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The growth of acute kidney injury: a rising tide or just
closer attention to detail?
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Acute kidney injury (AKI), previously termed acute renal

failure, is associated with increased mortality, prolonged

hospital stay, and accelerated chronic kidney disease (CKD).

Over the past 2 decades, dramatic rises in the incidences of

AKI have been reported, particularly within the United States.

The question arises as to whether these changes reflect

actual increases in disease incidence, or are potentially

explained by the introduction of consensus definitions that

rely on small standardized changes in serum creatinine,

changes in coding and reimbursement, or increasingly

available and more liberal use of dialysis. In this review, we

explore the secular trends in AKI incidence in North America

and Western Europe and its potential contributors.
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Throughout the medical literature, classic descriptions of
acute kidney injury (AKI) have detailed its devastating effects
on individual patients.1–3 However, similar efforts to characterize
the impact of AKI at a population level have been lacking
until recently. Over the past two decades, the increased
availability of electronic health records and large prospective
cohorts of patients with AKI have facilitated the study of
this disease in different settings. Rapid increases in the
incidence of AKI have been reported, highlighting a growing
contribution to the public health burden of advanced kidney
disease.4–15 Collectively, these observations have led to calls
for greater resources to be directed toward its treatment and
prevention.12,16–18 However, residual concerns exist over the
potential inflating effects of using administrative codes and
increasingly sensitive laboratory definitions for reporting
disease incidence.19 Furthermore, if the growth observed is
indeed ‘real,’ then the factors responsible remain poorly
characterized. Here, we review these trends and explore
potential explanations for these observations.

GROWTH IN THE INCIDENCE OF AKI: IS IT REAL?
Changes in the incidence of AKI using administrative codes

Most data illustrating a growth in hospitalized AKI have used
administrative codes that rely on health-care providers to
document that AKI has occurred. Xue et al.6 evaluated
the growth of AKI between 1992 and 2001 among elderly
Medicare beneficiaries. Medicare is the US govern-
ment program designed to provide health-care coverage
for people aged X65 years and those with end-stage
renal disease. By sampling 5 million hospitalizations, they
found an increase in the standardized rates of acute renal
failure (ARF) from 14.6/1000 discharges to 36.4/1000
discharges using diagnostic codes for ARF (11%/year)
(Figure 1a). The rises in rates occurred whether ARF was
coded as a principal or secondary diagnosis, arguing against
the ‘adding-on’ of these diagnoses to maximize reimburse-
ment as a major determinant of these changes. Furthermore,
the steady nature of the rise in this and other studies would
not necessarily be expected from, for example, an abrupt
change in reimbursement policies. Nevertheless, this study
was limited by reporting of hospital-based incidences that
can be affected by temporal variation in admission practices
and case-mix.
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Using both administrative codes and US census data,
Waikar et al.7 examined the population-based incidence of AKI
within a nationally representative data set of hospitalizations
between 1988 and 2002. The Nationwide Inpatient Sample
(NIS) captures patient-level data from a 20% stratified proba-
bility sample of teaching and nonteaching hospitals across
the United States. During this pre-RIFLE time period, the
population-based incidence of ARF rose from 610 to 2880 cases
per million per year. As with the Medicare study, increases were
seen using either primary or secondary ARF codes.

The decision to enter a discharge code of ARF is
influenced by multiple factors including whether the event
is deemed clinically significant or as part of health-care
reimbursement. Therefore, it is important to understand
how increasing awareness or other external factors may affect
coding practices. Although difficult to measure directly,
some insight can be gained by examining change in the
performance of administrative codes over time against a
known reference standard (for example, serum creatinine
change). Increasing awareness among medical providers
might manifest by either gains in the sensitivity for AKI

codes or loss of specificity (that is, increase in false positives).
Using a doubling of serum creatinine between nadir and peak
hospital values, the authors detected improvement in the
diagnostic sensitivity of the major International Classification
of Diseases, Clinical Modification diagnosis codes for ARF,
Ninth Revision, between 1994 (17.4% of cases) and 2002
(29.3% of cases).7 However, the degree of improvement in
the sensitivity observed was determined to be insufficient
(70% needed in 2002) to account for the majority of growth
observed.

Hwang et al.20 examined the validity of the International
Classification of Diseases, Tenth Revision (implemented in
Canada since 2000) codes for acute kidney failure among
elderly patients in Canada. Compared with the period
examined in an earlier report (1994–2002), this later
study encompassed years following publication of the
RIFLE (Risk, Injury, Failure, Loss, and End-stage Kidney
Disease) criteria (2003–2010). Using a doubling of serum
creatinine (prehospital to peak within 48 h), investigators
reported a substantially higher diagnostic sensitivity of 61.6%
(95% confidence interval: 57.5–65.5). Even when a milder
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Figure 1 | Temporal trends in the hospital-based and population-based incidence of acute kidney injury (AKI). (a) Hospital-based
incidence in AKI among elderly (aged 465 years) Medicare beneficiaries using administrative codes (USA).6 (b, c) Community-based incidence
of nondialysis- and dialysis-requiring AKI in Northern California (USA) using administrative codes and creatinine-based definitions,9 respectively.
(d) Population incidence of dialysis-requiring AKI using the Nationwide Inpatient Sample and US Census data.32 ARF, acute renal failure.
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injury standard was used (that is, a 50% increase in serum
creatinine), the same diagnostic codes were still almost twice
as sensitive at 56.4% (95% confidence interval: 53.2–59.7) than
those observed in the earlier US study. Specificities in this
and the study of Waikar et al.7 remained 495%, arguing
against a large number of false positives contributing to
these reported increases. Although geographical variation in
practice and coding patterns make accurate comparisons
between these two studies impossible, the higher sensitivities
observed in the later time periods do suggest a trend toward
increased AKI reporting.

More recently, Grams et al.21 evaluated the performance of
discharge billing codes for AKI in hospitalized patients from
the ARIC (Atherosclerosis Risk in Communities) cohort between
1996 and 2008 using KDIGO (Kidney Disease: Improving
Global Outcomes) criteria as the reference standard. The
sensitivity of billing code–identified AKI improved from 9.7%
(1996–2002) to 24.4% (2002–2008), with specificity remain-
ing high in both time eras. Collectively, these findings
indicate that the sensitivity of administrative codes for AKI
vary by region, and have increased over time. Thus, studies
relying exclusively on coding to examine changes in AKI
incidence or its related outcomes should be interpreted with
caution.

Changes in the incidence of AKI using laboratory-based
criteria

Despite these observations, several lines of evidence suggest
that growth in AKI is occurring. Hou et al.22 and Nash et al.23

described early changes in incidence and risk factors for AKI
between two tertiary care hospitals. They applied the same set
of graded changes in serum creatinine during hospitalization
and observed an increase in the hospital-based incidence of
AKI from 4.9% in 1979 to 7.2% in 1996. However, these
studies were conducted in two different medical centers
where regional differences in admission practices may have
contributed.

A decade ago, studies uncovering associations between
incremental changes in serum creatinine and mortality led to
the development of the first consensus definition for AKI.14,24

Known as the RIFLE criteria,25 this classification scheme
introduced a consistent approach for defining and staging
AKI, allowing for more standardized comparisons between
settings. Numerous validation studies have since confirmed a
dose-dependent relationship between the severity of AKI and
poor outcomes, prompting even more sensitive iterations of
these criteria in recent years (Acute Kidney Injury Network
(AKIN)/KDIGO) (Table 1).26,27

Although the usefulness of these newer criteria to clinical
practice remain to be defined, their application within
research settings has resulted in large increases in the
reported incidence of AKI, driven largely by the inclusion
of less severe AKI (Table 2a–c). Another important con-
sideration is that creatinine-based definitions of AKI require
quantifying acute changes from a so-called ‘baseline’ value.
Ideally, this value would reflect a given patient’s steady-state

kidney function just before the AKI insult. However,
information on prehospital kidney function is often lacking,
prompting the use of various surrogate estimates. These may
include inpatient values (for example, admission, nadir) or
the imputation of values such as back-calculating a baseline
creatinine using estimated glomerular filtration rate (eGFR)
of 75 ml/min per 1.73 m2 (eGFR 75) in patients with missing
data.25 However, this approach can inflate or reduce
the reported incidence of AKI and its prognosis.28,29 In one
study of 4863 hospitalized adults, the use of eGFR 75
approach or the minimum inpatient serum creatinine
increased the incidence of AKI from 25.5% to 38.3% or
35.9%, respectively, compared with when AKI was measured
using a known outpatient baseline value.28 These increases
were likely owing, in part, to erroneously identifying
patients with stable chronic kidney disease (CKD) as
having AKI. The use of minimum inpatient creatinine also
appeared to overestimate AKI incidence. Although the
reasons are not clear, potential explanations include
changes in serum creatinine resulting from volume
depletion on admission, followed by active rehydration
protocols that further lower nadir serum creatinine values,
leading to overreporting of AKI. Conversely, the use of the
first admission serum creatinine value as a baseline led to an
underreporting of AKI incidence at 13.7%, possibly because
of unrecognized community-acquired AKI. As the misclassi-
fying effects of surrogate baselines can be pronounced
when applied to a large portion of the study population,
interpreting epidemiologic studies of AKI that liberally apply
these surrogates should be made with these limitations in
mind. It also highlights the importance of providing the best
estimate of baseline kidney function possible using available
clinical information (see ‘Limitations of serum creatinine as
a biomarker of AKI’ under the section ‘Future Directions’).

The strongest evidence supporting the growth of non-
dialysis-requiring AKI comes from studies applying a fixed
definition sequentially over time. Hsu et al. leveraged an
integrated health-care system within Northern California
(USA) to examine the population incidence of AKI between
1996 and 2003. Using previous criteria described by Hou
et al.,22 AKI was defined by an increase in serum creatinine
level of 0.5 mg/dl for patients with a baseline serum
creatinine level of p1.9 mg/dl, 1.0 mg/dl for patients with a
baseline level of 2.0–4.9 mg/dl, and 1.5 mg/dl for patients with
a baseline level of X5.0 mg/dl. In addition to improving
sensitivity, this approach likely reduced other potential
sources of bias. For example, a recent study suggests that
clinicians may be more likely to code for AKI among CKD
patients, possibly because their absolute baseline creatinine
levels are already elevated.20 Furthermore, given the
nonlinear relationship between GFR and serum creatinine,
patients with CKD require a smaller loss in kidney function
to be classified as having AKI when applying a 0.3 mg/dl
threshold for change than in patients with preserved kidney
function. Thus, an increase in the hospital prevalence of
patients with CKD over time may make it ‘easier’ for a

48 Kidney International (2015) 87, 46–61

r e v i e w ED Siew and A Davenport: Growth of acute kidney injury



greater proportion of patients to be classified as having AKI.
Requiring progressively larger increases in serum creatinine
to meet diagnostic criteria as the baseline rises as in the above

criteria reduces this potential for bias. Using these criteria,
Hsu et al. reported that the community-based incidence of
non-dialysis AKI increased from 3227 to 5224 per million

Table 1 | Evolution of consensus definitions for AKI

Criteria RIFLE25 AKIN26 KDIGO27,92

Date of
release 2004 2007 2012

Baseline Not specifically defined. If not available, back-
calculate a serum creatinine using an eGFR of
75 ml/min/1.73 m2 using the MDRD equation

48-h window Not specifically defined. If not available, use lowest
serum creatinine during hospitalization, or calculate
SCr using MDRD assuming baseline eGFR 75 ml/
min/1.73 m2 when there is no evidence of CKD

Time interval Diagnosis and staging: within 1–7 days and
sustained more than 24 h

Diagnosis: within 48 h
Staging: 1 week

Diagnosis: 50% increase in SCr within 7 days or
0.3 mg/dl (26.5mmol/l) within 48 h

Criteria Creatinine Urine output
Creatinine (urine output

criteria same)
Creatinine (urine output

criteria same)

Stage Risk Increased SCr 1.5–1.9 times baseline
or GFR decrease 425%

o0.5 ml/kg/h for
6–12 h

1 Increased SCr 1.5–1.9 times
baseline

OR
X0.3 mg/dl (X26.5mmol/l)

increase

1 Increased SCr 1.5–1.9 times
baseline (7 days)

OR
X0.3 mg/dl (X26.5mmol/l)

increase (48 h)
Injury 2.0–2.9 times baseline or GFR

decrease 450%
o0.5 ml/kg/h for

X12 h
2 Same as RIFLE minus

eGFR criteria
2 same as AKIN

Failure 3.0 times baseline, GFR decrease
475%, or SCr

X4.0 mg/dl (354mmol/l) with an
acute rise of X0.5 mg/dl (44mmol/l)

o0.3 ml/kg/h for
X24 h

OR
Anuria for X12 h

3 Same as RIFLE or on RRT.
eGFR criteria removed

3 3.0 times baseline,
OR

Increase in SCr X4.0 mg/dl
(354mmol/l)

OR
Initiation of renal replacement

therapy
OR

For o18 years, decrease in
eGFR to o35 ml/min per

1.73 m2

Loss Persistent ARF¼ complete loss of
kidney function (need for dialysis)

44 weeks

Notable differences:
(1) Addition of 0.3 mg/dl absolute

change in SCr to increase diag-
nostic sensitivity

(2) eGFR criteria removed
(3) 48-h time window to ensure
acuity (also allows for inpatient

baseline values)
(4) Exclusion of Loss/ESKD cate-

gories as diagnostic criteria

Notable differences:
(1) Time frame differences for

absolute versus relative
changes in serum creatinine

(2) 0.5 mg/dl increase for those
with SCr X4.0 mg/dl

(354mmol/l) no longer
required if minimum AKI

threshold met
(3) Inclusion of eGFR criteria for

children
ESKD End-stage kidney disease

(43 months)

Abbreviations: AKI, acute kidney injury; AKIN, Acute Kidney Injury Network; ARF, acute renal failure; eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney
disease; ESRD, end-stage renal disease; MDRD, Modification of Diet in Renal Disease; KDIGO, Kidney Disease: Improving Global Outcomes; RIFLE, Risk, Injury, Failure, Loss,
and End-stage Kidney Disease; SCr, serum creatinine.

Table 2a | Hospital-based incidence rates of AKI for cardiac surgery before and after RIFLE/AKIN/KDIGO

Study Era Country Enrollment Setting Definition of AKI Incidence

Chertow et al.134 Before USA (Veterans Affairs) 1987–1994 Cardiac surgery RRT 1.1%
Mangano et al.135 RIFLE AKIN KDIGO USA 1991–1993 Cardiac surgery Postoperative serum creatinine

42 mg/dl with at least a
0.7 mg/dl increase from

preoperative levels.

7.7%

Lenihan et al.75 USA (National Hospital
Discharge Survey)

1999–2008 Cardiac surgery ICD-9 Codes for ARF 7.7%

Hobson et al.136 After USA (Florida) 1992–2002 Cardiothoracic surgery RIFLE 43%
Dasta et al.137 RIFLE AKIN KDIGO USA (Pittsburgh) 1998–2002 Cardiac surgery (CABG) RIFLE 6.9%
Kuitunen et al.138 Finland (Helsinki) 2003 Cardiac surgery RIFLE 19.3%
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patient-years (Figure 1b), confirming observations that
growth is occurring and reminding us that the number of
patients with AKI is substantially larger than captured by
administrative data alone.

Changes in the incidence of dialysis-requiring AKI

There has also been a parallel increase in observed rates of
AKI requiring renal replacement therapy (RRT). As RRT is a
procedure tightly linked to reimbursement, it is less
susceptible to variations in coding practices. One study
found a high sensitivity (90.3%) and specificity (93.8%)
using procedure codes for RRT linked to major AKI codes
when using chart review as a diagnostic standard.30 Using the
same approach to interrogate the NIS, the incidence of AKI
requiring RRT within the United States increased by sixfold
from 40 to 270 patients per million population between 1988
and 2002. Hsu et al.9 observed a remarkably similar increase
in the rates of AKI requiring RRT from 195 to 295 per million
person-years between 1996 and 2003 using an integrated
health-care system database in California (USA) (Figure 1c).
Similar growth has been reported in other countries
(Table 3). For example, Metcalfe et al.31 estimated the
population-based incidence of AKI requiring RRT in
Scotland (United Kingdom) at 203 cases per million in the
year 2000, a rate mirroring the US estimate from the same
year (222 cases per million population).32 A subsequent pros-
pective study using data encompassing all hospitals within
Scotland estimated that the population-based incidence of
AKI requiring RRT grew to 286 (95% confidence interval:
269–302) cases per million in 2002.31 Concurrent growth
within the United States also occurred with a similar popu-
lation incidence of 270 per million population in 2002.7 A
recent update using the NIS database by Hsu et al.32 reported
continued increases by up to 10%/year between 2000 and
2009, with a near tripling in the absolute number of annual

cases (Figure 1d). However, the extent to which these
increases reflect changes in underlying patient characteristics,
provider practices, or increased availability of RRT over time
is not yet known (see the section ‘Potential reasons for
growth in AKI’ below).

In conclusion, studies have demonstrated a growing
incidence of AKI among hospitalized patients. However,
interpreting trends in AKI and its outcomes should be
interpreted with potential increases in reporting and the
inclusion of less severe AKI in mind. Nevertheless, popula-
tion-based studies using more ‘objective’ creatinine-based
criteria coupled with a rapidly growing incidence of AKI
requiring dialysis suggest that increases in AKI are indeed
occurring and that the numbers of patients experiencing AKI
are larger than those indicated by administrative data alone.

POTENTIAL REASONS FOR THE GROWTH IN AKI
Earlier and more liberal use of dialysis

One possible explanation for the increasing incidence of AKI
requiring RRT is more liberal application of dialytic support.
However, between 1988 and 2002, Waikar et al.7 observed
increases in the comorbidity burden and illness severity of
patients receiving acute dialysis in the United States. For
example, the proportion of AKI patients receiving dialysis
with at least 3 comorbidities rose from 16.9 to 24.6% between
the first and last third of the study. Furthermore, the propor-
tion of those requiring mechanical ventilation also increased
from 18.0% in 1988 to 32.4% in 2002. Although ‘code-creep’
may have partially contributed to the former, the rise in
mechanical ventilation is less likely to be affected by coding
and do not support more liberal application of acute dialysis
to less sick patients as the primary reason for these increases.

Other possibilities include increasing availability of RRT
and earlier or lower thresholds for initiation, a trend
observed with the initiation of chronic dialysis.33,34

Although observational data do suggest potential benefit
for earlier initiation in AKI,35,36 few studies have examined
secular trends in the timing of dialysis initiation during AKI.
Table 4 lists the serum creatinine and blood urea nitrogen
levels at the time of RRT initiation within major observa-
tional studies and clinical trials within the past two decades.
We have also included a few selected studies from the more
distant past for comparison. Although it is clear that the
timing of initiation has evolved since the ‘early days’ of
dialytic therapy, more recent data do not suggest an obvious
trend toward earlier initiation over the past two decades
using these criteria alone. However, as most studies included
are clinical trials with specific criteria for RRT initiation,
these findings may not mimic changes in real-world practice
patterns. Furthermore, recent practice surveys suggest that
nephrologists are more likely to initiate RRT based on more
‘imminent’ indications such as hypervolemia, acidosis, or
electrolyte disturbances rather than the degree of azotemia
alone, particularly as severity of illness increases.37,38 For
example, attention to prognostic significance of fluid
overload in critically ill patients with and without AKI has

Table 3 | Studies reporting the population-based incidence of
dialysis-requiring acute kidney injury (AKI)

Study Country
Enrollment

years

Population-based
incidence per

million per year

Feest et al.151 UK (England) 1986–1990 22
Waikar et al.7 a USA (National) 1988 40
Khan et al.152 UK (Scotland) 1989–1990 50
Liano et al.153 Spain (Madrid) 1991 57
Korkeila et al.154 Finland (Kuopio) 1992–1993 80
Stevens et al.155 UK (East Kent) 1996 83
Cole et al.156 Australia (Victoria) 1996 134
Hsu(CY) et al.9 a USA (California) 1996 195
Robertson et al.157 UK (Scotland) 1994–2000 187
Metcalfe et al.31 UK (Scotland—

Grampian/Tayside)
2000 203

Hsu(RK) et al.32 a USA (National) 2000 222
Waikar et al.7 a USA (National) 2002 270
Prescott et al.158 UK (Scotland—entire) 2002 286
Hsu(CY) et al.9 a USA (California) 2002 295
Hsu(RK) et al.32 a USA (National) 2009 533
aData from multiple years presented from single studies.

Kidney International (2015) 87, 46–61 51

ED Siew and A Davenport: Growth of acute kidney injury r e v i e w



also increased in recent years, although its impact on acute
dialysis practice is not yet known.39–42 However, one study
examining secular trends in dialysis-requiring AKI following
elective major surgery within Ontario, Canada, found
that the timing of dialysis postoperatively shrank from a
median of 5 days (interquartile range: 3–9) in 1995 to 2 days
(interquartile range: 1–6) in 2009.10 Further studies are
required to determine whether and why more aggressive
dialysis initiation is occurring and whether this strategy is
yielding significant benefit. Nevertheless, it should be
emphasized that AKI requiring dialysis still represents a
small fraction of patients experiencing AKI.

Increases in comorbidity burden that affect susceptibility
to AKI

Another potential contributor to the growth in AKI is
an increase in the number of patients hospitalized who are
susceptible to this disease. As the absolute number of hospital
deaths associated with AKI requiring dialysis has increased,
the case–fatality ratio appears to be decreasing. The
previously described study by Waikar et al.7 revealed

declining mortality from as high as 41.3% in 1988 down to
28.1% in 2002, a decrease not entirely attributable by
increased discharges to ongoing care facilities. The
mortality associated with dialysis-requiring AKI has since
decreased further to 23.5% in 2009 in a similar study by Hsu
et al.32 Although improving therapies for diseases including
myocardial infarction, sepsis, and acute lung injury may be
contributing, similar progress for treatment of AKI itself has
not occurred. The latter prompts the question over whether
some of these improvements may be due to an increasing
number of patients who require a less severe insult that
prompts the need for RRT. For example, as CKD is the
predominant premorbid risk factor for AKI,43,44 an increase
in the hospital prevalence of CKD would be a plausible
explanation for both the increasing earlier initiation and the
lower associated mortality rates observed. Although it has
been pointed out that only modest increases in the
population-based prevalence of CKD have occurred,16,45,46

it is not clear whether the same holds true for hospitalized
populations. A recent Canadian study found a near tripling
in the prevalence of patients with CKD being considered

Table 4 | Mean/median serum BUN and creatinine at initiation of RRT in observational studies and clinical trials

Study Type Location (country)
Study
enrollment

Mean serum creatinine
at initiation (mg/dl)a

Mean BUN at
initiation (mg/dl)

Early
Parsons et al.159 Historical comparison UK 1956–1958 — Early 120–150

Late 200
Fischer et al.160 Historical comparison Early 152

Late 231
Kleinknecht et al.161 Historical comparison France 1966–1970 — Early threshold 93

Late 164

Contemporary
Gettings et al.162 Observational Scotland 1989–1997 3.3±1.8 73.2±39.6
Mehta et al.163 RCT (modality study) USA 1991–1995 4.4, 4.6 78.5, 87.1
Schiffl et al.164 RCT (dose of IHD) Germany 1993–1998 4.9±1.4

4.6±1.0
91±13
88±16

Ronco et al.165 RCT (dose of CRRT) Italy 1994–1999 3.5±1.5
3.7±1.6
3.6±2.1

51.0±12.1
50.1±10.9
54.1±12.1

Bouman et al.166 RCT (early vs. late) Netherlands 1998–2000 Early 45.7 (38.4–57.7)
Late 104.7(61.6–116.0)

Cho et al.167 Observational (PICARD) USA 1999–2001 4.0, 5.1 (by modality) 77, 95 (by modality)
Vinsonneau et al.168 RCT (modality study)

(Hemodiafe)
France 1999–2003 4.8 (95% CI: 4.6–5.2)

4.9 (95% CI: 4.3–5.3)
86.8 (95% CI: 81.2–92.4)
81.2 (95% CI: 72.9–86.8)

Uchino et al.169 Observational (BEST study) Global 2000–2001 Median (IQR)
3.3 (2.2–4.8)

not reported

Carl et al.170 Observational (early vs. late) USA 2000–2004 Early 5.0±2.1
Late 5.8±3.4

Early: 66.0±20.2
Late: 137±28.4

Prescott et al.171 Observational UK 2002 Median (range)
4.2 (0.55–26.9), 5.8 (0.77–19.8)
(by CKD status)

Median (range)
72.8 (11.2–263)
100.8 (25.2–308.1)
(by CKD status)

Palvesky et al.172 RCT (dose of RRT)
(ATN Study)

USA 2003–2007 4.1±2.3
4.1±2.0

65.9±30.2
66.7±35.2

Bellomo et al.173 RCT (dose of CRRT)
(ANZICS)

Australia/New Zealand 2005–2008 3.8±2.2
3.7±2.2

67.8±37.3
63.9±34.2

Abbreviations: ATN, acute tubular necrosis; BUN, blood urea nitrogen; CI, confidence interval; CKD, chronic kidney disease; CRRT, continuous renal replacement therapy;
IHD, intermittent hemodialysis; IQR, interquartile range; RCT, randomized controlled trial; RRT, renal replacement therapy.
aIf data were from RCT, means±s.d. were presented for each arm (if available).
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for major surgery from 2.0% in 1995–1997 to 5.5% in
2006–2009.47 Unfortunately, diagnostic codes have been
shown to be relatively insensitive for capturing CKD with
sensitivities ranging between 26.6 and 42.4% and may also
be subject to ‘code-creep’ over time.48–50 One study
examining the secular trends of renal dysfunction in
patients hospitalized with heart failure found that the mean
admission eGFR of patients admitted to Mayo Clinic
hospitals between 1987 and 2002 decreased from 73±31 to
55±25 ml/min per 1.73 m2.51 Although likely reflecting some
increase in AKI, some of this trend may also be attributable
to an increasing prevalence of CKD among patients with
heart failure. Of importance, as heart failure hospitalizations
continue to rise (Figure 2b),52 it is worth noting that nearly
one-third of patients hospitalized for heart failure within the
United States and more than half of the patients in the French
intensive care units have admission creatinine values of
42 mg/dl.53

In addition to lower eGFR, other risk factors that confer
susceptibility to AKI may also be increasing in prevalence.
For example, proteinuria has been identified to have a dose-
dependent association with the risk of developing AKI.54–56

The hypothesis that this may also be contributing is
supported by analyses of the NIS data set indicating that
the prevalence of diabetes among hospitalized patients was as
high as 19.4% in 2008.57 Similarly, obesity itself has recently
been identified to be an independent risk factor for AKI, an
effect potentially mediated by increases in the burden of
oxidative stress.58 Parallel increases in the prevalence of
obesity among hospitalized patients are also being
observed.59 Last, one of the fastest growing group of
patients experiencing AKI is the elderly,8 a group that
constitutes B35% of hospitalizations within the United

States.60 In addition to being most likely to experience critical
illnesses,61,62 age-related structural and functional changes in
the kidney including sclerosis, vascular rarefaction, and loss
of GFR and autoregulatory capacity all combine to increase
the risk for AKI in this growing population.63

Other changes in case-mix

Acute and chronic conditions associated with AKI. Another
possibility that might explain the reported growth in AKI
includes increases in its underlying precipitants.4 For example,
increases in hospitalizations for sepsis have paralleled growth
in AKI,64–66 recently surpassing acute myocardial infarction and
stroke for frequency of emergency medical service encounters
(Figure 2a). Two studies examining the population-
based incidence of sepsis in the United States reported age-
adjusted increases in sepsis-related hospitalization of B8%
per year.65,66 Among the elderly, rates of hospitalization with
pneumonia also increased by 20% between 1988 and 2002,
with an accompanying increase in patients admitted with X3
comorbid diagnoses including a higher prevalence of CKD.67

These changes have also been characterized by increasing
illness severity, with severe sepsis accounting for nearly half
of the sepsis-related hospitalizations, as well as increases in
accompanying organ failure, with the lung and kidney being
most commonly involved.

Another increasingly common condition associated with
the development of AKI is acute decompensated heart failure
(ADHF). ADHF remains a leading cause of Medicare-
associated hospitalizations, constituting B1 million admis-
sions per year.52 Impaired kidney function is extremely
common among patients hospitalized with ADHF, and it is
one of the most potent predictors of mortality.68,69 Approxi-
mately 64% of patients with serum creatinine values on
admission have an eGFR of o60 ml/min per 1.73 m2,68,69

with worsening of renal function during hospitalization
occurring in up to 37% of hospitalized patients with
ADHF.70,71 Hospitalization rates for ADHF have increased
by nearly 150% over the past two decades52 (Figure 2b), a
number projected to rise with the advancing age of the
population and improved survival in patients with cardio-
vascular disease.

A higher frequency of invasive procedures over time has
also been suggested as a part of the changing casemix of
AKI.16,23 Hassan et al.72 demonstrated that rates of angio-
plasty in Canada more than doubled between 1994 and 2005,
whereas rates of coronary bypass surgery remained relatively
stable, resulting in an increase in percutaneous coronary
intervention to coronary artery bypass surgery ratio.
However, despite this increasing frequency of percutaneous
coronary intervention, rates of AKI have actually declined for
patients associated with acute myocardial infarction, parti-
cularly among those requiring cardiac catheterization.73 By
analyzing 33,249 hospitalizations from the electronic medical
record data set of 56 hospitals across the United States
between 2000 and 2008, Amin et al.73 found a decrease in the
adjusted rates of AKI by 4.4% a year during this time interval
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Figure 2 | Temporal trends in sepsis and heart failure hospitali-
zations. National US trends of hospital discharges for (a) sepsis using
the Nationwide Inpatient Sample (USA)66 and (b) congestive heart
failure using the National Hospital Discharge Survey (USA).52
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(5.5% in those treated with cardiac catheterization;
Figure 3a). These findings persisted even when more severe
definitions of AKI were used (that is, doubling of serum
creatinine) and after adjusting for a potential increase in the
frequency of monitoring of kidney function.74

One result of the increasing application of minimally
invasive procedures including percutaneous coronary inter-
vention and laparoscopic surgeries may be an increasing
complexity of cases referred for major surgery. A recent study
of patients undergoing major elective surgery in Ontario,
Canada, between 1995 and 2009 found that patients were
increasingly older (increasing proportion of age X65 years
from 39.5 to 50.6%) and sicker (proportion with X2
comorbidities increasing from 10.2 to 18.4%) over time.10

Patients hospitalized with an underlying diagnosis of CKD,
hypertension, congestive heart failure, liver disease, and
diabetes were at a higher independent risk for dialysis-
requiring AKI, the incidence of which increased threefold
during this time frame. This increase was experi-
enced primarily by those undergoing cardiac (1 in 390 to 1
in 80) and vascular (1 in 230 to 1 in 85) surgeries (Figure 3b).
This trend has also been confirmed among cardiac surgery
patients within the United States.75 As data from randomized
controlled trials continue to favor coronary artery
bypass surgery for patients with advanced coronary artery
disease or complex lesions, this population may reflect an

important expanding subgroup of patients at risk for
developing AKI.76,77

In an attempt to quantify the potential impact of some of
the above-mentioned factors, Hsu et al.32 used regression
modeling to potentially explain the continued growth of
dialysis-requiring AKI. Adjusting for demographics, as well as
hospitalizations involving sepsis, mechanical ventilation,
congestive heart failure, and cardiac catheterization, the
authors found that increases in these types of hospitalizations
accounted for only 30% of the observed growth. Even
considering potential shifts in inpatient case-mix to more
complicated procedures such as major surgery, one would
potentially expect these to be also captured by mechanical
ventilation records, suggesting the importance of other
contributors.

One increasingly recognized contributor includes patients
with cancer.78–80 Improvements in the prevention, diagnosis,
and treatment of malignancy have reduced cancer-related
mortality by 20% over the past two decades.81 As patients
with malignancy largely include the elderly with high
comorbidity burden, this improved survival may also be
increasing the number of survivors at risk for develop-
ing AKI. In addition, these welcome advances also carry
inherent risks that can contribute to AKI. Recent data using
creatinine-based definitions suggest that the incidence of
AKI among hospitalized patients with cancer may be as
high as 12%.82 The etiology of AKI varies widely in this
population, but includes traditional risk factors such as
volume depletion from vomiting and diarrhea, sepsis from
immunosuppression, attendant antibiotic use (prophy-
laxis and treatment), and serial imaging. In addition,
disease-associated factors including renal cancers, cast
nephropathy, tumor lysis syndrome, hypercalcemia and
hyperuricemia, glomerular disease, and obstruction are
also important contributors. Finally, the spectrum of
potentially nephrotoxic chemotherapies and myeloablative
protocols have grown drastically, including, but not limited
to, platinum-based therapies, methotrexate, calcineurin
inhibitors, gemcitabine, cytokine therapies (for example,
interleukin-2), and anti–vascular endothelial growth factor
agents, and are detailed elsewhere.83 Enhancing our under-
standing of these adverse sequelae and their management
(that is, ‘Onco-nephrology’) has been recently recognized by
the American Society of Nephrology as a growing area
of need.78

Medications

Early single-center studies were among the first to suggest an
expanding role of medications in the changing epidemiology
of AKI. In the previous series of studies by Hou et al.22 and
Nash et al.,23 the contribution of medications grew from 7 to
16% over a 17-year span between two centers. This increase
in prominence was marked by increases in the repertoire of
potential nephrotoxic drugs available. In 1979, aminogly-
cosides accounted for 82% of AKI caused by drugs; however,
by 1996, they accounted for only 29% of drug-related AKI.
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Large observational studies of critically ill patients estimate
that medications now contribute to almost one-fifth of severe
AKI in adults.84 Even among children, nephrotoxin exposures
(16% of cases) have supplanted primary renal disease (7% of
cases) as a leading cause of AKI.85 A recent matched
case–control study in 2008 found that most (480%) of all
hospitalized children with and without AKI were exposed to
at least one potentially nephrotoxic medication, with a
median number of at least two (range: 0–8) for children who
developed AKI.86

In addition to newer chemotherapeutic agents, nephrotoxins
are becoming increasingly varied with an ever-expanding
repertoire of antimicrobial agents.87 Recent attention has also
been directed to commonly used interventions previously
considered to be benign. These include a critical
reexamination of certain intravenous fluid formulations
including hydroxyethyl starches88–90 and, more recently,
chloride-rich solutions.91 The former have been associated
with a higher incidence of AKI and RRT in recently
conducted trials in critically ill patients, and no longer
recommended for initial volume expansion.92,93 Chloride-
rich solutions have also been demonstrated to associate with
an increased risk for AKI and RRT in a recent open-label
sequential period study;91 however, these findings remain to
be validated in randomized trials. As secular trends in the
growth in use of chloride-rich solutions are difficult to
quantify, their contribution to the increasing rates of AKI
observed remain uncertain. However, increasing emphasis on
early and aggressive fluid resuscitation as a component of
standard therapy in diseases such as sepsis have occurred over
the past decade.94,95 These data compel us to examine the
safety of intravenous solutions with the same level of scrutiny
as other pharmacotherapeutics.

Even outside of hospitalization, an increasing spectrum of
medications commonly administered in a chronic stable
setting is becoming recognized for their nephrotoxic poten-
tial (Table 5). Nonsteroidal anti-inflammatory drug expo-
sure, in particular, continues to be problematic in patients at
risk for AKI, including those with hypertension, congestive
heart failure, and CKD, and it is one of the five areas recently
identified by the American Society of Nephrology Quality
and Patient Safety Task Force ‘most open’ to improve-
ment.96,97 In addition to nonsteroidal anti-inflammatory
drugs, proton-pump inhibitors and phosphate-based purga-
tives have been implicated in AKI, many of which do not
require a prescription and therefore more difficult to study.

Aside from an increasing variety of nephrotoxic medica-
tions, growth in AKI over the past two decades has also
occurred on a background of increasingly aggressive blood
pressure control. This is particularly true among patients
with CKD, the group identified to be at the highest risk for
developing AKI.43,44 Peralta et al.98 observed that nearly
one-third of hypertensive patients with CKD were on X3
antihypertensive drugs, including 50% on diuretics and
58% on renin–angiotensin–aldosterone system (RAAS) inhi-
bition. Increasing efforts to improve blood pressure control

typically increases the number of medications prescribed,
leading to a wider pulse pressure and a lowering of diastolic
blood pressure. Even in the absence of frank hypotension, a
fall in blood pressure in patients with impaired renal
autoregulation, particularly those with CKD, hypertension,
and the elderly, may lead to increased risk of AKI.99

One component of the above strategy has included
widespread adoption of RAAS inhibitors. No other class of
medications has been so widely integrated into treatment for
multiple chronic conditions, including proteinuric and
nonproteinuric CKD, diabetes, coronary artery disease,
systolic heart failure, and hypertension.100–105 Simultane-
ously, efforts to improve CKD awareness, including increased
electronic reporting, have potentially increased their
use.106–108 However, although the renal benefits of lowering
intraglomerular pressure are well established, it is also known
to come at the expense of blunting regional hemodynamic
autoregulation that may lower the threshold for developing
or worsening AKI in circumstances that ‘stress the kidney’ in
susceptible individuals. One recent study observed that RAAS
inhibition was among the most common medication classes
associated with adverse drug events among patients
hospitalized with AKI, including exacerbation of hypoten-
sion or AKI itself.109 RAAS inhibition has also been
associated with AKI in other conditions such as cardiac
surgery and contrast exposure.110,111 Analyses from the ON-
TARGET and the VA NEPHRON-D studies, two randomized
studies comparing single versus dual RAAS blockade, found
the latter to be associated with a greater loss of kidney
function over time, a finding largely driven by increases in
AKI.112,113 Not surprisingly, the use of a triple therapy
combination, of angiotensin-converting enzyme inhibitors,
diuretics, and nonsteroidal anti-inflammatory drugs, was also
recently reported to be associated with a 31% increased risk
for AKI.114 In aggregate, these findings suggest that the
changing pharmacoepidemiology of AKI is an important and
emerging area of investigation.

FUTURE DIRECTIONS
Limitations of serum creatinine as a biomarker of AKI

As the potential contributors to AKI become more varied and
common, a premium will be placed upon the ability to
extend AKI phenotyping beyond describing the clinical
setting in which the injury occurs. Most studies predomi-
nantly use changes in serum creatinine to stage AKI. In
addition to how the choice of baseline creatinine can affect
the reported incidence of AKI, a few important biological and
measurement considerations of creatinine potentially limit
accuracy in diagnosing AKI. Leaving aside the inherent
difficulties in interpreting small changes in serum creatinine
in neonates and infants, serum creatinine depends equally
upon both creatinine generation and excretion. Creatinine
generation can be influenced by multiple factors, and can be
reduced in AKI. Whether changes in production rate is
similar in all types of AKI is unknown, as intuitive differences
between sepsis-associated AKI and drug-induced AKI, for
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example, likely exist.115 In addition, creatinine generation or
release will also depend upon hepatic creatine synthesis, which
will be reduced in liver disease, and affected by other endocrine
disorders.116 Finally, it must also be recognized that serum
creatinine is measured as a concentration and thus affected by
variations in volume status, particularly among patients with
congestive heart failure, one of the growing populations
experiencing AKI discussed in this review. Recent attempts to
quantify the impact of fluid accumulation on the characteri-
zation of AKI suggest that it can hinder a timely diagnosis or
mask less severe injury.40,117 In a post hoc analysis of the Fluid
and Catheter Treatment Trial (FACTT), Liu et al.40 found that
AKI was potentially misclassified in up to 18% of patients after
adjusting serum creatinine values for net fluid balance and
estimated total body water. Most cases were patients in whom
the diagnosis of AKI would have otherwise been ‘missed’
without adjustment. These patients experienced mortality rates
similar to those with AKI that persisted before and after
adjustment. These data suggest that the incidence of AKI may
actually be underestimated in some patients and that the impact
of fluid accumulation in its diagnoses and staging is not trivial.

Conversely, modest increases in serum creatinine may not
necessarily reflect parenchymal injury and may even be
associated with improved prognosis in some circumstances.
For example, Coca et al.118 recently demonstrated that
preoperative use of angiotensin-converting enzyme inhibitor/
angiotensin receptor blocker before cardiac surgery associates
with AKI using serum creatinine–based definitions but not
with significant elevations in tubular injury markers com-
pared with non-AKI patients. Testani et al.119,120 observed

that the indices of hemoconcentration associated strongly
with worsening renal function (that is, increases in serum
creatinine) yet also with reduced mortality during treatment
of decompensated heart failure. Collectively, these examples
highlight the need to allow for complementary information
regarding ongoing parenchymal damage to be added to
observed functional changes. The ability to segregate tissue
injury from changes in function is a knowledge gap that
novel tissue injury biomarkers propose to fill.121–123 Figure 4
illustrates the conceptual framework proposed by the Acute
Dialysis Quality Initiative (ADQI) that describes how AKI
might be classified using a combination of both functional
(for example, serum creatinine, urine output) markers and
damage (for example, tubular injury) biomarkers. This
expands upon the current paradigm that infers injury by
the presence of functional changes alone. The potential for
enhanced phenotyping with newer injury markers might
allow for the characterization of ‘subclinical’ injury (upper
right quadrant) that may eventually be accompanied by
functional loss but still associate with worse outcomes,
patients with loss of function who may be at risk for damage,
and those with both ongoing damage and loss of function
(lower right quadrant).123 In addition to facilitating a timely
and accurate diagnosis of ongoing parenchymal damage,
recent studies suggest that these markers may potentially
provide additional diagnostic and prognostic information
that complement serum creatinine.124–126

In the interim, future studies that use administrative codes
alone to examine trends in the incidence of AKI and its
associated outcomes should be interpreted in light of

Table 5 | Medications that associate with AKI at a population level

Study Design/setting Medication AKI definition Risk of AKI

Leonard et al.174

(1987–2002)
Nested case–control in a National
General Practitioner data set,
London, UK

Proton-pump inhibitor Acute interstitial nephritis (diagnosis
codes, free text)

Adjusted OR 3.2 (95%
CI: 0.80–12.79)

Dormuth et al.175

(1997–2008)
Nested case–control of new users
aged 440 years, CanadaþUKþUSA

High-potency statins Hospitalization for AKI using a
validated coding algorithm

Fixed effect rate ratio:
non-CKD 1.34 (95% CI:

1.25–1.43)
CKD 1.1 (95% CI:

0.99–1.23)
Bird et al.176

(2001–2011)
Nested case–control study of men
aged 45–80 years within a Health
Plan Claims Database, United States

Fluoroquinolones Hospitalization with a primary
discharge diagnosis of ARF (ICD-9-CM)

RR 2.18 (95% CI:
1.74–2.73)

Hurst et al.177

(2002–2006)
Retrospective Cohort, Department
of Defense EMR

Phosphate-based
purgatives (USA)

50% Increase in serum creatinine Adjusted OR 2.35 (95%
CI: 1.51–3.66)

Zhao et al.178

(2004–2008)
Population-based cohort study of
elderly adults, Ontario, Canada

Fibric acid derivatives Hospitalization for increase in
serum creatinine code (ICD-10)
within 90 days of prescription

Adjusted OR 2.4 (95%
CI: 1.7–3.3)

Schneider et al.179

(2006)
Nested case–control study of elderly
patients in Quebec, Canada

NSAIDs/COX-2 inhibitors Hospitalization with ICD-9 discharge
diagnoses of acute renal failure
within 30 days of prescription

RR 2.05 (95% CI:
1.61–2.60)

Wikman et al.180

(2008–2011)
Prospective cohort of 271
consecutively treated HIV patients

HAART therapy (Madrid/
Spain)

RIFLE/AKIN 7 episodes/100
patient-years

Gandhi et al.181

(2003–2012)
Population-based retrospective
cohort of elderly adults in
Ontario, Canada

Calcium-channel blockerþ
clarithromycin

Hospitalization with ICD-9 discharge
diagnoses of acute renal failure
within 30 days of prescription

OR 1.98 (95% CI:
1.68–2.34) compared

with azithromycin

Abbreviations: AKI, acute kidney injury; ARF, acute renal failure; CI, confidence interval; CKD, chronic kidney disease; COX-2, cyclooxygenase-2; EMR, electronic medical
record; HAART, highly active antiretroviral therapy; ICD-9-CM, International Classification of Diseases, Clinical Modification; NSAID, nonsteroidal anti-inflammatory drug; OR,
odds ratio; RR, relative risk.
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potential increases in reporting over time that includes less
severe AKI. Whenever possible, the magnitude of these effects
should be estimated by consistently applying a single
laboratory-based definition throughout the survey period
in at least a subset of patients. Greater emphasis should also
be placed on providing population-based, rather than
hospital-based, incidence rates to reduce the impact of varia-
tion in admission practices in disease reporting.127 Attention
to premorbid information on baseline kidney function is also
essential to minimize potential bias and to anchor the study
of the long-term effects of AKI.128 If information on
premorbid kidney function is not available, estimates of
baseline kidney function should make use of clinical data
available and sensitivity analyses performed.129 Regardless of
the further refinements in the diagnostic approach to this
disease, it is important to remember that each iterative
definition has demonstrated a dose-dependent association
between increasingly severe AKI and poor outcomes.13,130,131

Refinements to standardized definitions for other acute
conditions such as acute myocardial infarction that also once
heavily relied on coding but continue to incorporate newer
and improved diagnostics along with robust validation
efforts highlight an important path for investigators of AKI
to follow.132,133 Last, with data sources currently available,
continued efforts should be undertaken to pinpoint the
reasons for this observed growth, including identifying
subgroups experiencing the most rapid increases in AKI
and modifiable risk factors that can attenuate this growth.

SUMMARY

The hospital- and population-based reported incidences of
AKI have increased in North America and Europe. Although
evidence suggests some increases in the diagnostic sensitivity
of administrative codes, studies applying consistent creati-
nine-based definitions over time indicate that ‘true’ increases
in AKI are occurring. The incidence of dialysis-requiring AKI
is also increasing, although the reasons for this growth and
the effect of changes in how this treatment is being applied
remains to be studied. Contributors to the growth of AKI

include increases in the known precipitants of AKI such as
sepsis, major surgery, and congestive heart failure, higher age
and comorbidity burden of patients that increase the risk
of AKI including CKD, proteinuria, diabetes, and obesity,
and the broadening repertoire of medications that either
are directly nephrotoxic or may lower the threshold for
sustaining AKI.

In conclusion, the important work accomplished in this
field within a relatively short time frame has uncovered that
AKI is a growing problem. The parallel increase in workload,
related patient outcomes, and escalating health-care costs
associated with this disease highlight important and growing
challenges for the medical community. Reducing the burden
of AKI will require identifying those experiencing the fastest
growth in AKI and its complications, refinements to how we
approach the diagnosis of AKI, including the development
and validation of biomarkers that can complement the
limitations of serum creatinine, and research that identifies
modifiable targets to prevent, treat, and reduce the impact of
this disease.
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