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A B S T R A C T   

Intersectionality recognizes that in the context of sociohistorically shaped structural power relations, an in-
dividual’s multiple social positions or identities (e.g., gender, ethnicity) can interact to affect health-related 
outcomes. Despite limited methodological guidance, intersectionality frameworks have increasingly been 
incorporated into epidemiological studies, both to describe health disparities and to examine their causes. This 
study aimed to advance methods in intersectional estimation of binary outcomes in descriptive health disparities 
research through evaluation of 7 potentially intersectional data analysis methods: cross-classification, regression 
with interactions, multilevel analysis of individual heterogeneity (MAIHDA), and decision trees (CART, CTree, 
CHAID, random forest). Accuracy of estimated intersection-specific outcome prevalence was evaluated across 
192 intersections using simulated data scenarios. For comparison we included a non-intersectional main effects 
regression. We additionally assessed variable selection performance amongst decision trees. Example analyses 
using National Health and Nutrition Examination Study data illustrated differences in results between methods. 
At larger sample sizes, all methods except for CART performed better than non-intersectional main effects 
regression. In smaller samples, MAIHDA was the most accurate method but showed no advantage over main 
effects regression, while random forest, cross-classification, and saturated regression were the least accurate, and 
CTree and CHAID performed moderately well. CART performed poorly for estimation and variable selection. 
Sensitivity analyses examining the bias-variance tradeoff suggest MAIHDA as the preferred unbiased method for 
accurate estimation of high-dimensional intersections at smaller sample sizes. Larger sample sizes are more 
imperative for other methods. Results support the adoption of an intersectional approach to descriptive 
epidemiology.   

1. Introduction 

Intersectionality acknowledges that in the context of sociohistori-
cally shaped structural power relations, an individual’s multiple social 
positions or identities (e.g., gender, ethnicity) can interact to affect 
health-related outcomes (Collins, 2002; Crenshaw, 1989). Since the 
term intersectionality was first used academically to describe unjust 
legal processes for Black women (Crenshaw, 1989), this theoretical 
framework has traversed disciplines and been extended beyond gender 
and race to other identities or positions that reflect social power struc-
tures (e.g., income, age, sexuality, disability) (Bauer et al., 2021; Cho, 

Crenshaw, & McCall, 2013). Intersectionality can serve as a framework 
in incorporating social context into epidemiological research, informing 
conceptualization of research questions, sampling, study design, anal-
ysis, and interpretation of results (Agènor, 2020; Bauer, 2014; Bowleg, 
2012). 

Intercategorical intersectional analyses describe intersectional 
groups, and differences between them (McCall, 2005). Calculating 
health outcomes for intersections (defined by a combination of social 
positions), rather than by combining effects estimated for each position 
separately, can create more accurate estimates ([Authors’ Names 
Redacted], n.d.). Within descriptive epidemiology, analyses using large 
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population datasets can explore outcomes for high-dimensional in-
tersections (i.e., crossing four or five social positions), including 
under-studied intersections (Bauer, 2014). We classify as descriptive 
intersectional analysis methods those able to independently estimate 
outcomes for co-formed social intersections, by not assuming (as in 
main-effects regression) that effects of individual social positions are 
constant across intersections ([Authors’ Names Redacted], n.d.). We use 
the term “intersectional methods” with the understanding that methods 
themselves do not make research intersectional. Regression with inter-
action terms and cross-classification are the most common conventional 
analysis methods for descriptive intersectional research (Bauer et al., 
2021). 

Many health outcomes are binary, with a wide range of prevalences, 
creating challenges when studying high-dimensional intersections. Low- 
prevalence outcomes are prone to influence by outliers and require large 
samples to produce suitable numbers of events, problems exacerbated by 
increasing numbers of intersectional subgroups. For conventional 
regression analyses with binary outcomes, inclusion of higher-level 
interaction terms reduces the probability of model convergence and 
increases the potential for both high variance in estimates leading to 
wide confidence intervals and for bias away from the null (Greenland, 
Mansournia, & Altman, 2016; Peduzzi, Concato, Kemper, Holford, & 
Feinstein, 1996). These issues result in researchers resorting to 

non-intersectional main effects approaches or limiting the number of 
intersections under study. 

This motivates the evaluation of currently used alternative methods 
for intersectional analyses of binary outcomes (Bauer et al., 2021). 
Classification and regression trees (CART), conditional inference trees 
(CTree), and chi-square automatic interaction detector (CHAID), are 
data-driven non-parametric methods that apply decision rules to parti-
tion data into a single final decision tree, can incorporate any level of 
interaction, and can identify subgroups for further study or intervention, 
but do not produce estimates of effect size or variance (Breiman, 
Friedman, Stone, & Olshen, 1984; Hothorn, Hornik, & Zeileis, 2006; 
Kass, 1980). Decision trees can also be useful for variable selection, to 
reduce a list of variables to those most likely to be split on ([Authors’ 
Names Redacted], n.d.). Random forest aggregates multiple decision 
trees formed from bootstrapped samples to reduce overfitting (Banerjee, 
Reynolds, Andersson, & Nallamothu, 2019); it produces no single de-
cision tree or subgroup visualization, but rather a variable importance 
measure (VIM). Multilevel analysis of individual heterogeneity and 
discriminatory accuracy (MAIHDA) is a multilevel method which uses 
individual-level data (Evans, Williams, Onnela, & Subramanian, 2018), 
with fixed effects for each social position variable and a random inter-
cept for each intersection. MAIHDA uses weighted random intercepts 
that can reduce overfitting, but appropriateness of fixed and random 
effects for intersectional interpretation is contested (Evans, Leckie, & 
Merlo, 2020; Lizotte, Mahendran, Churchill, & Bauer, 2020). 

We previously evaluated intersection-specific estimation accuracy of 
these conventional and alternative methods (except CHAID) for 
continuous outcomes, using simulated data ([Authors’ Names Redac-
ted], n.d.). We found random forest,MAIHDA, and CTree to be more 
accurate than other methods at smaller sample sizes, while at large 
sample sizes all methods performed similarly for estimation except for 
CART, which produced less accurate estimates at both large and small 
sample sizes ([Authors’ Names Redacted], n.d.). However, method 
performance and implementation may differ depending on outcome 
variable type. For example, CHAID analyses require categorical out-
comes (Kass, 1980). 

The objective of this study was thus to evaluate seven methods 
(regression with interaction terms, cross-classification, MAIHDA, CART, 
CTree, random forest, and CHAID) for accuracy in intersection-specific 
prevalence estimation, alongside a non-intersectional main effects 
regression and a perfectly specified (but impracticable) regression 
model, using a variety of simulated but realistic data scenarios. We then 
sought to demonstrate analyses using National Health and Nutrition 
Examination Survey (NHANES) 2015 to 2018 data on high blood pres-
sure. Finally, the decision tree methods were assessed for variable se-
lection performance. While epidemiological studies often focus on 
significance testing and estimation of effect sizes or interactions, accu-
rate outcome estimation for subpopulation groups is an important 
objective for population health. Therefore, we focus on improving 
estimation. This study is an opportunity to reexamine how we approach 
descriptive epidemiology for binary outcomes from both a theoretical 
and statistical standpoint. While it originated in concerns regarding 
intersectionality methods, results are relevant to all epidemiological 
applications that face similar statistical challenges in exploring hetero-
geneity in binary outcomes. 

2. Methods 

2.1. Simulation process 

A rare outcome was simulated with an average prevalence of 3% 
(range: 1.35%–5.60%). A common outcome was simulated with an 
average prevalence of 15% (range: 7.15%–28.58%). Both outcome types 
were created with a set of categorical inputs and a set of mixed inputs, 
resulting in four possible models. Each model was iterated 1000 times 
for four different sample sizes (N=2000, 5000, 50,000, 200,000). This 

Table 1 
Description of variables in data generation model input variables.  

Variable Model 1: categorical inputs Model 2: mixed inputs (categorical and 
continuous) 

Type Distribution Type Distribution 

X1 Categorical P(X1 = 0) =
0.25 
P(X1 = 1) =
0.25 
P(X1 = 2) =
0.25 
P(X1 = 3) =
0.25 

Continuous (split in 
quartiles to create 
intersections for 
prediction) 

mean=0, 
variance=1 

X2 Binary P(X2=1) =
0.2 

Binary P(X2=1) =
0.2 

X3 Binary P(X3=1) =
0.5 

Binary P(X3=1) =
0.5 

X4 Binary Mediation: 
P(X4=1 | 
X3=0) = 0.4 
P(X4=1 | 
X3=1) = 0.7 

Binary Mediation:  
P(X4=1 | 
X3=0) = 0.4 
P(X4=1 | 
X3=1) = 0.7 

X5 Binary P(X5=1) =
0.25 

Binary P(X5=1) =
0.25 

X6 Categorical P(X6 = 0) =
0.33 
P(X6 = 1) =
0.33 
P(X6 = 2) =
0.33 

Continuous (split in 
tertiles to create 
intersections for 
prediction) 

mean=0, 
variance=1 

Each simulated model resulted in 192 intersections, (4*2*2*2*2*3=192). 

Table 2 
Proportion of converged saturated regression models over 1000 iterations by 
sample size.   

% of models converged 

N=2000 N=5000 N=50,000 N=200,000 
Common binary outcome, 

categorical inputs 
16.7 83.0 100.0 100.0 

Common binary outcome, 
mixed inputs 

99.8 100.0 100.0 100.0 

Rare binary outcome, 
categorical inputs 

48.0 85.5 100.0 100.0 

Rare binary outcome, mixed 
inputs 

98.9 99.8 100.0 100.0  
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simulation was structured with identical sample size parameters and 
input variable combinations as our paper on continuous outcomes 
([Authors’ Names Redacted], n.d.), to allow comparison of performance. 

Outcome generation formulas were: 

2.1.1. Categorical 
P(Y=1) = exp (intercept + β1.1 (if X1=1) + β1.2 (if X1 = 2) + β1.3 (if 

X1 = 3) + β2X2 + β3X3 + β4X4 + β5X5 + β6(if X1=2 & X2=1) + β7(if 
X1=3 & X2=1) + β8X3*X4*X5). 

2.1.2. Mixed 
P(Y=1) = exp (intercept + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6 

X1*X2 (if X1>1 & X2=1) + β7X3*X4*X5). 

Coefficients were sampled so that outcome probability was less than 
or equal to 1. 

The intercept had a value of − 3 for the rare outcome, and − 1.5 for 
the common outcome. X1 and X6 were continuous in the mixed inputs 
model, and categorical (four and three categories respectively) in the 
categorical inputs model; other variables were binary. Input variable 
structure is described in Table 1. The input variables resulted in 192 
possible intersections of varying sizes. The set of effect sizes for variables 
X1 to X5 and the interaction terms differed with each iteration. For the 
rare outcome, effects sizes were selected from a truncated normal dis-
tribution (SD=0.30) between 1.24 and 1.80, or 0.20 to 0.76, and for the 
common outcome between 1.11 and 1.80, or 0.20 to 0.89, on the relative 
risk scale. X6 was simulated to have no effect on the outcome. 

Fig. 1. A to 1.D. Boxplots of the mean absolute deviation (MAD) of intersection estimations for four different sample sizes (graph excludes outliers) 1.A. Common 
outcome with categorical inputs 1.B. Rare outcome with categorical inputs 1.C. Common outcome with mixed inputs 1.D. Rare outcome with mixed inputs. Ab-
breviations: CART = classification and regression tree; CHAID = chi-square automatic interaction detector; CTree = conditional inference trees; MAIHDA =
multilevel analysis of individual heterogeneity and discriminatory accuracy. 
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Simulation code is provided online (https://github.com/m-mahendr 
an/methods_for_intersectionality_simulation_binary_outcomes). Ana-
lyses were conducted in R version 3.6.1 (“R Foundation for Statistical 
Computing. R: A language and environment for statistical computing,” 
2021). 

2.2. Analysis methods 

2.2.1. Statistical estimation approaches 
For cross-classification, the prevalence of the outcome within each 

intersection was calculated with no further statistical adjustment. 
Correctly-specified regression included only the lower-level coefficients 
(the intercept and variables X1 to X6) and the interaction terms modeled 
into the simulated data (X1*X2, X3*X4, X4*X5, X3*X5, and X3*X4*X5). 

Saturated regression included all possible lower-level and interaction 
terms, and represents a more real-world application wherein the un-
derlying data structure is unknown. Note that interaction terms were for 
improving overall estimation of intersection-specific outcome preva-
lence, rather than inference regarding the size or statistical significance 
of interaction effects. Finally, main effects regression was included as a 
non-intersectional method for comparison. Poisson regression, modified 
to use robust variance estimation, was used for all single-level re-
gressions, because it produces risk ratio estimates for both rare and 
common binary outcomes (Zou, 2004). Analyses were run using the 
R-core function “glm”, and packages “lmtest” and “sandwich” to pro-
duce robust variance estimates using the sandwich estimator (Zeileis & 
Hothorn, 2002; Zeileis, 2006). MAIHDA models were run using multi-
level logistic regression, using the R-package “lme4” (Bates, Mächler, 

Fig. 1. (continued). 
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Fig. 2. A to 2.C. Prevalence of high blood pressure by intersection. Abbreviations: CART = classification and regression tree; CHAID = chi-square automatic 
interaction detector; CTree = conditional inference trees; MAIHDA = multilevel analysis of individual heterogeneity and discriminatory accuracy. 
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Bolker, & Walker, 2015). Following MAIHDA modeling practices, fixed 
effects were assigned to each of the simulated coefficients (X1 to X6), 
and a random intercept was assigned to each intersection (Evans et al., 
2018). While MAIHDA models are typically run using a Bayesian anal-
ysis with uninformative priors, we ran a frequentist analysis due to 
simulation time constraints. Previous simulation has found the main 
effects estimates to be comparable between the two approaches ([Au-
thors’ Names Redacted], n.d.); other parameters are expected to have 
similar estimates but have not been exhaustively compared. 

2.2.2. Machine learning estimation approaches 
CART, CTree, CHAID, and random forest models were created with the 

following R-packages, respectively: “rpart” (Thernau, Atkinson, & Rip-
ley, n.d.), “partykit” (Hothorn et al., 2006), “CHAID” (The FoRt Student 
Project Team & Hothorn, n.d.), and ‘tuneRanger” (Probst, Wright, & 
Boulesteix, 2019). CART splitting criterion was based on the Gini rule, 
with ten-fold cross-validation to select the complexity parameter with 
minimal cross-validation error. CTree and CHAID models were created 
using an alpha of 0.05. As CHAID is based on chi-squared analysis, it 
could only be applied with categorical inputs. Default minimum node 
size to split for CART, CTree, and CHAID was 20. Random forest models 
were built with 500 trees, tuned using the parameter mtry by a step 
factor of 1, and the default minimum final node size was 1. Splitting 
criterion was based on decreases in node impurity (defined by the Gini 
index) (Wright & Ziegler, 2017). The VIM was assessed using two 
measures: impurity-based, which only produces estimates, and 
permutation-based, which produces estimates and p-values (Altmann, 
Toloşi, Sander, & Lengauer, 2010). 

2.3. Study objectives 

2.3.1. Primary objective: estimation accuracy 
Estimation accuracy was assessed using the mean absolute devia-

tion/mean ratio (MAD). The MAD for each method was calculated as, 

MAD=
1
n
∑n

i=1

|P̂i − Pi|

p 

such that n was 192 representing 192 possible intersections, P̂i was 
the estimated prevalence of the outcome Y=1 for intersection i, Pi was 
the true prevalence of the outcome Y=1 for intersection i, and p was the 
prevalence of the outcome in the entire sample. The true prevalence of 
the outcome was known by using the outcome generation formula, but 
not running it through the binary sampling function. Because estima-
tions were for each intersection rather than each individual, accuracy is 
measured at the subpopulation (intersection) level, rather than the in-
dividual level. This emphasizes equal performance across intersections, 
rather than favouring better performance for more-populated in-
tersections. A MAD of 0 is only achieved by perfect estimation of the 
prevalence within each intersectional group. 

2.3.2. Secondary objective: assessment of variable selection 
In population health analyses, even those rooted in theory, there may 

be more social identity/position variables than can be incorporated into 
an intersectional analysis. While decision trees do not produce tradi-
tional outputs such as variance estimates, they can assist in variable 
selection to identify relevant variables to include in subsequent analyses 
that do ([Authors’ Names Redacted], n.d.). Variable selection in this 
setting is for data analysis planning, not to determine significance or 

Fig. 2. (continued). 
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strength of a variable on an outcome. For CART, CTree, and CHAID, 
variable selection was assessed by the percentage of simulation repli-
cates where each variable (X1 to X6) was used as a splitting variable. 
Random forest variable selection was assessed by the average 
impurity-based VIM for each variable, and the percent of iterations that 
the variable had p<0.05 for the permutation-based VIM. 
Permutation-based VIM was only assessed for 200 iterations, due to 
computational time constraints. For our simulated data, decision trees 
that perform well for variable selection would detect X6 as least 
relevant. 

2.4. Sensitivity analysis 

We conducted two post-hoc sensitivity analyses assessing the per-
formance of MAIHDA, main effects regression, correctly-specified 
regression, and cross-classification, at sample sizes 2000 and 5000. 
First, we simulated four scenarios with a higher outcome prevalence of 
approximately 50%: categorical inputs, mixed inputs, categorical inputs 
with larger effect sizes only for interaction effects, mixed inputs with 
larger effect sizes only for the interaction effects. Second, we assessed 
the bias and variance of intersection-specific prevalence estimates, using 
one simulation scenario for the rare, common, and 50% prevalence 
outcomes with categorical inputs, with one set of effect sizes for each 
scenario, iterated 1000 times. Bias (the expected difference between 
modeled estimates and the true parameter value) and variance were 
estimated for each of the 192 intersections, and results present the Ta
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Table 4 
Random forest average variable importance measure (VIM) (impurity-based: 
average over 1000 iterations).   

N X1 X2 X3 X4 X5 X6 

Rare binary 
outcome, 
Categorical inputs 

2000 4 2 2 2 2 3 
5000 4 2 3 3 2 3 
50,000 9 4 19 21 10 4 
200,000 25 10 77 82 39 4 

Rare binary 
outcome, Mixed 
inputs 

2000 33 1 1 1 1 32 
5000 74 3 3 3 2 70 
50,000 376 10 15 16 11 352 
200,000 793 21 54 58 32 712 

Common binary 
outcome, 
Categorical inputs 

2000 18 8 16 17 11 12 
5000 26 12 35 38 21 14 
50,000 124 51 308 338 166 17 
200,000 442 170 1294 1361 645 17 

Common binary 
outcome, Mixed 
inputs 

2000 112 8 12 13 9 101 
5000 226 14 26 27 17 204 
50,000 938 61 211 223 124 782 
200,000 1902 184 822 879 435 1392  

Table 5 
Random forest variable importance measure (VIM) (permutation-based: % of 
200 iterations p-value is less than 0.05).   

N X1 X2 X3 X4 X5 X6 

Rare binary 
outcome, 
Categorical 
inputs 

2000 19.0 13.5 20.5 25.0 26.5 14.5 
5000 48.0 33.0 73.0 76.5 65.5 16.5 
50,000 100.0 99.0 100.0 100.0 100.0 44.0 
200,000 100.0 100.0 100.0 100.0 100.0 42.0 

Rare binary 
outcome, 
Mixed inputs 

2000 20.5 7.5 8.5 7.5 8.0 2.0 
5000 26.0 11.0 7.0 12.0 14.0 3.5 
50,000 79.0 51.0 55.0 57.0 70.5 0.5 
200,000 100.0 90.0 82.0 81.0 95.5 0.5 

Common 
binary 
outcome, 
Categorical 
inputs 

2000 56.5 36.0 69.5 65.0 63.0 7.5 
5000 96.0 81.0 89.5 89.5 85.0 12.0 
50,000 100.0 100.0 100.0 100.0 100.0 46.5 
200,000 100.0 100.0 100.0 100.0 100.0 45.0 

Common 
binary 
outcome, 
Mixed inputs 

2000 61.5 30.5 55.5 60.0 49.0 1.5 
5000 83.5 59.0 73.0 73.0 74.0 2.5 
50,000 99.5 98.5 91.0 94.0 95.0 1.0 
200,000 100.0 99.5 95.0 96.5 100.0 0.0  

M. Mahendran et al.                                                                                                                                                                                                                           



SSM - Population Health 17 (2022) 101032

8

median, minimum and maximum values for the 192 intersections. 
Further description of simulation procedures for sensitivity analyses are 
provided in Web Appendix 1. 

2.5. Example NHANES analysis 

We used NHANES data to demonstrate and compare differences in 
results between the methods. Using a multistage probability sample, 
NHANES is designed to represent the U.S. non-institutionalized popu-
lation (Chen, Clark, Riddles, Mohadjer, & Fakhouri, 2020). Sixty in-
tersections were formed from sex/gender, race/ethnicity, age, and 
poverty (income below the US federal poverty line, income above the 
poverty line). The high blood pressure outcome was defined as systolic 
blood pressure ≥130 mmHg and/or a diastolic blood pressure ≥80 
mmHg (Whelton et al., 2018), each measured by averaging a maximum 
of three readings. After removal of missing data, final sample size was 
N=9576. The prevalence of high blood pressure was 41.2%. Analyses 
included comparing intersection-specific estimations across methods, 
and comparing final decision tree outputs for variable selection. Other 
methods-specific outputs are presented in Web Appendix 2. 

3. Results 

3.1. Convergence 

We considered the feasibility of the different analysis methods for 
binary outcomes. While other analyses ran smoothly, the saturated 
regression did not always converge at smaller sample sizes (Table 2). 
Results for saturated regression models are thus only from converged 
models. 

3.2. Primary objective: estimation accuracy 

Fig. 1 presents the distribution of intersection-specific estimation 
MAD over 1000 iterations for each of the four scenarios and four sample 
sizes in the simulated data. In large samples, intersectional methods 
generally performed well and had higher accuracy than the mis- 
specified main effect regression. Exceptions were CART, which per-
formed poorly across sample sizes and scenarios, and random forest 
under just one data scenario. In smaller samples the mis-specified main 
effects analysis performed better than all other methods except 
MAIHDA, which performed similarly, and correctly-specified regression 
for models with common prevalence outcomes. MAIHDA and the 
implausible correctly-specified regression were the best intersectional 
methods for all four scenarios at small sample sizes, followed by CTree 
and CHAID (when applicable). 

Fig. 2 presents estimated high blood pressure prevalences for each 
intersection, by each method, using real-world NHANES data. Choice in 
methods impacted final estimated prevalences. For example, for white 
female respondents aged 18 to 39 with poverty-level income, the esti-
mated prevalence varied from 7% to 20%. Comparing the two best- 
performing methods at smaller samples from the simulation, MAIHDA 
and main effects, the estimated prevalences were also different. For 
example, among Black male respondents age 60+ with non-poverty 
income, main effects estimated 76.5% while MAIHDA estimated 

65.3%. For female Hispanic respondents age 60+with poverty-level 
income, main effects estimated 50.5% while MAIHDA estimated 60.3%. 

3.3. Secondary objective: variable relevance 

Table 3 presents the splitting percentages for the CART, CTree, and 
CHAID models for the four simulation scenarios. Across all scenarios and 
sample sizes, CART analysis produced almost no splitting. Therefore, for 
many iterations estimations were based on only the sample population 
prevalence, and were equal across all intersections. For CHAID and 
CTree, splitting on X1 to X5 increased with increasing sample size, and 
reached 100% in larger samples. X6 splitting frequency was lower than 
for X1 to X5, but also increased with sample size. The only difference 
between CTree and CHAID was that the splitting percentages for all 
variables were slightly higher for CHAID, starting at N=2000. Table 4 
presents the average random forest impurity-based VIM’s. For models 
with categorical inputs, X6 was only the least important at larger sample 
sizes. For the mixed input models where X6 was continuous, X6 was the 
second most important variable, after X1, even at the largest sample size. 
Table 5 presents variable selection performance of the permutation- 
based VIM. A cut off of P < 0.05 is effective at maintaining a low 
detection of false positives in the mixed inputs scenario, where X6 is 
continuous, but not in the categorical inputs scenario, where X6 is a 
three-category variable. 

Table 6 presents NHANES variable selection results. CART split on 
fewer variables (i.e., identified fewer as relevant) and resulted in fewer 
final subgroups than CTree or CHAID. Decision trees visualizations are 
presented in Web Appendix 2. For random forest models, using the 
impurity-based measure, age was the most important estimator by a 
wide margin, followed by gender and race/ethnicity, with income as the 
least important. Using the permutation-based measure of importance all 
variables except income were statistically significant at P < 0.05. 

3.4. Sensitivity analysis 

Sensitivity analyses present more detailed information on small 
samples and the performance of main effects analysis. Results from the 
first set of simulation analyses evaluating method estimation accuracy at 
50% outcome prevalence show correctly-specified regression as equiv-
alent or slightly more accurate than main effects regression, and 
MAIHDA in some scenarios performing better than main effects, 
correctly-specified regression, and cross-classification (Fig. 3A-D). The 
second set of analyses evaluating bias and variance of estimates for each 
intersection (Table 7) shows main effects regression and MAIHDA to 
generally have smaller variance than the correctly-specified regression 
or cross-classification, but larger bias. Between main effects regression 
and MAIHDA, bias and variance of estimates were quite similar, but at 
the highest outcome prevalence MAIHDA estimates appear more likely 
to reduce in bias with the increase in sample size between N=2000 and 
N=5000, while main effects estimates had greater reductions in 
variance. 

4. Discussion 

Challenges in assessing binary outcomes are amplified when 

Table 6 
Variable importance measures (VIM) for NHANES high blood pressure.   

CART CTree CHAID Random forest 

Splitting variable (Yes/No) Splitting variable (Yes/No) Splitting variable (Yes/No) Impurity-based VIM Permutation-based VIM Permutation-based VIM 
P-value 

Age Yes Yes Yes 509.927473 0.0552 0.010 
Gender No Yes Yes 44.347381 0.005197 0.010 
Race Yes Yes Yes 39.163758 0.003238 0.010 
Income No No Yes 8.795415 0.000413 0.337  
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assessing outcomes for high-dimensional intersections. At smaller sam-
ple sizes our results differed substantially from those in our earlier 
evaluation of continuous outcomes ([Authors’ Names Redacted], n.d.) 
with a key difference being that in the binary outcome setting, fewer 
methods performed well at smaller sample sizes. However, in both the 
continuous and discrete settings, CART performed poorly. 

We modeled 192 simulated intersections, a number typical of pub-
lished studies using decision tree or MAIHDA methods; researchers 
studying fewer intersections may want to adjust our “larger” and 
“smaller” samples accordingly. For example, N=50,000 corresponded to 
a mean intersection size of N=260, while N=5000 corresponded to 26. 
Our small-sample analyses intentionally pushed limits for 

Figure 3. A to 3.D. Boxplots of the MAD of intersection-specific estimations for two different small sample sizes, and a simulated outcome prevalence of 50% (graph 
excludes outliers) A. Categorical inputs B. categorical inputs with larger effect sizes only for interaction effects C. Mixed inputs D. Mixed inputs with larger effect sizes 
only for the interaction effects. Abbreviations: CART = classification and regression tree; CHAID = chi-square automatic interaction detector; CTree = conditional 
inference trees; MAIHDA = multilevel analysis of individual heterogeneity and discriminatory accuracy. 
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demonstration purposes, and a saturated regression model assessing 192 
intersections at N=2000 is not a reasonable expectation. 

In larger samples, all intersectional methods but CART were accurate 
estimators and outperformed non-intersectional main effects. However, 
at small sample sizes the main effects analysis performed better as an 
estimator than most methods, except for MAIHDA. Additionally, in 
smaller samples the traditional methods of cross-classification and 
saturated regression were poor estimators, and saturated regression was 
often not feasible given convergence issues. 

Our sensitivity analysis assessing the bias and variance of the inter-
section estimates aimed to explain why at small sample sizes almost all 
the intersectional methods performed worse than the main effects 
approach, which given our data scenarios is mis-specified and incom-
patible with intersectionality. The overall estimation accuracy of a 

method is attributable to both the bias and variance of the estimates 
(Geurts, 2009). A main effects analysis’s inability to account for varia-
tion between intersections was reflected in the bias of the estimates, 
which was greater for main effects than for a correctly-specified 
regression or cross-classification. However, at smaller sample sizes the 
variance of the main effects estimates was much smaller compared to 
cross-classification or regression with interaction terms, as it estimates 
fewer effects and is thus less prone to extreme values. The 
bias-to-variance tradeoff in this situation results in the biased main ef-
fects regression often performing equally or better than other methods 
able to account for intersectionality. 

MAIHDA was the only applicable intersectional method (excluding 
correctly-specified regression as it is not a realistic option) that per-
formed equivalent to or better than a main effects analysis, at smaller 

Figure 3. (continued). 
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and larger sample sizes. Additionally, the two methods were similar in 
bias-to-variance tradeoff. We suggest that this is because MAIHDA 
models are comprised of a main effects regression (although main effects 
are determined differently than for a single-level regression), with 
additional residual estimates to account for effects within each inter-
section (Evans et al., 2018). The residuals are weighted so their 
magnitude is smaller if the intersection sample size is smaller, reducing 
the impact of the residual on the overall estimate and reducing variance 
caused by small intersections. For our smallest sample sizes, the re-
siduals are heavily down-weighted, resulting in MAIHDA and main ef-
fects regression producing similar estimates. This down-weighting, also 
called shrinkage, was characterized by Bell, Holman, and Jones (2019) 
and protects MAIHDA from identifying intersectional effects when evi-
dence (data or signal) is limited. 

MAIHDA accuracy surpasses main effects at larger and more plau-
sible sample sizes, with decreased number of intersections, or with a 
higher outcome prevalence, due to reductions in estimation bias 
compared to main effects regression. Our NHANES analysis was a real- 
world example with a high prevalence outcome, assessing a realistic 
number of intersections given the sample size, and demonstrated the 
non-equivalence of MAIHDA and main effects regression results. 
Intersection-specific prevalence estimates differed by up to 10% be-
tween MAIHDA and main effects. We recommend MAIHDA for esti-
mating high-dimensional intersectional outcomes, especially when the 
sample size is small relative to the number of intersections such as in the 
NHANES example. It theoretically accounts for intersectionality 
(resulting in reduced bias with increasing sample size) and estimates 
fewer parameters (resulting in a low variance of estimates even at 
smaller sample sizes). 

Previous studies assessing classification by random forest have 
concluded that it performs similarly or more accurately than logistic 
regression, CART, and CHAID (Caruana & Niculescu-Mizil, 2006; 
Kanerva, Kontto, Erkkola, Nevalainen, & Männistö, 2018; Maroco et al., 
2011). However our random forest models produced less accurate 
intersection-specific estimates, especially in smaller samples. The 
typical application of random forest, or any decision tree method, may 
involve hundreds of input variables, and this is when these methods are 
most advantageous over conventional methods. Even with a large 
number of intersections, our inclusion of a relatively small number of 

Table 7 
Bias and variance of single simulation models at small sample sizes (median, 
minimum, and maximum values amongst the 192 intersections).    

Bias Variance 

N=2000 N=5000 N=2000 N=5000 

Rare 
outcome 
prevalence 
a 

Correctly- 
specified 
regression 

0.02 
(− 0.1, 
0.3) 

− 0.005 
(− 0.1, 
0.1) 

3.06 
(0.3, 
29.1) 

1.09 
(0.1, 
11.0) 

Cross 
classification 

0.009 
(− 0.7, 
1.1) 

− 0.002 
(− 0.5, 
0.6) 

44.01 
(3.1, 
362.2) 

15.92 
(1.2, 
165.8) 

MAIHDA 0.04 
(− 2.8, 
2.8) 

0.06 
(− 2.8, 
2.7) 

1.42 
(0.2, 
11.7) 

0.56 
(0.1, 4.1) 

Main effects 
regression 

0.08 
(− 2.7, 
3.0) 

0.07 
(− 2.8, 
2.9) 

1.39 
(0.2, 
10.9) 

0.54 
(0.1, 4.0) 

Common 
outcome 
prevalence 
b 

Correctly- 
specified 
regression 

− 0.01 
(− 0.2, 
0.4) 

− 0.03 
(− 0.3, 
0.2) 

10.37 
(1.2, 
93.6) 

3.78 
(0.5, 
36.0) 

Cross 
classification 

0.01 
(− 2.4, 
2.5) 

- 0.01 
(− 2.0, 
1.1) 

170.72 
(13.9, 
1053.9) 

58.75 
(5.3, 
591.0) 

MAIHDA − 0.19 
(− 12.4, 
11.1) 

− 0.26 
(− 11.7, 
10.5) 

5.66 
(0.5, 
30.2) 

2.24 
(0.2, 
14.8) 

Main effects 
regression 

− 0.16 
(− 11.6, 
11.8) 

− 0.20 
(− 11.4, 
11.7) 

4.73 
(0.5, 
40.9) 

1.76 
(0.2, 
14.7) 

50% 
outcome 
prevalence 

Correctly- 
specified 
regression 

− 0.59 
(− 28.9, 
72.6) 

− 0.47 
(− 28.7, 
73.0) 

28.53 
(4.4, 
121.7) 

10.60 
(1.6, 
49.2) 

Cross 
classification 

− 0.03 
(− 2.4, 
2.2) 

− 0.007 
(− 1.3, 
1.3) 

260.6 96.58 
(3.5, 
1065.0) 

MAIHDA 1.24 
(− 22.4, 
19.7) 

0.19 
(− 12.5, 
17.5) 

21.94 
(0.5, 
36.3) 

20.98 
(0.2, 
43.5) 

Main effects 
regression 

2.74 
(− 36.4, 
55.8) 

2.74 
(− 36.2, 
56.5) 

16.42 
(2.6, 
74.3) 

6.33 
(1.0, 
28.7)a  

a Rare outcome prevalence was on average 4%b 

b Common outcome prevalence was on average 15%. 

Table 8 
Outputs of each method, assessed and not assessed in this study.   

Estimation of binary outcomes Variable selection Outputs not assessed in this study 

Regression with 
interactions 

Recommended for large sample 
sizes 

Not assessed Estimation of first-order and interaction 
effects 
Conversion of interactions from 
multiplicative to additive scale for greater 
public health applicability 
Variable selection 

Cross- 
classification 

Recommended for large sample 
sizes 

Not applicable Tests of significance between groups (e.g. t- 
tests) 
Use of cross-classified groups as categorical 
variables in regression 

MAIHDA Recommended for all sample 
sizes 

Not assessed Estimation of main and residual effects 
How log scale changes interpretation of 
effect estimates 
Variable selection 
Discriminatory accuracy 

CART, CTree, or 
CHAID 

CART: Not recommended 
CTree and CHAID: Recommended 
for moderate to large sample sizes 

CART: Not recommended 
CTree and CHAID: low power at small sample sizes, high power at high 
sample sizes, high type 1 error especially with increasing sample size 

Comparability of variable splitting to 
interaction effects identified in traditional 
regression models 

Random forest Recommended for large sample 
sizes 

Impurity-based: 
Recommended if all predictors have similar number of categories (e.g. all 
binary), sample size is large, and outcome is of a common prevalence. Not 
recommended with mix of continuous and categorical variables. 
Permutation-based: 
Recommended strongly if there are at least some continuous predictors. 
Can be used if variables have a similar number of categories but will 
result in high type 1 error.   
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variables potentially reduced the benefits of a random forest. Addi-
tionally, in our data scenarios CART performed poorly. The random 
forests algorithm used CART to analyze each bootstrapped subsample. 
Random forests formed using CTree instead may have improved per-
formance (Hothorn et al., 2006). 

In both the simulation and NHANES example, CART under-identified 
relevant variables representing heterogeneities in the data. These results 
are important given CART’s use in intersectionality research as the de-
cision tree method of choice (Cairney et al., 2014; Greene et al., 2019; 
Villanti et al., 2018). For CTree and CHAID, detection of relevant vari-
ables was low at small sample sizes and improved (but also had 
increasing false positive detection) with increasing sample size. Pruning 
of CTree or CHAID with the alpha criterion may mitigate Type 1 error 
issues. For random forest, permutation-based VIM performs well for 
mixed inputs, as it is less impacted by the bias in the Gini index, which 
favors splitting on continuous or multicategorical variables (Strobl, 
Boulesteix, Zeileis, & Hothorn, 2007). The impurity-based VIM better 
identifies relevant variables for categorical inputs, under conditions of a 
larger sample sizes and a common outcome. A permutation-based VIM 
can be used for a set of categorical inputs across outcome frequencies 
and sample sizes, and relevant variables will be identified as significant 
more often than the non-relevant variables. However, a 
permutation-based VIM in these scenarios does run the risk of a high 
false-positive detection. 

To note, variable relevance as referenced in this study is purely 
quantitative. Our prior study detailed how sequential variable selection 
by decision tree methods may be a useful tool for variable selection, to 
narrow down a list of potential variables to be used in other analyses 
such as MAIHDA or regression with interactions ([Authors’ Names 
Redacted], n.d.). However, a social position may have real-life impacts 
and not be detected by data-driven methods. For example, across CTree, 
CHAID, and random forest, variable relevance was less detectable for 
rare outcomes, especially at smaller sample sizes. In practice, variable 
selection for an intersectional approach should consider 1) capabilities 
of the dataset (for which variables there is enough information) and 2) 
existing research or community knowledge regarding the possible social 
structures and powers that would impact the outcome. Tools such as 
decision trees can provide additional decision support if needed. 

Table 8 presents recommendations, as well as quantitative outputs 
unaddressed by this study. We also present certain methods-specific 
outputs from the NHANES analysis in Web Appendix 2. We caution 
careful consideration of the theoretical match to intersectionality of 
these other outputs. For example, researchers using any method that 
produces effect estimates must be careful not to focus on significance 
testing to “prove” intersectionality as a statistical hypothesis, rather 
than using it as an informative framework (Bowleg, 2012). For decision 
trees, subgroups formed may be irrelevant to policy or practice if they do 
not represent reachable real-world groups. Cut-off values and final 
subgroups are subject to the instability of single decision trees (Li & 
Belford, 2002), and thus should not be seen as definitive, but rather 
corroborated with analyses using other datasets (Kreatsoulas & Sub-
ramanian, 2018), in addition to existing literature and community 
knowledge. We strongly recommend presenting measures of variance 
when possible, both to understand the precision of outcome estimates 
and to avoid over-emphasis of differences without consideration of 
within-intersection variation (e.g., via measures of discriminatory ac-
curacy) (Merlo, 2018). The decision tree methods assessed in this study 
do not inherently produce variance estimates, which indicates an 
important limitation of these methods. 

This study compared multiple methods for describing high- 
dimensional intersections with binary outcomes, and found MAIHDA 
most accurate for intersection estimation, especially at smaller sample 
sizes. We acknowledge that our results may be limited by the simulation 
data generation process. Additionally, alternative applications of these 
methods, such as penalized regression with interactions, may improve 
their performance for estimation or variable selection (Rahman & 

Sultana, 2017). Future studies may also assess how incorporating survey 
weights affects the validity of estimation and variable selection. While 
this study’s focus was quantitative performance, we remind researchers 
that application of intersectionality is more than a methodological 
choice, but an approach to research process, design, and interpretation. 
Ultimately, less-conventional methods can allow for better study of 
high-dimensional intersections, and broaden the possibilities to incor-
porate intersectional frameworks in epidemiological research, and ul-
timately to improve health. 

Funding sources 

This work was supported by an Ontario Graduate Student Scholar-
ship to MM and by a Canadian Institutes of Health Research Sex and 
Gender Science Chair to GB [GSB-171372]. 

Ethics statement 

Research ethics approval was not required for this study, which uses 
only simulated and publicly downloadable data. 

CRediT authorship contribution statement 

Mayuri Mahendran: Conceptualization, Methodology, Software, 
Formal analysis, Data curation, Visualization, Writing – original draft, 
Writing – review & editing. Daniel Lizotte: Conceptualization, Meth-
odology, Writing – review & editing. Greta R. Bauer: Conceptualiza-
tion, Methodology, Writing – review & editing, Funding acquisition. 

Declaration of competing interest 

The authors declare no conflicts of interest. 

Acknowledgements 

The authors wish to thank Dr. Yayuan Zhu for contributing her 
advice on the analyses and comments on the manuscript, Ruo Su Zhang 
for review of the manuscript, and Isabella Aversa for assistance with 
formatting. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ssmph.2022.101032. 

REFERENCES 
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