteins, FRAP analyses were conducted

after transfection of GFP, GFP-actin, GFP-PSD95 and GFP-

Homer1c. The fluorescence of GFP was fully recovered within

50 s after bleaching, which may be attributable to the fact that this

protein is freely diffusing (90.165.2% at 310 s) (Fig. 2C, D). The

actin cytoskeleton shows a very high turnover rate in dendritic

spines. Thus, recovery of GFP-actin was rapidly completed within

5 min (91.468.5% at 310 s). In contrast, the postsynaptic scaffold

proteins, PSD95 and Homer1c showed very low recovery rates

(9.465.5% at 310 s for GFP-PSD95, 7.461.8% at 310 s for GFP-

Homer1c), indicating that these proteins are relatively immobile

and attached to the postsynaptic density with high affinity (Fig. 2C,

D).

NESH mobility is affected by F-actin stabilization in the
dendritic spine

Localization of NESH was affected by F-actin stabilization in

Figure 1, showing that the protein is predominantly accumulated

in dendritic spines. To examine the change in NESH mobility

after F-actin stabilization, hippocampal neurons were treated with

jasplakinolide and analyzed using the FRAP assay. The mobile

fraction of NESH was significantly reduced in jasplakinolide-

Figure 2. FRAP analysis of NESH dynamics in dendritic spines. (A) To investigate the dynamics of NESH in a single spine, the FRAP
(fluorescence recovery after photobleaching) assay was performed. Hippocampal neurons at 10–12 DIV were transfected with GFP-NESH and
subjected to FRAP imaging at 16–18 DIV. A single spine of GFP-NESH-transfected neurons was set to ROI (region of interest) and bleached for 7 s with
an Ar 488 laser, and recovery of GFP-NESH observed at intervals of 10 s over a time-course of 5 min. (B) Recovery curve of GFP-NESH from data
obtained in Fig. 2A. NESH fluorescence was slowly recovered (up to ,40%) for 5 min (N = 15, data from three to five independent experiments). (C)
Hippocampal neurons at 10–12 DIV were transfected with GFP, GFP-actin, GFP-PSD95 or GFP-Homer1c, and used for FRAP imaging at 16–18 DIV.
NESH mobility was compared with that of other proteins using FRAP (N = 15 for each protein, data from three to five independent experiments). (D)
Analysis of mobile/immobile fractions from data obtained in Fig. 2B and C. Fend: fluorescence at the end time-point, Fpost: fluorescence right after
photobleaching, Fpre: fluorescence before photobleaching, Mf: mobile fraction, If: immobile fraction. Data are presented as means 6 SEM.
doi:10.1371/journal.pone.0034514.g002
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treated neurons (13.662.8% at 400 s), compared with non-treated

neurons (43.962.4% at 400 s) (Fig. 3A, F). In jasplakinolide-

treated neurons, the mobile fraction of NESH was similar to that

of the PSD scaffold proteins, PSD95 and Homer1c. The data

suggest that stabilization of the F-actin cytoskeleton alters the

dynamics of NESH and immobilizes it at synapses, possibly as a

result of increased interactions with F-actin. Converse results were

obtained with GFP and GFP-actin in FRAP analyses. The

recovery of GFP was not significantly affected by jasplakinolide

(92.768.0% at 400 s for control, 83.361.3% at 400 s for

jasplakinolide) (Fig. 3B, F). On the other hand, actin recovery

was completely blocked after F-actin stabilization, indicating near-

complete suppression of actin dynamics (98.668.7% at 400 s for

control, 0.260.1% at 400 s for jasplakinolide) (Fig. 3C, F). The

recovery levels of PSD95 and Homer1c were not significantly

altered in the presence of jasplakinolide (12.062.7% at 400 s for

GFP-PSD95, 7.064.2% at 400 s for GFP-Homer1c), since the

levels of recovery in non-treated neurons (control) were initially

very low at ,10% (Fig. 3D–F).

NESH mobility is affected by disruption of F-actin in
dendritic spines

Stabilization of actin filaments affects the localization and

dynamics of NESH, indicating close linkage of this protein with

the F-actin cytoskeleton. Accordingly, we investigated whether

NESH dynamics is affected by F-actin disruption. Hippocampal

neurons were transfected with GFP-NESH and treated with

latrunculin A to induce actin depolymerization. Subsequently,

NESH mobility was analyzed with FRAP. Disruption of actin

filaments by latrunculin A led to a significant reduction in the

mobile fraction of NESH, compared with that in non-treated

neurons (control) (45.661.9% at 400 s for control, 24.963.6% at

400 s for latrunculin A) (Fig. 4A, F). These data suggest that the

integrity of the F-actin cytoskeleton and dynamic actin remodeling

are essential for the mobility and dynamics of NESH. Similar to

jasplakinolide-treated neurons, latrunculin A treatment did not

affect the recovery of free-diffusing GFP (98.262.2% at 400 s for

control, 95.4610.3% at 400 s for latrunculin A) (Fig. 4B, F). In

particular, recovery of GFP-actin was severely affected by

latrunculin A (98.162.6% at 400 s for control, 54.2611.4% at

400 s for latrunculin A), implying that actin polymerization in

spine is crucial for dynamic actin turnover (Fig. 4C, F). In the case

of GFP-PSD95 and GFP-Homer1c, recovery was not altered by F-

actin disruption, indicating that the motilities of these proteins are

independent of the F-actin cytoskeleton (Fig. 4D–F).

The F-actin-binding region of NESH is crucial for
dynamics

Earlier experiments showed that the dynamics of NESH in

dendritic spine is affected by both F-actin stabilization and

disruption induced by jasplakinolide and latrunculin A. This finding

implies that actin dynamics is fundamental for the mobility of

NESH. The N-terminal half of NESH interacts solely with F-actin

(unpublished data). Accordingly, we examined whether the F-actin

binding capacity is important for NESH mobility. Hippocampal

neurons were transfected with GFP-NESH-N-term (N-terminal

half, amino acids 1–229) or GFP-NESH-C-term (C-terminal half,

amino acids 221–367), followed by FRAP analyses. The recovery of

NESH N-term was 63.364.5% at 400 s under normal conditions

(Fig. 5A, B), while that of NESH C-term was 98.166.0% at 400 s

(Fig. 5C, D). Interestingly, the recovery curve of NESH C-term was

similar to that of free-diffusing GFP, indicating that this region of

the protein does not make any associations in PSD, even with the

actin cytoskeleton. Consistent with this theory, the recovery curve of

NESH C-term was not significantly altered after treatment with

jasplakinolide or latrunculin A (89.065.7% at 400 s for jasplakino-

lide, 97.062.0% at 400 s for latrunculin A), confirming no

association with the actin cytoskeleton (Fig. 5C, D). In contrast,

the mobility of NESH N-term was severely affected by F-actin-

stabilizing and -disrupting reagents. F-actin stabilization significant-

ly lowered the mobile fraction of NESH N-term to 11.265.1% at

400 s. Moreover, the recovery of NESH N-term was significantly

reduced in latrunculin A-treated neurons (40.461.7% at 400 s)

(Fig. 5A, B). Our findings clearly suggest that the F-actin binding

capacity of NESH is critical for its dynamics in hippocampal

neurons.

NESH translocates into dendritic spines via chemical LTP
induction

The F-actin content in dendritic spines is increased during LTP

[17]. The F-actin cytoskeleton serves in the trafficking of AMPA

receptors into the postsynaptic region while also acting as a scaffold

for plasticity proteins. In addition, the actin cytoskeleton participates

in the enlargement and maintenance of spine volume, thereby

aiding in the maintenance of LTP [7,18,19,20]. Since NESH

displays F-actin-dependent movement in the dendritic spine, we

investigated the effects of F-actin increase during LTP on NESH

dynamics. To mimic physiological LTP, the glycine-induced

chemical LTP (cLTP) method was used, since it specifically

stimulates NMDA receptors only at synapses receiving spontaneous

release of glutamate, thus reproducing stimulus-induced synaptic

potentiation [21]. First, the level of phospho-PAK (S141) was

assessed, in view of the finding that PAK is activated after cLTP

induction [21]. Our results showed a significant increase in the

phospho-PAK level in cLTP (Fig. 6A). Cytoskeletal elements and

postsynaptic density (PSD) are resistant to the nonionic detergent,

Triton X-100. To investigate the association between NESH and

the cytoskeleton or synaptic site, hippocampal neurons were treated

with Triton X-100, and the soluble fraction removed. Purified anti-

NESH antibody was used to detect endogenous NESH (Fig. S1).

NESH was more enriched in TIF (Triton X-100 insoluble fraction)

after cLTP induction, and the level of GluR1, an AMPA receptor

subunit, was increased in TIF (Fig. 6B, C). These data suggest that

NESH is more strongly associated with cytoskeletal elements or

synaptic sites during LTP. To clarify the association of NESH with

synaptic sites during LTP, hippocampal neurons were transfected

with GFP-NESH, followed by staining with Alexa 594-conjugated

phalloidin, and localization of NESH examined (Fig. 6D). GFP

served as the control. The fluorescence intensity ratio of spine vs.

shaft was measured to establish synaptic association (or transloca-

tion) (Fig. 6E). The GFP ratio was not changed after cLTP

induction. In contrast, the F-actin ratio (spine vs. shaft) was

increased. Interestingly, NESH additionally translocated into the

synapse after cLTP induction. Quantitative analysis further

revealed a 3-fold increase in the ratio of NESH intensity (spine vs.

shaft) after cLTP induction, compared with control. Synaptic

translocation of endogenous NESH was also examined during

cLTP induction. Hippocampal neurons were transfected with

pLifeact-TagRFP to visualize F-actin cytoskeleton. As the result, the

ratio of NESH intensity (spine vs. shaft) was markedly increased

after cLTP induction (Fig. S2C, D).

Synaptic translocation of NESH during chemical LTP is
dependent on the F-actin cytoskeleton

To determine the importance of the F-actin cytoskeleton in the

synaptic translocation of NESH during cLTP, hippocampal

Regulation of NESH Dynamics by F-Actin
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neurons were treated with latrunculin A for 10 min, followed by

induction of cLTP. Subsequently, neurons were fixed, and

localization of NESH examined. As shown in Figure 7A,

latrunculin A induced complete removal of the F-actin cytoskel-

eton from dendritic spines. Moreover, NESH translocation was

completely blocked by latrunculin A, even though cLTP was

Figure 3. Effect of F-actin stabilization on NESH mobility in dendritic spines. FRAP analysis was performed to examine the effect of F-actin
stabilization on NESH mobility. Hippocampal neurons at 10–12 DIV were transfected with GFP-NESH, GFP, GFP-actin, GFP-PSD95 or GFP-Homer1c,
and subjected to FRAP analysis at 16–18 DIV. (A, F) Recovery curves of GFP-NESH in non-treated (control) and jasplakinolide-treated neurons (mobile
fractions: 43.962.4% at 400 s for control, 13.662.8% at 400 s for jasplakinolide). (B, F) Recovery curves of GFP (mobile fractions: 92.768.0% at 400 s
for control, 83.361.3% at 400 s for jasplakinolide). (C, F) Recovery curves of GFP-actin (mobile fractions: 98.668.7% at 400 s for control, 0.260.1% at
400 s for jasplakinolide). (D–F) Recovery curves and mobile fractions of the scaffolding proteins, PSD95 and Homer1c (control: 16.765.2% at 400 s for
GFP-PSD95, 14.866.6% at 400 s for GFP-Homer1c, jasplakinolide: 12.062.7% at 400 s for GFP-PSD95, 7.064.2% at 400 s for GFP-Homer1c). (F)
Analysis of the mobile/immobile fractions from data obtained in Fig. 3A–E (N = 15 for each condition, data from three to five independent
experiments). Data are presented as means 6 SEM. **p,0.01.
doi:10.1371/journal.pone.0034514.g003
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Figure 4. Effect of F-actin disruption on mobility of NESH. To examine the effect of F-actin disruption on NESH mobility in the dendritic spine,
FRAP analyses were performed using hippocampal neurons at 16–18 DIV that were transfected with GFP-NESH, GFP, GFP-actin, GFP-PSD95 and GFP-
Homer1c at 10–12 DIV. F-actin disruption was induced by treating with latrunculin A (5 mM for 10 min). (A, F) Recovery curves of GFP-NESH in non-
treated (control) and latrunculin A-treated neurons (mobile fractions: 45.661.9% at 400 s for control, 24.963.6% at 400 s for latrunculin A),
suggesting that dynamic actin remodeling is crucial for the mobility and dynamics of NESH. (B, F) Recovery curves of GFP (mobile fractions:
98.262.2% at 400 s for control, 95.4610.3% at 400 s for latrunculin A) (C, F) Recovery curves of GFP-actin (mobile fractions: 98.162.6% at 400 s for
control, 54.2611.4% at 400 s for latrunculin A) (D–F) Recovery curves and mobile fractions of scaffold proteins, GFP-PSD95 and GFP-Homer1c,
showed no significant differences. (F) Analysis of mobile/immobile fractions from data obtained in Fig. 4A–E (N = 15 for each condition, data from
three to five independent experiments). Data are presented as means 6 SEM. *p,0.05.
doi:10.1371/journal.pone.0034514.g004
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induced. Analysis of the spine vs. shaft ratio confirmed this result

(Fig. 7B). However, the GFP intensity ratio was not significantly

affected by actin depolymerization induced by latrunculin A

(Fig. 7A, B). Based on these results, we propose that the F-actin

cytoskeleton is crucial for NESH translocation into the synapse

during cLTP.

Discussion

In response to synaptic stimuli, postsynaptic proteins are

reorganized via translocation [22,23]. Here, we have shown that

localization of NESH is regulated by synaptic activity. In our

experiments, NESH was evenly distributed throughout dendrites,

including shafts and spines, in the resting state. However, cLTP

induction led to translocation of NESH from dendritic shafts to

postsynaptic sites. Actin, the major cytoskeleton constituent in the

dendritic spine is very dynamic, continuously transforming

between G-actin (globular monomeric actin) and F-actin (filamen-

tous actin) states according to synaptic stimuli. LTP induction

shifts the G-actin/F-actin ratio in favor of F-actin [24]. NESH

specifically binds to F-actin, but not G-actin (unpublished data).

Accordingly, we speculated that synaptic translocation of NESH is

related to the increased F-actin content at synapses during LTP.

As expected, synaptic accumulation of NESH was blocked in

latrunculin A-treated neurons, even though LTP was induced,

suggesting that synaptic targeting of NESH is closely related to

actin cytoskeleton remodeling. This theory is supported by several

earlier reports that emphasize the link between NESH and the

actin cytoskeleton. NESH is reported to interact with IRSp53, an

actin regulator, and is involved in PDGF-induced membrane

ruffling, a dynamic F-actin-rich structure [15]. Additionally,

NESH is a member of the WAVE complex, an actin regulator,

and interacts with PAK (p21-activated kinase), a Rac/Cdc42

effector, thus providing a connection with the actin cytoskeleton

Figure 5. Importance of the F-actin-binding region in NESH dynamics. The dynamics of NESH-N-term (N-terminal half of NESH, F-actin
binding region) and C-term (C-terminal half of NESH, F-actin non-binding region) were analyzed using FRAP. Hippocampal neurons at 10–12 DIV were
transfected with GFP-NESH-N-term or GFP-NESH-C-term, and subjected to FRAP analysis at 16–18 DIV. (A, B) Recovery curves and mobile fractions of
NESH-N-term (63.364.5% at 400 s for control, 11.265.1% for jasplakinolide, 40.461.7% for latrunculin A). N = 15 for each condition, data from three
to five independent experiments. (C, D) Recovery curves and mobile fractions of NESH-C-term (98.166.0% for control, 89.065.7% at 400 s for
jasplakinolide, 97.062.0% at 400 s for latrunculin A). N = 15 for each condition, data from three to five independent experiments. Data are presented
as means 6 SEM. *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0034514.g005
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[13,14]. We confirmed these associations using F-actin-stabilizing

reagents. Stabilization of F-actin filaments by jasplakinolide

induced synaptic translocation of NESH from the shaft to spine,

compared with non-stimulated conditions. These findings collec-

tively support the importance of the F-actin cytoskeleton in

determining the localization and synaptic translocation of NESH.

Reorganization and dynamic remodeling of PSD is believed to

be critical in postsynaptic signal transmission [25,26]. PSD

scaffolding proteins interact with multiple signaling molecules,

including kinases and phosphatases. Thus, changes in scaffold

proteins in PSD reflect changes in postsynaptic signaling,

indicating regulation of signal transduction via remodeling of

PSD. In addition, a variety of PSD scaffold proteins interact with

the actin cytoskeleton, and the intact actin meshwork is reported as

crucial in the maintenance and remodeling of the PSD

composition [27,28]. PSD proteins display distinct dynamics,

based on either differential intermolecular interactions of scaffold-

ing proteins or variable dependencies on the actin cytoskeleton

[29]. FRAP analysis revealed that the mobile fraction of NESH is

about 40% at 5 min after photobleaching. We assume that the

mobile fraction is weakly attached in the PSD site or associated

with dynamic cytoskeleton components. In relation to actin and

PSD scaffolding proteins, mobile fractions were in the following

order: actin & NESH . Homer1c = PSD95. Fluorescence of

actin in the dendritic spine was fully recovered within a short time,

showing a high turnover rate, while scaffold proteins PSD95 and

Homer1c were recovered to below 15% within 5 min after

photobleaching, implying that the proteins are tightly attached in

Figure 6. Synaptic translocation of NESH via LTP induction. The glycine-induced chemical LTP (long-term potentiation) method was used to
mimic physiological LTP. (A) Chemical LTP (cLTP) was induced in hippocampal neurons at 16–18 DIV, and the level of phospho-PAK assessed to
ascertain cLTP induction. (B) After cLTP induction, the Triton X-100-insoluble fraction was extracted from hippocampal neurons, and the association
between NESH and cytoskeleton or synaptic site examined using immunoblot analysis. (C) The band intensities were quantified and normalized by
loading control (a-tubulin). (D) Synaptic translocation of NESH was examined during LTP. Hippocampal neurons at 10–12 DIV were transfected with
GFP-NESH (or GFP). After cLTP induction at 16–18 DIV, transfected neurons were fixed and stained with Alexa 594-conjugated phalloidin, and NESH
localization examined. GFP served as the control. (E) Analysis of the fluorescence intensity ratio in dendritic spine vs. shaft from data obtained in
Fig. 6D (N = 12–16 neurons for each condition). Data are presented as means 6 SEM. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0034514.g006
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PSD and less dynamic. Since actin dynamics is involved in

remodeling of the PSD molecular composition, the molecular

dynamics of NESH was measured after pharmacological stabili-

zation or disruption of the F-actin cytoskeleton. In FRAP analysis,

the turnover rate of NESH was significantly affected by F-actin

stabilization, since the protein became more immobile. Our data

provide strong evidence that the actin cytoskeleton is closely

involved in NESH dynamics. The F-actin cytoskeleton may act as

a platform for anchoring PSD proteins within the spine.

Therefore, it is likely that stabilized actin filaments provide more

static platforms for their binding molecules, leading to decreased

molecular dynamics. We assume that this theory is also applicable

to NESH. PSD95 and Homer1c are associated with F-actin

[30,31]. Accordingly, we expected these proteins to be affected by

F-actin stabilization. However, it was difficult to observe these

effects in FRAP analysis, since the basal levels of the mobile

fractions of these proteins were too low. Treatment with

latrunculin A sequesters monomeric G-actin and blocks the

formation of F-actin content in dendritic spine. FRAP analysis

revealed a significant decrease in the recovery of NESH in F-actin-

deficient spine. We assume that the ability of F-actin to act as a

platform for anchoring PSD molecules is reduced as a result of

disruption at the postsynapse, resulting in decreased recovery of

NESH in synapse.

In a previous report, it has shown that an F-actin-binding

domain is necessary for efficient synaptic targeting [23]. The F-

actin-binding region of NESH was found to be crucial for synaptic

targeting in FRAP analysis. The N-terminal half of NESH

specifically, the F-actin-binding region, was affected by F-actin

stabilization and disruption, which induced diminished fluores-

cence recovery after photobleaching. On the other hand, the C-

terminal half of NESH showed a similar recovery pattern to free-

diffusing GFP protein. Jasplakinolide and latrunculin A treatment

had no effect on NESH C-term-transfected neurons, indicating

that the C-terminal half of NESH does not associate at

postsynapse. These data clearly indicate that the F-actin

cytoskeleton is essential for synaptic targeting and dynamics of

NESH.

In summary, we have uncovered the regulatory mechanism

underlying synaptic targeting of NESH from the dendritic shaft to

spine in hippocampal neurons. Our findings support an essential

role of the F-actin cytoskeleton in synaptic targeting and dynamic

mobility of NESH in PSD. It would be interesting to further

elucidate the functional role of NESH in PSD remodeling by

Figure 7. F-actin-dependent synaptic translocation of NESH after LTP induction. (A) Hippocampal neurons at 10–12 DIV were transfected
with GFP-NESH (or GFP). To determine the importance of the F-actin cytoskeleton in NESH translocation during cLTP, transfected neurons at 16–18
DIV were treated with latrunculin A (5 mM for 10 min), and cLTP was subsequently induced. Following fixing of neurons, NESH localization was
examined. (B) Analysis of the intensity ratio (spine vs. shaft) from data obtained in Fig. 7A (N = 11–13 neurons for each condition). Data are presented
as means 6 SEM. **p,0.01.
doi:10.1371/journal.pone.0034514.g007
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synaptic activity, based on the F-actin-dependent regulation of its

mobility and synaptic translocation.

Materials and Methods

Ethics Statement
All animal experiments were approved by the Gwangju Institute

of Science and Technology Animal Care and Use Committee (the

permit number: GIST-2008-36).

Antibodies and reagents
Rabbit polyclonal anti-NESH antibody was generated using the

C-terminal region of NESH (amino acids 204–367). cDNA

corresponding to the C-terminal region was amplified by PCR

and subcloned into pGEX4T-1 vector for GST fusion protein

expression. The GST fusion protein was purified according to the

manufacturer’s protocol and used for immunization. After the fifth

injection, serum specificity was tested via immunoblot analysis and

further purified with affinity chromatography. Rabbit polyclonal

anti-PAK antibody was purchased from Santa Cruz Biotechnol-

ogy (CA, USA), and rabbit polyclonal anti-PAK1/2/3(pS141)

from Invitrogen. Mouse monoclonal anti-a-tubulin antibody was

purchased from Sigma, rabbit polyclonal anti-GluR1 antibody

from Calbiochem, and mouse monoclonal anti-PSD95 antibody

from Abcam. Alexa Fluor 594-conjugated phalloidin was acquired

from Molecular probes (Eugene, OR, USA). Horseradish

peroxidase (HRP)-conjugated anti-mouse or -rabbit secondary

antibodies were purchased from The Jackson Laboratory.

Jasplakinolide A and latrunculin A were acquired from Molecular

Probes, bicuculline methiodide, tetrodotoxin (TTx) and strychnine

hydrochloride from Tocris, and Glycine from Sigma.

Plasmids
cDNA encoding full-length NESH was amplified by PCR from a

rat brain cDNA library and subcloned into pEGFP-C2 vector (BD

Clontech, Palo Alto, CA). The NESH N-terminal (N-term, amino

acids 1–229) and C-terminal (C-term, amino acids 221–369) halves

were subcloned into pEGFP-C2 vector. The pLifeact-TagRFP

construct was purchased from ibidi (Germany). GFP-PSD95 and

GFP-Homer1c were kindly provided by Dr. Okabe (Tokyo Medical

and Dental University, Japan), and the GFP-b-actin construct by Dr.

Beat Imhof (Centre Medical Universitaire, Geneva, Switzerland).

Cell culture, transfection and immunocytochemistry
For primary neuronal cultures, hippocampal neurons were

dissected from E18-E19 Sprague–Dawley rat embryos, dissociated

with papain (Worthington Biochemical Corp., Lakewood, NJ,

USA) and plated on poly-D-lysine-coated coverslips at a density of

36105 cells/60 mm plastic dish. Neuronal cultures were main-

tained in Neurobasal Medium (Invitrogen) supplemented with B-

27 (Invitrogen) and 2 mM GlutaMAX (Invitrogen). Neurons were

transfected using a modified calcium phosphate precipitation

method. Transfected neurons were fixed with 4% paraformalde-

hyde/4% sucrose in PBS and permeabilized with 0.1% Triton X-

100. F-actin was stained with Alexa Fluor 594-conjugated

phalloidin for 30 min at 37uC in specific experiments. Images

were acquired with a FV1000 confocal microscope (Olympus,

Tokyo, Japan).

Preparation of Triton X-100 insoluble fraction and
immunoblot analysis

Triton X-100 insoluble fraction was prepared as described

previously [23]. Briefly, hippocampal neurons were extracted with

Triton X-100 buffer (10 mM PIPES [pH 6.8], 0.5% Triton X-

100, 50 mM NaCl, 3 mM MgCl2 and 300 mM sucrose) for

10 min on ice and washed with PBS containing 1 mM CaCl2, and

1 mM MgCl2. The Triton X-100 insoluble fraction was collected

by adding SDS boiling lysis buffer, and subjected to subsequent

SDS-PAGE and immunoblot analysis. For immunoblotting, the

protein concentration in lysates was determined using the BCA

protein assay (Pierce, Rockford, IL). SDS-PAGE was performed

using 8% and 10% polyacrylamide gels, which were transferred to

polyvinylidene fluoride (PVDF) membranes. After blocking with

5% nonfat dry milk or 3% BSA, membranes were incubated with

the primary antibody. Positive bands were detected using HRP-

coupled secondary antibodies and visualized using enhanced

chemiluminescence (ECL).

Induction of chemical LTP
Chemical LTP was induced as described previously [21].

Briefly, hippocampal neurons were maintained in normal ACSF

(5 mM HEPES [pH 7.3], 125 mM NaCl, 2.5 mM KCl, 2 mM

CaCl2, 1 mM MgCl2 and 33 mM glucose). Osmolarity was

adjusted to 290 mosmol/l. LTP was induced by changing the

medium to ACSF (5 mM HEPES [pH 7.3], 125 mM NaCl,

2.5 mM KCl, 2 mM CaCl2, 33 mM glucose, 0.2 mM glycine,

0.02 mM bicuculline and 0.003 mM strychnine) for 10 min at

room temperature After that, the incubation solution was altered

back to normal ACSF.

Live-cell imaging and FRAP (fluorescence recovery after
photobleaching)

For live-cell imaging, the culture medium was replaced with

Tyrode’s solution (25 mM HEPES [pH 7.4], 119 mM NaCl,

2.5 mM KCl, 2 mM CaCl2, 2 mM MgCl2 and 30 mM glucose)

and placed in a chamber for 30 min before the experiment. The

chamber was maintained at 37uC by setting the temperature of the

chamber body at 37uC, objective lens at 39uC and chamber lid at

40uC. The chamber was supplied with continuous humidified 5%

CO2 to maintain medium pH. A concentrated stock of latrunculin

A or jasplakinolide in pre-warmed Tyrode’s solution was applied.

The final concentrations of latrunculin A and jasplakinolide

solutions were 5 mM. Images were obtained using a 1006 oil-

immersion lens equipped with a Fluoview FV1000 confocal laser-

scanning microscope with additional zoom factor 3. FRAP

experiments were performed using a macro function of the

stimulus setting menu in Fluoview software to control sequential

image acquisition and emission of a photobleaching laser pulse to

the ROI (region of interest). A single dendritic spine of

hippocampal neuron was set as ROI and five pre-bleaching

images acquired at 10 s intervals, and the fluorescence of spine

photobleached for 7 s with an Argon 488 laser. The recovery of

fluorescence was traced for an additional 5 min by acquiring

images at 10 s intervals. Minimum laser power was used to

prevent photobleaching during the pre- and post-bleaching stages.

Pre-bleaching, bleaching and post-bleaching images were utilized

for analyzing the dynamics of target proteins.

Image analysis
The average intensity values of ROI, total image and

background fluorescence were obtained from FRAP images.

Background values were subtracted from those of ROI and total

images for all time-points. Subsequently, the recovery curve was

plotted with the ROI value in relation to the total value over the

time-course. Finally, the curve was normalized to the value of first

pre-bleaching time-point, taken as 1. Based on the plot, mobile
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and immobile fractions were calculated to describe the kinetics of

fluorescence. Specifically, mobile and immobile fractions were

determined by calculating the ratios of the final to initial

fluorescence intensity. Fluorescence intensities of the end time-

point (Fend), start time-point (Fpre) and time-point after photo-

bleaching (Fpost) were determined, and mobile (Mf) and immobile

(If) fractions calculated using the following equations:

Mobile fraction Mfð Þ~ Fend{Fpost

� ��
Fpre{Fpost

� �

Immobile fraction~1{Mf

To examine the translocation of proteins into the dendritic

spine, the spine/shaft fluorescence intensities were analyzed as the

ratio of the average fluorescence intensities of spine to those in the

adjacent dendritic shaft. Measurements were performed using

MetaMorph imaging software (Universal Imaging Cooperation,

West Chester, PA). Statistical significance was determined using

the Student’s t test.

Supporting Information

Figure S1 Generation of rabbit polyclonal anti-NESH
antibody. (A) Rabbit polyclonal anti-NESH antibody was

generated using the C-terminal region of NESH (amino acids

204–367). Antibody specificity was tested with immunoblot

analysis using whole brain lysate and further confirmed with the

antibody purified using antigen-conjugated affinity chromatogra-

phy. (B) To test specificity of anti-NESH antibody, hippocampal

neurons were transfected with GFP or GFP-NESH and fixed, and

then stained with anti-NESH antibody.

(TIF)

Figure S2 Synaptic translocation of endogenous NESH
by F-actin stabilization and cLTP induction. (A) Hippo-

campal neurons were transfected with pLifeact-TagRFP at 10–12

DIV. pLifeact-TagRFP was used to visualize F-actin within cells.

Transfected neurons at 16–18 DIV were treated with jasplakino-

lide (5 mM for 10 min), fixed, and stained with anti-NESH

antibody. Colocalization between NESH and F-actin is indicated

with white arrows in the merged image. (B) The intensity ratio

(spine vs. shaft) was quantitatively analyzed from data obtained in

Fig. S2A (N = 12 neurons for control, N = 19 neurons for

jasplakinolide). (C) Synaptic translocation of endogenous NESH

was examined during LTP. Hippocampal neurons at 10–12 DIV

was transfected with pLifeact-TagRFP. After cLTP induction at

16–18 DIV, transfected neurons were fixed and stained with anti-

NESH antibody, and NESH localization examined. White arrows

in merged image indicate colocalization between NESH and F-

actin. (D) Analysis of the fluorescence intensity ratio in dendritic

spine vs. shaft from data obtained in Fig. S2C (N = 21 neurons for

each condition). Data are presented as means 6 SEM. *p,0.05,

***p,0.001.

(TIF)
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