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Abstract

The related PIK-like kinases Ataxia-Telangiectasia Mutated (ATM) and ATM- and Rad3-related (ATR) play major roles in the
regulation of cellular responses to DNA damage or replication stress. The pro-apoptotic role of ATM and p53 in response to
ionizing radiation (IR) has been widely investigated. Much less is known about the control of apoptosis following DNA
replication stress. Recent work indicates that Chk1, the downstream phosphorylation target of ATR, protects cells from
apoptosis induced by DNA replication inhibitors as well as IR. The aim of the work reported here was to determine the roles
of ATM- and ATR-protein kinase cascades in the control of apoptosis following replication stress and the relationship
between Chk1-suppressed apoptotic pathways responding to replication stress or IR. ATM and ATR/Chk1 signalling
pathways were manipulated using siRNA-mediated depletions or specific inhibitors in two tumour cell lines or fibroblasts
derived from patients with inherited mutations. We show that depletion of ATM or its downstream phosphorylation targets,
NBS1 and BID, has relatively little effect on apoptosis induced by DNA replication inhibitors, while ATR or Chk1 depletion
strongly enhances cell death induced by such agents in all cells tested. Furthermore, early events occurring after the
disruption of DNA replication (accumulation of RPA foci and RPA34 hyperphosphorylation) in ATR- or Chk1-depleted cells
committed to apoptosis are not detected in ATM-depleted cells. Unlike the Chk1-suppressed pathway responding to IR, the
replication stress-triggered apoptotic pathway did not require ATM and is characterized by activation of caspase 3 in both
p53-proficient and -deficient cells. Taken together, our results show that the ATR-Chk1 signalling pathway plays a major role
in the regulation of death in response to DNA replication stress and that the Chk1-suppressed pathway protecting cells
from replication stress is clearly distinguishable from that protecting cells from IR.

Citation: Myers K, Gagou ME, Zuazua-Villar P, Rodriguez R, Meuth M (2009) ATR and Chk1 Suppress a Caspase-3–Dependent Apoptotic Response Following DNA
Replication Stress. PLoS Genet 5(1): e1000324. doi:10.1371/journal.pgen.1000324

Editor: Orna Cohen-Fix, National Institute of Diabetes and Digestive and Kidney Diseases, United States of America

Received September 29, 2008; Accepted December 2, 2008; Published January 2, 2009

Copyright: � 2009 Myers et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a program grant to MM from Yorkshire Cancer Research.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: m.meuth@sheffield.ac.uk

Introduction

Cells respond to DNA damage by triggering cell cycle arrest,

DNA repair, or death. The related PIK-like kinases ATM (Ataxia-

Telangiectasia Mutated) and ATR (ATM- and Rad3-related) are

major coordinators of this damage response [1]. ATM is central to

the DNA double-strand break (DSB) response. It delays DNA

synthesis and the onset of mitosis following DSB induction by

agents such as ionizing radiation (IR) through a complex signalling

cascade that includes p53, Chk2 and NBS1 as phosphorylation

targets [2–4]. This signalling cascade also plays a major role in the

onset of apoptosis following IR through the p53-mediated

transcriptional activation of pro-apoptotic proteins such as BAX

and PUMA [5–7]. However cells deficient in ATM are only

partially defective in the induction of apoptosis by IR while p53

deficient cells show a more complete resistance [8,9]. These

observations indicate that both ATM-dependent and independent

pathways regulate the induction of apoptosis by IR. Chk2 may be

particularly important for the ATM-independent pathway as

mouse cells with knockouts of both Chk2 and ATM show levels of

apoptosis similar to those found in p532/2 cells [9].

ATR and its downstream phosphorylation target, Chk1, are

generally activated in response to UV and agents that stall DNA

replication forks [10,11]. Activated Chk1 coordinates many of the

cellular responses to replication fork stress. More specifically, it

prevents the inappropriate firing of late replication origins, the

abandonment of replication forks, and premature chromosome

condensation following disruption of replication [12–15]. In

contrast to the proapoptotic role of the ATM-mediated protein

kinase cascade in the response to IR, Chk1 has an anti-apoptotic

effect in the cellular response to replication inhibitors [13,16–18]

as well as IR [19]. SiRNA mediated ablation of Chk1 (but not

Chk2) causes cells arrested in S-phase by a range of replication

inhibitors to undergo apoptosis. This death response is p53

independent, but cells that lack both Chk1 and p21 show a more

robust death response and reduced cell survival [17]. Thus the

Chk1 pathway plays a key role in protecting S-phase cells from

apoptosis during replication stress and p21 mediates this role,

presumably by preventing entry into S-phase. Intriguingly

depletion of the replication helicase cofactor Cdc45 that plays

an essential role in DNA replication origin firing and fork

elongation protects cells lacking Chk1 from undergoing apoptosis,

suggesting that the role of Chk1 in controlling origin firing and

maintaining fork integrity is key to its anti-apoptotic effect [20].

A role for Chk1 in the suppression of apoptosis in response to IR

was revealed in a zebrafish embryo-based screen [19]. The novel

death pathway triggered in p53 mutant embryos in the absence of

Chk1 required ATM, ATR and caspase 2 but not other caspases.

It was further shown that this response was not limited to

Zebrafish as IR triggered a caspase-2 dependent apoptotic
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response in cultured p53-deficient human tumour cells treated

with a Chk1 inhibitor. Taken together these reports establish a

major role for Chk1 in the protection of cells from apoptosis in

response to a wide range of DNA damage.

While the role of the ATM signalling cascade in the induction of

apoptosis following IR is well established, relatively little is known

concerning the contribution of this signalling pathway in response

to replication fork stress. DNA replication inhibitors trigger a rapid

ATM autophosphorylation and ATM-dependent phosphoryla-

tions of Chk2, NBS1 and p53 [21]. More recent work has

implicated BID as a downstream ATM phosphorylation target

and a suppressor of apoptosis in response to DNA replication

inhibitors [22]. In the work reported here we compared the effects

of ATM, NBS1 or BID deficiency on apoptosis with those

obtained following siRNA-mediated depletion of ATR or Chk1.

We show that depletion or loss of ATM, NBS1 or BID has little or

no significant effect on the induction of apoptosis in two human

tumour cell lines or immortalized human fibroblasts treated with

DNA replication inhibitors, even though depletion of ATR or

Chk1 in these cells led to high levels of cell death. Furthermore,

unlike the Chk1 suppressed pathway responding to IR identified in

Zebrafish embryos, the pathway regulated by Chk1 in response to

replication inhibitors was triggered in both p53 proficient and

deficient cell lines, did not require ATM or ATR, and was

primarily characterized by caspase-3 activation.

Results

Effects of ATM, ATR, or Chk1 Depletion on the Induction
of Apoptosis Following Replication Stress

To determine the role of ATM or ATR relative to Chk1 in the

regulation of apoptosis in response to DNA replication stress,

HCT116 cells were treated with control, ATM, ATR, or Chk1

siRNAs (Figure 1A) for 24 hours before treatment with thymidine

or HU. After 24 or 48 hour treatment with replication inhibitors,

cells were fixed, stained with PI, and analysed for DNA content by

flow cytometry or assayed for Annexin V binding. Cells treated for

24 hours with thymidine or HU accumulated in S-phase, however

there was no significant increase in the level of cells with a subG1

DNA content in cultures treated with any of the siRNAs.

After a 48 hour exposure to thymidine or HU, cells treated with

the control siRNA continued to accumulate in S as well as G2 but

there was only a small increase in cells with a subG1 DNA content

relative to controls (Figure 1B & C). HCT116 cells depleted of

Chk1 or ATM showed a cell cycle distribution similar to that

found for cultures treated with the control siRNA while there was

a small increase in the fraction of cells showing a subG1 DNA

content in cultures depleted of ATR. When Chk1 or ATR

depleted cells were treated with thymidine or HU, fewer S or G2

DNA phase cells were detected relative to the cultures treated with

the control siRNA while a markedly higher fraction of cells (40 to

50%) with a subG1 DNA content was evident (Figure 1B & C).

ATM depleted HCT116 cells showed a somewhat different

response following treatment with thymidine or HU. The fraction

of S phase cells increased in these cultures like cultures treated with

control siRNA (Figure 1B). However after thymidine treatment,

ATM-depleted cells arrested earlier in S-phase while HU treated

cells showed a higher frequency of cells with a late S-phase DNA

content. There was an increase in the level of cells with a subG1

DNA content relative to control cultures after a 48 hour exposure

to the inhibitors. This reached significance for HU treated cells but

not those treated with thymidine. Notably the fraction of subG1

cells was consistently lower in ATM depleted cells relative to Chk1

or ATR depleted cultures (Figure 1B & C). Similarly, there was

little effect on the fraction of cells with a subG1 DNA content in

HCT116 cells treated with the ATM inhibitor KU-55933 [23]

following a 48 hour exposure to thymidine (Figure S1). p53

defective SW480 cells depleted of Chk1 or ATR also had a

significantly higher level of subG1 cells than those depleted of

ATM following a 48 hour treatment with HU (Figure S2).

Analysis of Annexin V+ cells gave similar results (Figure 1D).

HCT116 cultures depleted of either Chk1 or ATR showed a

significant increase in the level of Annexin V+ cells relative to

those treated with the control siRNA following either thymidine or

HU treatment. The fraction of Annexin V+ cells in ATM depleted

cultures exposed to thymidine or HU increased relative to control

siRNA treated cells but this did not reach significance for either

replication inhibitor.

Co-Depletion of ATM or ATR and Chk1 Does Not Further
Enhance or Suppress Apoptosis in Response to
Replication Inhibitors

To determine whether the depletions of these checkpoint

proteins affected apoptosis through related pathways, HCT116

cells were treated with combinations of siRNAs for the checkpoint

proteins (Figure 2A). Apoptotic responses after treatment with

thymidine were measured by the AnnexinV assay. In cultures

depleted of both Chk1 and ATR, the increased level of

AnnexinV+ cells was not significantly different from that produced

by depletion of either protein alone (Figure 2B). When HCT116

cells were depleted of both Chk1 and ATM there was no

significant difference in the fraction of AnnexinV+ cells relative to

cultures depleted of Chk1 alone, although the level of apoptotic

cells was significantly higher than that found in cells depleted of

ATM alone (Figure 2C).

We further examined the induction of apoptosis following

treatment with replication inhibitors in an immortalized human

fibroblast line derived from an AT patient (pEBS) and a derivative

of this line corrected for the ATM defect (YZ5) [24]. In these

cultures, the level of pEBS fibroblasts with a subG1 DNA content

was not significantly different from that found in the ATM

corrected cells following treatment with thymidine (Figure 2D).

However, cultures of both pEBS and YZ5 depleted of Chk1

(Figure 2E) showed a significantly higher level of cells with a

subG1 DNA content relative to controls following thymidine

treatment (Figure 2D). Furthermore there was no significant

Author Summary

The integrity of the genetic information in cells is
protected by elaborate mechanisms that ensure that an
accurate DNA copy is passed from generation to
generation. These mechanisms repair errors in DNA
sequence or stop growth if DNA structure is compromised.
However, if the level of DNA damage is too severe, cells
may also respond by inducing death rather than attempt
repair. Relatively little is known about how cells decide
whether to repair damage or commit to death. The
purpose of our work was to identify genes that control this
decision-making process while cells are duplicating DNA.
We show that two genes play a major role in this process;
however, our work also suggests considerable complexity
in this death response as different death pathways are
triggered in response to different forms of DNA damage.
Since DNA replication inhibitors are used widely in the
treatment of cancer, our work may enable us to more
effectively kill cancer cells in treatment protocols employ-
ing these agents.

Apoptosis and Replication Stress
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Figure 1. Effects of ATM, ATR or Chk1 depletion on the induction of apoptosis following replication fork stress. A) Protein levels
48 hours after transfection of the indicated siRNAs in HCT116 cells. b-actin levels are presented as a loading control. B) Representative cell cycle
distributions of HCT116 cultures transfected with indicated siRNAs 24 hours before treatment with 2 mM thymidine or 0.5 mM hydroxyurea for
48 hours. Shaded profiles represent control cultures not treated with replication inhibitors, unshaded profiles represent cultures treated with HU or
thymidine (TdR). C & D) Cultures of HCT116 cells transfected with the indicated siRNAs were treated 2 mM thymidine or 0.5 mM HU for 48 hours or

Apoptosis and Replication Stress
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Figure 2. Effects of co-depletions of ATM, ATR or Chk1 on apoptosis in response to replication inhibitors. A) ATR and Chk1 protein
levels 48 hours after transfection of the indicated combinations of siRNAs in HCT116 cells. b-actin levels are presented as loading controls. B & C)
Level of apoptotic cells in HCT116 cultures (measured by Annexin V binding) after transfection of the indicated siRNAs following a 48 hour treatment
with 2 mM thymidine. D) Induction of apoptosis (measured as the sub-G1 population) in ATM corrected YZ5 or ATM deficient pEBS cells transfected
with control or Chk1 siRNAs and treated or not treated with 2 mM thymidine for 48 hours. E) Western blot analysis of Chk1 protein levels in the ATM-
deficient pEBS or corrected YZ5 cells after 48 hours treatment with the relevant siRNA. b-actin levels are presented as loading controls. Results in B–D
represent the means of two to three independent experiments6standard deviations. Statistical significance versus thymidine or HU treated control
siRNA transfected cells: ns, not significant; *p,.05.
doi:10.1371/journal.pgen.1000324.g002

left untreated as controls. Cells were then harvested and the level of apoptosis was determined by measuring the percentage of cells containing a
subG1 DNA content by flow cytometry (C) or the percentage of the population binding Annexin V but not PI (D). Results in C and D represent the
means of two to three independent experiments6standard deviations. Statistical significance versus thymidine or HU treated control siRNA
transfected cells: ns, not significant; *p,.05; **p,.005; ***p,.005.
doi:10.1371/journal.pgen.1000324.g001
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difference in fraction of cells with a subG1 DNA content in the two

lines. Thus our results suggest that Chk1 and ATR regulate

apoptosis in response to replication stress through a common

pathway while ATM does not play a significant role in this

response.

Enhanced Levels of RPA Foci in Cells Depleted of Chk1 or
ATR but not Those Depleted of ATM in Response to
Replication Inhibitors

RPA foci appear as an early event in Chk1 depleted cells in

response to replication inhibitors [20]. We next determined

whether cells depleted of ATR or ATM showed induction of such

foci. HCT116 cells were treated with control, Chk1, ATR, or

ATM siRNAs for 24 hours before treatment with thymidine

(Figure 3A). After 24 hours cells were fixed and stained for RPA.

Following depletion of Chk1 or ATR, RPA foci accumulated (.10

foci/cell) in up to 50 to 60% of cells following treatment with

thymidine (Figure 3B & C). In contrast cultures depleted of ATM

or treated with the ATM inhibitor KU-55933 showed a

significantly lower percentage of cells accumulating these foci. In

addition hyperphosphorylation of RPA 34 was evident in Chk1 or

ATR depleted HCT116 cells after thymidine treatment but not

cells depleted of ATM (Figure 3D). Since ATM has been reported

to contribute to the phosphorylation of RPA34 following DNA

damage [25], this decrease in the level of phosphorylation could

simply be due to a decrease in ATM kinase activity. However,

RPA34 hyperphosphorylation was also evident in HCT116 cells

depleted of both Chk1 and ATM (Figure 3E). Furthermore AT5

fibroblasts (derived from AT patients) depleted of Chk1 showed

hyperphosphorylation of RPA34 as early as six hours after

thymidine treatment (Figure 3F) demonstrating that cells are still

capable of RPA34 phosphorylation when ATM function is

compromised. Thus the early events detected in Chk1- or ATR-

depleted cells treated with replication inhibitors are not evident in

ATM depleted cells.

Caspase 3 Is Primarily Activated in Chk1-Depleted Cells
but not Those Depleted of ATM Following Thymidine
Treatment

We previously reported that caspase 3 was activated in

HCT116 cells depleted of Chk1 following treatment with

replication inhibitors [17]. To determine whether caspase 3 was

activated in cells depleted of ATM, HCT116 cells treated with

control, Chk1, ATR or ATM siRNAs were exposed to thymidine

for 24 or 48 hours. Activated caspase 3 was assayed by Western

blotting using cell free lysates prepared from these cultures. This

analysis revealed a strong increase in the level of the activated

(cleaved) form of caspase 3 in Chk1 or ATR depleted HCT116

cells exposed to thymidine (Figure 4A). A lower level of the

activated caspase 3 was detected in HCT116 cells treated with

control or ATM siRNAs following exposure to thymidine

consistent with the lower level of apoptosis found in such cells.

Recently it was reported that p53 deficient cells treated with a

Chk1 inhibitor or siRNA showed cleavage of caspase 2 but not

caspase 3 following exposure to IR while p53+/+ HCT116 cells

predominantly showed cleavage of caspase 3 [19]. To determine the

effect of p53 status on caspase 2 and 3 cleavage in Chk1 depleted

cells treated with thymidine, the cleaved forms of these caspases

were analysed in HCT116 p532/2 cells treated with control or

Chk1 siRNAs. In agreement with the previous report, cleaved

caspase 2 was detected in Chk1 depleted HCT116 p532/2 cells

exposed to 10 Gy IR while cleaved caspase 3 was not evident

(Figure 4A & B). Following a 48 hour exposure of Chk1 depleted

HCT116 p532/2 cells to thymidine, there was little change in the

level of the cleaved caspase 2 relative to cells treated with the control

siRNA while more robust levels of cleaved caspase 3 were evident

(Figure 4B). Similarly Chk1 depleted SW480 cells (that are defective

in p53 function) showed a weak increase in the level of cleaved

caspase 2 while caspase 3 cleavage was clearly induced (Figure 4C).

Cleaved caspase 2 was not detected in Chk1 depleted p53+/+
HCT116 cells following thymidine treatment (Figure 4A).

To determine whether the induction of apoptosis was

dependent upon caspase 3 activation following thymidine

exposure, Chk1 depleted HCT116 or SW480 cells exposed to

thymidine were treated with the caspase 3 inhibitor II (Z-DEVD-

FMK). In such cultures the accumulation of cells with a subG1

content (Figure 4D) or Annexin V+ cells (Figure 4E) was markedly

reduced. Taken together these results indicate that a caspase 3

dependent pathway is activated in Chk1 depleted cells exposed to

thymidine. In contrast to the response of such cells to IR, caspase 3

activation is not dependent upon p53 status although a low level of

caspase 2 cleavage can be detected in the p53 deficient cells.

Response of NBS1-Deficient Cells to Replication
Inhibitors

Recent work has shown that mice carrying a carboxyl terminus

deletion of NBS1 are defective in apoptosis in many tissues and in

response to IR [9]. To investigate the contribution of NBS1 to

apoptosis in response to DNA replication stress, we determined the

apoptotic response of HCT116 cultures depleted of NBS1 or

immortalized human fibroblasts obtained from Nijmegen break-

age syndrome patients to DNA replication inhibitors. HCT116

cultures depleted of NBS1 (Figure 5A) and treated with thymidine

showed a slightly reduced level of cells in S- and G2-phases relative

to cultures treated with the control siRNA (Figure S3). The

fraction of apoptotic cells in thymidine treated cultures reach

significance (p = 0.049) when measured by the Annexin V assay,

but not in the assay of subG1 cells (Figure 5B). The response of

NBS1 depleted cells in either assay was not as robust as that seen

with Chk1 depleted cells. Co-depletion of NBS1 and Chk1 did not

produce any significant changes in the level of apoptotic cells

relative to cells depleted of Chk1 alone. When HCT116 cells

depleted of NBS1 were treated with HU, the level of S and G2-

phase cells was not greatly affected (Figure S3) and the increase in

Annexin V+ or subG1 cells did not reach significance (Figure 5B).

The level of Annexin V+ cells in HCT116 cultures depleted of

both NBS1 and Chk1 was similar to that of cultures depleted of

Chk1 alone.

NBS12/2 fibroblasts (NBS1-LB1) obtained from Nijmegen

breakage syndrome patients and fibroblasts corrected for the

defect (p95wt, [4] were next examined for their response to

replication inhibitors. Thymidine had no significant effect on the

level of cells with a subG1 DNA content in either mutant or

corrected fibroblast lines treated with the control siRNA while HU

produced a small increase in both cell types (Figure 5C & D). Chk1

depletion of the corrected fibroblasts resulted in a ,two-fold

increase in cells with a subG1 DNA content. Intriguingly there was

a ,five-fold increase in the fraction of subG1 cells in Chk1

depleted NBS12/2 fibroblasts (Figure 5C & D). The level of cells

with a subG1 DNA content was significantly increased in mutant

and corrected fibroblasts treated with Chk1 siRNA relative to cells

treated with the control after exposure to either thymidine or HU.

However there were no significant differences in the response of

the NBS12/2 fibroblasts relative to the corrected cells in these

conditions (Figure 5C & D). Interestingly the replication inhibitors

did not further increase the level of apoptosis in the NBS1 LB1

(2/2) cells depleted of Chk1.

Apoptosis and Replication Stress
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Figure 3. Induction of RPA foci and RPA34 hyperphosphorylation in cells depleted of Chk1 or ATR but not ATM deficient cells
following thymidine treatment. A) Levels of Chk1, ATR, or ATM proteins following treatment of HCT116 cells with the indicated siRNAs or 10 mM
of the ATM inhibitor (KU55399). B) Representative images of RPA foci obtained by immunostaining of HCT116 cells treated with control, Chk1, ATR, or
ATM siRNAs or 10 mM of the ATM inhibitor KU55399 after a 24 hour thymidine treatment. C) Percentages of cells treated with the indicated siRNAs or
10 mM of the ATM inhibitor KU55399 presenting low (,10 foci/cell) or high (.10 foci/cell) levels of RPA foci after a 24 hour exposure to thymidine. D)
Western blot analysis of RPA34, Chk1, ATR and ATM in extracts from HCT116 cells transfected with the indicated siRNAs and exposed to 2 mM
thymidine for the indicated times. The band showing slower mobility on panel probed with the RPA34 antibody represents hyperphosphorylated
forms of the protein. E) Hyperphosphorylation of RPA34 in HCT116 cells co-depleted of Chk1 and ATM after exposure to 2 mM thymidine for the
indicated times. F) Hyperphosphorylation of RPA34 in the AT fibroblast line AT5 transfected with control or Chk1 siRNAs following exposure to 2 mM
thymidine for the indicated times. Hyperphosphorylated RPA34 was detected by six hours after thymidine treatment. AT5 cells treated with the
control siRNA do not show the slower mobility band characteristic of RPA34 hyperphosphorylation following a 30 hour thymidine treatment.
doi:10.1371/journal.pgen.1000324.g003
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Effect of BID Depletion on the Induction of Apoptosis
Following Disruption of DNA Replication

Given the controversy arising over recent reports of an anti-

apoptotic role for BID in response to some forms of DNA damage

[26,27], we determined the effect of BID depletion on the

induction of apoptosis following treatment with thymdine or HU.

Depletion of BID in HCT116 (Figure 6A) had only minor effects

on cell cycle distribution after treatment with thymidine or HU

(Figure 6B), although, like ATM depleted cells, an accumulation of

cells in mid S-phase was detected. Similarly there were only small

changes in the level of cells with a subG1 DNA content or

AnnexinV+ after treatment of BID depleted cells relative to cells

treated with the control siRNA (Figure 6B–D). The strong

induction of subG1 or AnnexinV+ cells in cultures depleted of

Chk1 after thymidine or HU treatment was not altered in cells

depleted of both Chk1 and BID. In addition co-depletion of BID

and ATR or BID and ATM had no further effect on the level of

apoptotic cells relative to cells treated with ATR or ATM siRNAs

alone (Figure S4). Thus BID does not appear to play a major role

in the commitment to apoptosis during replication stress in the

tumour cells tested here.

Discussion

In the work reported here we analysed the roles of key proteins

controlling the cellular response to DNA damage in the control of

apoptosis following DNA replication stress. The role of ATM in

promoting apoptosis in response to ionizing radiation is well

established [8,28]. Our data suggest that it plays little or no role in

tumour cell lines in response to DNA replication fork stress relative

to the ATR-Chk1 pathway. SiRNA mediated depletion of ATM

and downstream ATM phosphorylation targets NBS1 and BID

had little or no significant effect on the level of apoptotic cells in

response to the replication inhibitors in the tumour cell lines

tested. We previously reported that Chk2 depletion did not affect

the level of apoptotic cells induced by replication inhibitors [17].

In addition early events occurring after the disruption of DNA

replication (accumulation of RPA foci and RPA34 hyperpho-

sphorylation) in ATR- or Chk1-depleted cells committed to

apoptosis are not detected in ATM-depleted cells. In immortalized

fibroblast lines derived from patients with inherited defects in

ATM or NBS1, there was no difference in the apoptotic response

of mutant cells to replication inhibitors relative to the corrected

lines while depletion of Chk1 or ATR gave robust apoptotic

responses in all cell types. The only exception to this pattern was

NBS12/2 cells that showed an elevated level of apoptosis

following Chk1 depletion in the absence of the replication

inhibitor. Since thymidine or HU treatment of these cells did

not further increase the level of apoptosis, we speculate that the

synthetic lethality observed in these conditions may be a

consequence of some disruption of replication in these cells.

Depletion of ATR or Chk1 leads to a consistent robust

apoptotic response to replication inhibitors in both tumour and

immortalized fibroblast cell lines. The response of the ATR-Chk1

pathway is largely directed at the stabilization of DNA replication

following stress [29] and it does not appear to be required to

activate downstream proapoptotic proteins. The precise event that

initiates the death response in the absence of this signalling

pathway is not yet clear. Previous work showing that the

replication helicase cofactor Cdc45 is required for the Chk1

suppressed apoptotic response suggests that the role of this

signalling pathway in maintaining replication fork integrity and

preventing firing of new origins following the disruption of DNA

replication is critical [20]. Co-depletion of proteins involved in

ATR and ATM signalling pathways does not enhance or inhibit

the apoptotic response to replication inhibitors indicating that the

ATM signalling pathway is not required for the death response.

Interestingly, ATR- and ATM-mediated signalling cascades

overlap in response to many forms of DNA damage. For example,

both pathways stimulate Cdc25A degradation following activation

by DNA damage through the action of the Chk1 and Chk2

checkpoint kinases [2,30]. Thus activation of either pathway can

produce S-phase arrest that, in turn, should favour the anti-

apoptotic repair of damaged DNA. However, in the absence of

Chk1 or ATR, the ATM-mediated response does not appear to be

sufficient to protect cells from apoptosis.

It has been reported that the pro-apoptotic protein BID

participates in ATM-mediated protein kinase cascade to regulate

entry into S-phase and prevent death in response to DNA

replication inhibitors. BID showed nuclear localization and was

phosphorylated in an ATM-dependent manner following DNA

damage in myeloid progenitor cells derived from wild type mice

[22]. Furthermore, cells from BID2/2 mice showed a strong

apoptotic response following treatment that was not evident in

BID+/+ cells. In another report mouse embryo fibroblasts

obtained from BID2/2 mice showed a delayed entry into S-

phase but not cell death following exposure to DNA damaging

agents [31]. More recently these observations were disputed as

several cell types from BID2/2 mice generated on a different

genetic background failed to show any significant change in S-

phase arrest, survival, or apoptosis relative to BID+/+ cells [32]. In

our knockdowns of BID in the human colon cancer cell line

HCT116, no significant increase in the frequency of apoptotic cells

was observed. However, BID depleted cells treated with thymidine

accumulated in mid S-phase, suggesting that transition through S-

phase was delayed relative to cells treated with the control siRNA.

The data reported here show that the apoptotic pathway

suppressed by Chk1 in response to replication inhibitors is clearly

distinguishable from both the classical intrinsic death pathway and

the Chk1-suppressed IR death response (Figure 7). Unlike the

intrinsic pathway, the Chk1 suppressed response to replication

inhibitors does not require p53 or Chk2. The Chk1 suppressed

Figure 4. Induction of caspase 3 cleavage in HCT116 cells depleted of Chk1 following thymidine treatment. A) Western blot analysis of
caspase 2 (c2) and cleaved caspase 3 (c3) in extracts obtained from HCT116 cells transfected with the indicated siRNAs treated or not treated with
2 mM thymidine for the indicated times. The two lanes furthest to the right present caspase 2 and cleaved caspase 3 levels in HCT116 p532/2 cells
depleted of Chk1 exposed or not exposed to 10 Gy IR. The levels of Chk1, ATR and ATM in the cells treated with the indicated siRNAs are presented.
b-actin levels are presented as loading controls. B) Western blot analysis of caspase 2 and cleaved caspase 3 in extracts obtained from HCT116 p532/2
cells transfected with control or Chk1 siRNAs and treated or not treated with 2 mM thymidine for the indicated times. As above, the two lanes furthest to
the right present caspase 2 and cleaved caspase 3 levels in HCT116 p532/2 cells depleted of Chk1 exposed or not exposed to 10 Gy IR. The levels of
Chk1 in the cells treated with the indicated siRNAs are presented. C) Western blot analysis of cleaved caspase 2 and cleaved caspase 3 in extracts
obtained from SW480 cells transfected with control, Chk1, or ATM siRNAs and treated or not treated with 2 mM thymidine for the indicated times. D–E)
Cell cycle analysis of HCT116 (D) or SW480 (E) cells transfected with the indicated siRNAs and treated or not treated with 2 mM thymdine for 48 hours.
The indicated cultures were also treated with 100 mM of the caspase 3 inhibitor II, Z-DEVD-FMK. F) HCT116 and SW480 cultures treated as above were
also assayed for AnnexinV+/PI negative cells.
doi:10.1371/journal.pgen.1000324.g004
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Figure 5. Effect of Nbs1 deficiency on apoptosis in response to replication inhibitors. A) Nbs1 and Chk1 protein levels in HCT116 cells
after 48 hours treatment with the siRNAs for the two proteins. B) Induction of apoptosis measured by Annexin V staining (top panels) or sub-G1
population (bottom panels) in HCT116 cells transfected with control, Nbs1 or Chk1 siRNAs singly or in combination exposed or not exposed to 2 mM
thymidine or 0.5 mM hyroxyurea. C & D) Induction of apoptosis (measured by the percentage of cells with a sub-G1 DNA content) in Nbs1-deficient
(LB1) and corrected (p95wt) fibroblasts transfected with control or Chk1 siRNA following exposure to 2 mM thymidine (C) or 0.5 mM hyroxyurea (D).
Results in B–D represent the means of two to three independent experiments6standard deviations. Statistical significance versus thymidine or HU
treated control siRNA transfected cells: ns, not significant; *p,.05; **p,.005; ***p,.005.
doi:10.1371/journal.pgen.1000324.g005
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death pathway responding to IR is not triggered following

depletion of ATR and it requires ATM, ATR and caspase 2

[19]. Although this pathway was identified in screen of p53

deficient zebrafish, p53 deficient human tumour cells treated with

Chk1 inhibitors also show caspase 2 cleavage and caspase 2

dependent apoptosis in response to IR. In p53 proficient tumour

cells, the cleaved caspase 2 is not detected but caspase 3 is

activated under these conditions. In contrast both ATR and Chk1

depleted cells undergo apoptosis in response to replication

inhibitors regardless of p53 status and ATM is not required for

death. Caspase 3 is clearly activated in both p53 proficient and

deficient cell lines. Cleaved caspase 2 is not detected in p53

Figure 6. Effect of BID depletion on the induction of apoptosis following disruption of replication. A) Western blot analysis of Chk1 and
BID in HCT116 cells treated with control, Chk1 and/or BID siRNAs for 48 hours. b-actin levels are presented as loading controls. B) Representative cell
cycle distributions of HCT116 cells transfected with the indicated siRNAs followed by treatment with 2 mM thymidine or 0.5 mM hydroxyurea for
48 hours. Shaded profiles represent control cultures not treated with replication inhibitors, unshaded profiles represent cultures treated with HU or
thymidine (TdR). C & D) Induction of apoptosis (measured by Annexin V binding) in HCT116 cells following transfection of the indicated siRNAs
exposed or not exposed to 2 mM thymidine (C) or 0.5 mM HU (D) for 48 hours. Results in C & D represent the means of two to three independent
experiments6standard deviations. Statistical significance versus thymidine or HU treated control siRNA transfected cells: ns, not significant; *p,.05;
**p,.005.
doi:10.1371/journal.pgen.1000324.g006
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proficient HCT116 cells and is only weakly induced in the p53

deficient cells. Thus while Chk1 is required for the suppression of

apoptosis in response to DNA structural alterations induced by IR

or replication stress, the pathways suppressed are distinctly

different.

Given the lethal effects of loss of Chk1 function on tumour cells

exposed to DNA replication inhibitors, there has been interest in

the use of Chk1 inhibitors in chemotherapy. Chk1 is highly

expressed in some types of tumours [33]. This may confer some

growth advantage to tumour cells as a result of the role of this

protein in protecting cells from replication stress that may be

induced by hypoxia or nutrient deprivation during tumour

development [34]. However loss of Chk1 can also be lethal to

some normal cell types [35] and Chk1 knockout mice show

embryonic lethality [36]. Nevertheless recent work has shown that

Chk1 inhibitors can be used to increase the sensitivity of tumour

cells to replication inhibitors in vitro and in vivo [37]. Furthermore,

Chk1 knockdown experiments suggest enhanced lethality for

tumour cells may be obtained where the protein is only partially

depleted, thus reducing potential lethality caused by complete loss

of Chk1. Notably Chk1 inhibitors have been developed that

appear to enhance the toxicity of DNA damaging agents in p53

deficient tumour cells but not p53-proficient cells [38] offering

prospects for the targeted activation of the Chk1-suppressed

apoptotic pathway in at least some types of tumour cells.

Materials and Methods

Cell Lines and Cultures
The HCT116 and SW480 human colon cancer cell lines were

obtained from American Type Culture Collection (Manassas, VA)

while the AT patient derived AT5 cells (TAT5BIVA) was obtained

from the European Cell and Culture Collection. HCT116 p532/2

cells were provided by Dr. Bert Vogelstein (Johns Hopkins

University, Baltimore, MD). AT-deficient (AT22IJE-T referred to

as pEBs here) and corrected (YZ5) cell lines were kindly provided by

Dr. Yosef Shiloh (Tel Aviv University, Tel Aviv, Israel). Nbs1

deficient (NBS1-LB1) and corrected (p95wt) fibroblasts were

generously provided by Dr. Mike Kastan (St. Jude Children’s

Research Hospital, Memphis, TN). Cells were maintained in

DMEM supplemented with 10% fetal bovine serum (FBS). For

experiments using thymidine, dialyzed FBS was used to remove

deoxynucleosides in the serum that might interfere in the response

to this agent.

SiRNA Transfection
All siRNAs were obtained from Dharmacon (Lafayette, CO).

The ATM and ATR siRNA consisted of a pool of four sequences

designed to the relevant DNA sequence. Chk1 siRNAs were

designed by J. Blackburn and C. Smythe, (unpublished data). Nbs1

siRNAs (GUCGAUCAGCCGAAAUCAU, CUCACCUUGU-

CAUGGUAUC, and GCUAGGUUGAUAACAGAAG) were

designed by A. Ganesh and the control siRNA was obtained

from Eurogentec (OR-0030-NEG). SiRNA duplexes were trans-

fected into cells using Lipofectamine 2000 (Invitrogen, Paisley,

United Kingdom) according to manufacturer’s instructions. The

cells were then incubated for twenty-four hours before further

treatment.

Cell Cycle Analysis
After treatment, floating (obtained from the medium and a PBS

wash) and adherent (obtained after trypsinization) cells were pelleted

together by centrifugation. Cell pellets were washed with PBS, fixed

in 70% ice-cold ethanol, and stored at 220uC for up 2 weeks. Cells

were incubated overnight with Propidium Iodide as described

previously [17]. Stained nuclei were analyzed on a FACScan (BD

Biosciences, Franklin Lakes, NJ) using CellQuest software.

Detection of Apoptosis
Apoptotic cells were examined using fluorescein isothiocyanate

(FITC)-Annexin V and PI detection kit according to the

manufacturer’s instructions (BD Biosciences). The cells were

analyzed by flow cytometry and the percentage of early apoptotic

(% Annexin V/PI) cells is presented.

Immunofluorescence Analysis
Cells were grown on glass coverslips, treated as indicated, fixed

with 3% buffered paraformaldehyde for 15 minutes at room

temperature (RT) and permeabilized in PBS containing 0.5%

Triton X-100 for 8 minutes at RT. Cells were then incubated with

1/250 diluted anti-RPA34 (NA19L; Calbiochem) for 45 minutes

at RT and 1:500 diluted Alexa-594 conjugated anti-mouse IgG

(A11005; Molecular Probes, Invitrogen) for 30 minutes at RT and

in the dark. Antibody dilutions and washes after incubations were

performed in PBS containing 0.5%BSA and 0.05%Tween 20.

Coverslips were finally mounted in Vectashield mounting medium

with DAPI (H-1500; Vector Laboratories Inc.). For fluorescent

analysis, a Nikon Eclipse T200 microscope equipped with a

Hamamatsu Orca ER camera and the Volocity 3.6.1 (Improvi-

sion) software was used.

Western Blotting
Cell extracts were prepared and fractionated on SDS-PAGE

gels before being blotted onto nitrocellulose (Whatman Schleicher

and Schuell, Dassel, Germany) as described previously [21].

Proteins were detected with the ECL detection system (GE

Healthcare, Little Chalfont, Buckinghamshire, United Kingdom)

using antibodies recognizing ATM (GeneTex Inc, San Antonio,

Texas), ATR, (Santa Cruz Biotechnology, Santa Cruz, CA), BID

Figure 7. Model of apoptotic pathways suppressed by Chk1
following IR or DNA replication stress. Replication stress
developing as a result of DSB formation or processing triggers the
ATR/Chk1 protein kinase cascade that suppresses an ATM- and ATR-
dependent cleavage of caspase 2 and cell death (left, from [19]).
Replication stress triggered by DNA replication inhibitors also triggers
the ATR/Chk1 protein kinase cascade that suppresses an apoptotic
pathway (right). In Chk1 depleted cells treated with replication
inhibitors RPA foci accumulate, caspase 3 is activated, and apoptosis
follows. Once this apoptotic response is triggered in the absence of
Chk1 or ATR, it does not require ATM or ATR function, unlike the
response to IR. The formation of RPA foci and apoptosis are dependent
upon Cdc45 function and are modulated by p21 [17,20].
doi:10.1371/journal.pgen.1000324.g007
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(Santa Cruz Biotechnology) Chk1 (Cell Signaling Technology,

Beverly, MA), NBS1 (Cell Signaling Technology), and b-actin

(Sigma-Aldrich), RPA34 (NA19L; Calbiochem), Caspase-2

(MAB3507; Millipore), cleaved caspase-3 (ab32042; Abcam).

Supporting Information

Figure S1 Induction of apoptosis is only weakly increased in

HCT116 cells treated with the ATM inhibitor KU-55933

following thymidine treatment. HCT116 cells were treated with

control or Chk1 siRNAs and/or 10 mM of the ATM inhibitor

KU-55933 before a 48 hour treatment with 2 mM thymidine.

Cells were then harvested and the cell cycle distribution of PI

stained cells was analysed by flow cytometry. Cells with a subG1

DNA content were scored as apoptotic. Shaded profiles represent

control cultures not treated with replication inhibitors, unshaded

profiles represent cultures treated with thymidine (TdR).

Found at: doi:10.1371/journal.pgen.1000324.s001 (0.92 MB TIF)

Figure S2 Effects of ATM, ATR or Chk1 depletion on the

induction of apoptosis following replication fork stress in SW480

cells. Induction of apoptosis in ATM-, ATR, or Chk1-depleted

SW480 cells measured by the percentage of population having a

sub-G1 DNA content following 48 hour treatment with 0.5 mM

HU. Results represent the means of two to three independent

experiments6standard deviations. Statistical significance versus

HU treated control siRNA transfected cells: ns, not significant;

*p,.05.

Found at: doi:10.1371/journal.pgen.1000324.s002 (0.42 MB TIF)

Figure S3 Cell cycle analysis of HCT116 cells treated with Chk1

and NBS1 siRNAs singly or in combination in the presence or

absence of thymidine. HCT116 cells were transfected with the

indicated siRNAs and after 48 hours were treated with 2 mM

thymidine or 0.5 mM HU for 48 hours. Cells were then PI stained

and analysed for DNA content by flow cytometry. Shaded profiles

represent control cultures not treated with replication inhibitors,

unshaded profiles represent cultures treated with HU or thymidine

(TdR).

Found at: doi:10.1371/journal.pgen.1000324.s003 (0.88 MB TIF)

Figure S4 BID depletion has no significant effect on the

induction of apoptosis following disruption of DNA replication.

Induction of apoptosis in HCT116 cells transfected with the

indicated siRNAs (A) singly or in combination and treated or not

treated with 2 mM thymidine or 0.5 mM hydroxyurea. Apoptosis

was measured by the percentage of cells with a subG1 DNA

content (B) or those that were Annexin V+/PI negative (C & D).

Results represent the means of two to three independent

experiments6standard deviations. Statistical significance versus

HU treated control siRNA transfected cells: ns, not significant;

*p,.05; **p,.005.

Found at: doi:10.1371/journal.pgen.1000324.s004 (0.81 MB TIF)
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