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Abstract
Rapid-paced development and adaptability of artificial intelligence algorithms have secured their almost ubiquitous presence in the

field of oncological imaging. Artificial intelligence models have been created for a variety of tasks, including risk stratification, auto-

mated detection, and segmentation of lesions, characterization, grading and staging, prediction of prognosis, and treatment response.

Soon, artificial intelligence could become an essential part of every step of oncological workup and patient management. Integration

of neural networks and deep learning into radiological artificial intelligence algorithms allow for extrapolating imaging features oth-

erwise inaccessible to human operators and pave the way to truly personalized management of oncological patients.

Although a significant proportion of currently available artificial intelligence solutions belong to basic and translational cancer

imaging research, their progressive transfer to clinical routine is imminent, contributing to the development of a personalized

approach in oncology. We thereby review the main applications of artificial intelligence in oncological imaging, describe the example

of their successful integration into research and clinical practice, and highlight the challenges and future perspectives that will shape

the field of oncological radiology.
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Introduction
The dramatic increase in the amount of imaging data and
storage and processing capacity over the past decades has pro-
moted the frenzied development of artificial intelligence (AI)
systems in diagnostic imaging. There is hardly a radiology
field that did not face extensive AI research and fast-paced clin-
ical assimilation. Cancer imaging, undoubtedly, is where its
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impact has so far been the greatest, ever since the introduction
of the first computer-aided detection (CAD) systems in the
1980s. The rapid improvement and high-level performance of
CAD systems in lung and breast cancer screening contributed
to a growing interest in the development of AI-based tools
and their continuous integration into routine cancer imaging.

The AI technological domain boasts a great diversity of archi-
tectures and task targets, which tend to be ultra-specialized.
Oncological applications include the identification of patients
at risk of developing cancer, automatic lesion detection with
CAD systems, treatment planning tools, and models for predict-
ing treatment response and prognosis.1 Furthermore, radiomics
and radiogenomics methods allow to personalize the risk
profile of each patient through novel imaging markers not detect-
able by the human eye of even the most experienced radiolo-
gists.2 These findings reflect the unique features of oncological
patients and their diseases and can be used to devise patient-
tailored management strategies and personalized targeted thera-
pies according to the principles of precision medicine.3

The aim of this article is to provide an overview of the appli-
cations of AI in oncological imaging, as well as to analyze
obstacles to their wider use in clinical practice. The following

AI application will be discussed: risk stratification, lesion detec-
tion and cancer screening, radiomics and radiogenomics, tumor
segmentation and treatment planning, and treatment and prog-
nosis prediction. Relevant AI terminology and concepts will
be introduced before proceeding to the main discussion.

Artificial Intelligence: General Principles
Technology that mimics human intelligence to solve human
problems is the core of what is collectively called AI.
Developed as a branch of computer science, present-day AI is
a broad field of knowledge that welcomes contributions from
different disciplines.4 While AI is still far from realizing its
full potential, it has already shown outstanding results in a
variety of fields, notably including the research and clinical
activity of radiology departments. However, an almost habitual
presence of AI in radiology coexists with an often-superficial
knowledge of its inner workings and a degree of confusion
about AI terminology. Terms such as AI, machine learning
(ML), deep learning (DL), and neural networks are often used
interchangeably, despite having substantial differences.5

In the classical paradigm of computer science, a machine (ie,
a computer) performs on an input the function for which it is
programed to obtain an output. The problem is that it is not pos-
sible to translate the extremely complex cognitive process that
underlies the work of an experienced radiologist into the pro-
gramming code. This challenge can be addressed through an
ML approach in which the model, like the human brain,
could learn from its mistakes. ML algorithms attempt to approx-
imate a required function recognizing meaningful patterns in
data.6 Most ML approaches used in medical imaging require
some degree of human intervention to be trained and are
called “supervised algorithms.”7 Supervised algorithms are
trained on sample data sets containing typical examples of
inputs and corresponding outputs. In the simplest cases, the
training dataset is labeled by human experts based on manually
chosen characteristics of interest. For example, the training
dataset may consist of both native chest computed tomography
(CT) scans and examination in which lung nodules are high-
lighted and classified as benign or malignant. However, training
datasets can also contain a mix of labeled and unlabeled images.
In this case, the algorithm would quantitatively assess the
voxels constituting lung nodules and decide what features
make them appear benign or malignant. Finally, in advanced
AI applications, the training dataset can consist of unlabeled
data that the system will reclassify and organize based on
common characteristics to try to predict subsequent inputs.
This type of unsupervised learning generally makes use of
so-called DL algorithms.

From an operational point of view, ML tools are built using
artificial neural networks (ANN) (Figure 1) that has proved par-
ticularly fit for medical imaging.6 ANN are inspired by the
human brain and consist of several layers of interconnected
“nodes” or “cells.”8 The outermost layer is an input layer for
initial data, while the innermost layer of the algorithm is the
output layer. The cells in different levels are connected and

Figure 1. Hierarchy of AI domains frequently employed in
oncological imaging. AI field encompasses the theory and
development of a wide range of computer systems built to perform the
tasks that traditionally required human intelligence. ML is a widely
used AI approach based on self-learning algorithms that recognize data
patterns in order to predict outcomes. Artificial neural networks are a
widespread ML architecture inspired by a human brain, where the
information is passed between “nodes” or “cells” organized into
several layers. The number of hidden middle layers can vary and
depends on the algorithm’s function and complexity. When the overall
number of layers exceeds 3, the algorithm is considered “deep” and
defined as DL. The inner working of DL algorithms cannot be directly
assessed by human operators and are often referred to as “black boxes”.
Abbreviations: AI, artificial intelligence; DL, deep learning; ML,
machine learning.

2 Technology in Cancer Research & Treatment



activate one another as the information passes downstream and
gets analyzed. The output of each cell depends on a single input
value multiplied by a “weight” value. If the output of any indi-
vidual node is above a specified threshold value, it becomes
activated and sends data to the next layer of the network.
Otherwise, no data is passed along. Thanks to their unique
learning features and sensitive calibration range, ANN algo-
rithms are powerful tools for analyzing large amounts of
imaging data progressively shaping the weight of their connec-
tions to reduce the uncertainty of the approximation as they are
exposed to more data samples. The number of middle layers
depends on the algorithm’s function and complexity, and an
increased number of layers gives rise to so-called DL algo-
rithms. DL uses ANN to discover intricate structures in large
data sets with different and increasing levels of abstraction.6,9

DL models are well-suited for medical image analysis, allowing
the detection of hidden patterns and uncover insightful out-
comes, sometimes beyond what human experts can provide.10

DL algorithms contribute to the fast development of radio-
mics, which has recently emerged as a state-of-the-art science
in the field of individualized medicine. First defined in 2012 as
“high throughput extraction of quantitative imaging features
with the intent of creating mineable databases from radiological
images,”11 radiomics represents a new approach to medical
imaging analysis and allows to further bridge the gap between
raw image data and clinical and biological endpoints.12

Radiomics is based on the assumption that biomedical images
contain disease-specific information that is imperceptible to the
human eye.13,14 Although radiomics is not necessarily
AI-based, the advances in ML and DL algorithms have greatly
facilitated the research and application of radiomics models.
Thanks to AI methods and advanced mathematical analysis,
radiomics models quantitatively assess large-scale extracted
imaging data to identify imaging biomarkers that go beyond
simple qualitative evaluation. In oncological imaging, radiomics
features are related to tumor size, shape, intensity, and relation-
ships between voxels and texture. These features collectively
provide the so-called radiomics signature of the tumor.15

Radiogenomics is a field closely related to and drawing from
radiomics and is based on the hypothesis that extracted quantita-
tive imaging data are a phenotypic manifestation of the mecha-
nisms that occur at the genomic, transcriptomic, or proteomic
levels. Radiogenomics combines large volumes of quantitative
data extracted from medical images with individual genomic phe-
notypes to assess the genomic profile of tumors. This allows the
creation of prediction models used to stratify patients, guide ther-
apeutic strategies, and evaluate clinical outcomes.16 Imaging data
can be further combined with clinical and laboratory information
and other personalized patient variables to improve the precision
of diagnostic imaging, predict outcomes, and identify optimal
management.17

Risk Stratification
Identifying patients at risk of developing malignancy and refer-
ring them to personalized screening programs is one of the

major challenges in modern oncology. AI algorithms allow
the derivation of clinically important predictors from generic
and often weakly correlated imaging features. When combined
with clinical data, this information facilitates the identification
of patients that may be at risk of developing malignant
lesions.18 Moreover, AI has the potential to increase the accu-
racy of radiological assessment of tumor aggressiveness and
differentiation between benign and malignant lesions, allowing
for more precise patients’ managament.1

AI-based prediction models have been developed for a
variety of imaging techniques and a wide range of malignan-
cies, including lung, colorectal, thyroid, breast, and prostatic
cancers. Breast cancer has traditionally attracted major interest
for AI-based risk prediction models. Breast cancer remains the
leading cause of female cancer mortality with the survival rates
in developing countries being as low as 50% due to late detec-
tion.19 A personalized, accurate risk scoring system would iden-
tify patients at high risk of developing breast tumors and in need
of strict imaging monitoring.20 International Breast Intervention
Study (IBIS) model, or Tyrer–Cuzick (TC) model, is a scoring
system guiding breast cancer screening and prevention.21 It
accounts for age, genotype, family history of breast cancer,
age at menarche and first birth, menopausal status, atypical
hyperplasia, lobular carcinoma in situ, height, and body mass
index. Despite its widespread use, IBIS/TC model demon-
strated limited accuracy in some high-risk patient popula-
tions.22 Integration of DL-identified high-risk imaging
features can refine the accuracy of the IBIS/TC model and over-
come some of its limitations.23,24 Breast density is a mammo-
graphic feature closely related to the risk of breast cancer and
is integral to the correct reporting of mammographic examina-
tions.25 It can be successfully assessed by AI algorithms with an
excellent agreement and high intraclass correlation coefficient
between the AI software and expert readers.26 A hybrid DL
model evaluated by Yala et al included mammographic breast
density, age, weight, height, menarche age, menopausal
status, detailed family history of breast and ovarian cancer,
breast cancer gene (BRCA) mutation status, history of atypical
hyperplasia, and history of lobular carcinoma in situ. The IBIS/
TC and hybrid DL models showed an area under the curve
(AUC) of 0.62 (95% confidence interval [CI]: 0.57-0.66), and
0.70 (95% CI: 0.66-0.75), respectively. The hybrid model
placed 31% of patients in the top risk category, compared
with 18% identified by the IBIS/TC model, and was able to
identify the features associated with long-term risk beyond
early detection of the disease.27

Another aspect related to risk stratification includes the
assessment of incidentally discovered benign lesions and iden-
tifying those that are more likely to develop malignancy in the
future. This is particularly relevant when dealing with lung
nodules, as radiologists routinely evaluate hundreds of lung
nodules to assess their size, location, margins, and evolution.
This information is then subjectively interpreted with the help
of guidelines and about the clinical characteristics and history
of the patient, to stratify the risk and customize therapeutic
and monitoring protocols. AI can appreciably facilitate this
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challenging and time-consuming task. Baldwin et al assessed
the performance of an AI-based lung cancer prediction convolu-
tional neural network (LCP-CNN) compared with the multivar-
iate Brock model, which estimates the risk of malignancy for
CT-detected pulmonary nodules. LCP-CNN score demon-
strated an improved AUC compared with Brock model
(89.6%, 95% CI: 87.6-91.5 and 86.8%, 95% CI: 84.3-89.1,
respectively) and allowed to identify a larger proportion of
benign nodules with a reduced false-negative rate. Integration
of LCP-CNN into the assessment of lung nodules detected on
chest CT scans could potentially reduce diagnostic time
delays.28 Another CNN-based model integrating imaging fea-
tures with clinical data and biomarkers achieved 94% sensitiv-
ity and 91% specificity for the differentiation of benign and
malignant pulmonary nodules on CT imaging.29 The results
highlight the potential of AI to reduce the need for follow-up
scans in low-scoring benign nodules, while accelerating the
investigation and treatment of high-scoring malignant nodules
and reducing the costs of follow-up examinations. In another
study, the use of an auxiliary AI-based tool allowed to
improve readers’ sensitivity and specificity in the classification
of malignancy risk of indeterminate pulmonary nodules on
chest CT. Moreover, it improved interobserver agreement for
management recommendations of these indeterminate lung
nodules.30

In another approach, a DL signature was developed for N2
lymph node involvement prediction and prognosis stratification
in clinical stage I nonsmall cell lung cancer (NSCLC). A mul-
ticenter study performed to test its clinical utility demonstrated
an AUC of 0.82, 0.81, and 0.81 in an internal test set, external
test cohort, and prospective test cohort, respectively. Moreover,
higher DL scores were associated with more activation of tumor
proliferation pathways and were predictive of poorer survival
rates.31

AI models have also been used for risk stratification in other
types of lesions. An ANN-based DL algorithm allowed reliable
differentiation of malignant versus nonmalignant breast nodules
first assessed with breast ultrasound and initially reported as
breast imaging reporting data systems (BI-RADS) 3 and 4.32

Hamm et al developed ANN for automated characterization
of liver nodules on magnetic resonance imaging (MRI), with
a 92% sensitivity and 98% specificity in the training set and
higher sensitivity and specificity compared to radiologists in
the test dataset.33 An ML model allowed to distinguish
benign from malignant cystic renal lesions on CT with an
AUC of 0.96 and a benefit in the clinical decision algorithm
over management guidelines based on Bosniak classification.34

Similarly, an AI-based DL model correctly predicted the major-
ity of benign and malignant pancreatic cystic lesions and out-
performed Fukuoka guidelines.35 In the risk stratification of
endometrial cancer, several features identified on T2-weighted
MRI were selected to build a predictive ML model, which dem-
onstrated an accuracy of 71% and 72% in the training and test
datasets, respectively.36 Interestingly, the study by Hsu et al
identified that the body composition analysis by an AI algo-
rithm can predict mortality in cancer, highlighting a significant

correlation between sarcopenia and mortality in pancreatic
cancer patients.37

Lesion Detection and Screening
Screening for clinically occult malignant tumors represents one
of the most important goals of oncological imaging and allows
timely treatment of tumors that would otherwise pass unno-
ticed. Radiological screening programs evaluate hundreds of
patients at a time, creating a considerable amount of imaging
data to review. AI applications can be used to manage the work-
load and to reduce observational oversights and false-negative
readings.38 Improved detection of cancer through screening is
thereby a significant area of interest in oncological imaging
AI applications.

CAD tools are AI systems commonly employed in radiolog-
ical screening. CAD programs are pattern recognition software
that assists radiologists in identifying potential anomalies in
radiology examinations. Although all CAD systems are
somehow AI-based, their design can employ a wide range of
architectures of varying complexity and depth. Relatively
simple early CADs were designed to reflect radiologists’ per-
spectives and searched for the findings normally assessed by
human readers.38 For example, in breast cancer screening,
CAD assessed mammograms for the presence of microcalcifica-
tions, structural distortions, and masses. Advanced present-day
CAD systems make extensive use of DL models to extract
information that is not immediately accessible to human opera-
tors with promising results and potential for improved accuracy
compared with radiologists or clinicians.39 Whereas earlier
CAD programs were characterized by high sensitivity and
low specificity, newer techniques with improved specificity
could significantly facilitate cancer screening. However, radiol-
ogists’ experience and judgment remain central to defining the
factual relevance of the result provided by CAD systems and
deciding further steps.

In clinical routine, CAD systems can be used in a variety of
ways. When CAD is used as a “first reader,” a primary CAD
assessment is followed by an evaluation by a radiologist that
only reviews the anomalies identified by CAD. Alternatively,
a screening test can be initially assessed by a radiologist, fol-
lowed by a secondary CAD review. Problematic areas identified
by CAD software are then re-evaluated before the conclusion is
formed. Finally, in a concurrent examination, a radiologist rou-
tinely assesses the images as the CAD marks remain visible.

Breast cancer screening represents one of the most success-
ful examples of the long-standing implementation of CAD pro-
grams into clinical practice.40 Early forms of breast screening
CAD systems, developed in the 1980s, were limited by poor
specificity and low diagnostic accuracy resulting in numerous
false positives, unnecessary biopsies, and soaring costs.
Integration of DL into recent CAD systems led to significant
improvements in specificity. The accuracy of DL-based
CADs for the detection of breast cancer on mammography is
comparable to that of radiologists, although the latter tend to
be slightly more specific at the expense of less sensitivity.41
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A single CAD reading can be equivalent to a double reading by
2 radiologists as required by standardized guidelines.42

CAD-based screening also allows early detection of pulmo-
nary nodules, defined as circumscribed round-shaped parenchy-
mal lesions of <3 cm in diameter.43 The first CADs for
automatic detection of lung nodules on chest CT appeared in
the early 2000s, although the lack of specificity impeded their
widespread clinical use, similar to other early CAD programs.
Thanks to the availability of large databases of chest CT
scans and the integration of DL techniques into CAD architec-
tures, modern systems demonstrate higher specificity and
decreased false-positive rates.44 CAD systems based on DL
algorithms detect more pulmonary nodules on CT scans com-
pared to double reading by radiologists45 and allow to classify
the detected nodules based on selected features.46 Another
DL-based CAD algorithm outperformed thoracic radiologists
for the detection of malignant pulmonary nodules on chest
x-rays and improved radiologists’ performance when used as
a second reader.47

CT colonography, or virtual colonoscopy, is a screening
technique for the early identification of colonic polyps before
they progress to colorectal cancer. Although CAD can
improve polyp detection rates, several structures can result in
false-positive readings, including haustral folds, coarse
mucosa, diverticula, rectal tubes, extracolonic findings, and
lipomas.48 The experience of the reader is thereby essential
for the appropriate interpretation and reporting (Figures 2 and
3). Several CAD algorithms improved the detection of prostatic
malignancies on MRI,49 including difficult-to-assess areas such
as the central part of the gland or the transition zone.50 Other
possible applications of AI in cancer screening include the
detection of metastatic lesions in patients with known primary
cancers. Although conceptually this task is similar to detecting
primary tumors, the results are currently characterized by low
specificity. In the assessment patients with of melanoma,
none of the CAD-detected pulmonary nodules proved to be
malignant or clinically significant at a follow up.51

Radiogenomics
Radiogenomics, an integration of “radiomics” and “genomics”
notions through AI technology, is currently emerging as the
state-of-the-art field of precision medicine in oncology.52

Identification of an array of different genotypes and deregulated
pathways involved in the pathogenesis of cancers through the
advances in genomic technology lead to the paradigm change
of how cancer is seen, classified, and managed with a shift
toward a truly personalized approach to each case. Meticulous
molecular characterization of malignant tumors is thus one of
the mainstays of customized approaches in oncology.53

However, a vast scale genome-based characterization of
cancer is not yet routinely adapted due to the invasiveness, tech-
nical complexity, high costs, and timing limitations.54

Radiogenomics allows a noninvasive and comprehensive
characterization of tumor gene expression patterns through
imaging phenotype. Distinct portions of tumors and metastases

from the same tumor may be characterized by different molec-
ular characteristics, which might change over time. As it is not
possible to sample every portion of each tumor and metastatic
lesions at multiple time points, the characterization of malig-
nancies by biopsy suffers from significant limitations.55

Unlike biopsy, radiogenomics analyzes the 3-dimensional
tumor landscape in its complexity, does not depend on the het-
erogeneity of a bioptic sample, and can be used as a virtual
biopsy tool.56 Moreover, radiogenomics enables the noninva-
sive assessment of multiple lesions at different time points.57

While most existing studies focus on the analysis of primary
tumors, radiogenomics can potentially be applied to the analysis
of metastatic lesions. Evaluation of the tumor genomic signa-
ture through radiogenomics can further improve our under-
standing of the natural history of the disease through quick,
reproducible, and inexpensive assessment, leading to improved
prediction of patient prognosis, individualized therapeutic
approaches, optimized enrollment for targeted therapies, and
better assessment of treatment responses.58

Most existing radiogenomics, AI-based models deal with
mutations of methylguanine methyltransferase (MGMT), isoci-
trate dehydrogenase (IDH) 1/2, BRCA1/2, Lumina A/B, estrogen
receptor (ER), progesterone receptor (PR), epidermal growth
factor receptor (EGFR), Ki-67, and human epidermal growth
factor receptor 2 (HER2), due to the data availability.52 In partic-
ular, several studies demonstrated the validity of radiogenomic
features for the identification of genetic alterations in patients
with pulmonary adenocarcinoma. Radiogenomics models could
distinguish EGFR-mutated and EGFR-wildtype pulmonary ade-
nocarcinomas,59 as well as differentiate EGFR-positive and
Kirsten rat sarcoma virus (KRAS)-positive cases.60 Addition of
radiomics data to a clinical prediction model significantly
improved the prediction of EGFR status in pulmonary adenocar-
cinoma (P= .03).60 EGFR mutation status in NSCLC can also be
predicted with quantitative radiomics biomarkers from pretreat-
ment CT scans.61 In another study, anaplastic lymphoma
kinase (ALK), receptor tyrosine kinase-1 (ROS-1), and rear-
ranged during transfection (RET) fusion-positive pulmonary ade-
nocarcinomas could be identified through a prediction model
with a combination of clinical data and CT and positron emission
tomography (PET) characteristics.62

EGFR mutations inferred from routine MRI were also dem-
onstrated in patients with glioblastoma based on perfusion pat-
terns in perilesional edema.63 Moreover, neuro-oncology boasts
a variety of ML models developed for a more comprehensive
characterization of gliomas.64 Zhang et al created an algorithm
to differentiate these malignancies into low and high grade, with
an overall accuracy ranging between 94% and 96%.65 An ANN
model based on the texture analysis of T2-weighted, fluid-attenuated
inversion recovery (FLAIR), and T1-weighted postcontrast
MRI identified O-6-methylguanine-DNA methyltransferase
promoter methylation status in patients newly diagnosed with
glioblastoma with an accuracy of 87.7%,66 allowing to predict
the improved response to chemotherapy among patients
with this epigenetic change.67 Another model allowed to infer
a variety of genetic mutations in gliomas through the analysis
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of multiparametric precontrast and postcontrast MRI, including
O-6-methylguanine-DNA methyltransferase promoter methyla-
tion status, IDH1 mutation, and 1p/19q codeletion, with the
accuracy of 83% to 94%.68 Codeletion of chromosomes 1p
and 19q can also be quantitatively assessed from the MRI
texture of T2-weighted images with high sensitivity and
specificity.69

Promising radiogenomic models in breast imaging allow dif-
ferentiating molecular subtypes of breast cancer based on MRI
dynamic contrast enhancement imaging.70,71 Genetic pathways
of breast tumors were associated with several MRI features,
including tumor size, blurred tumor margin, and irregular
tumor shape.72 Messenger ribonucleic acid (mRNA) expres-
sions in breast tumors showed significant association with
tumor size and enhancement texture on MRI.72 The biological
behavior of breast cancer, in particular expression of HER2
and other receptors, can also be predicted on ultrasound
imaging.73,74 In prostate imaging, radiomics evaluation of pros-
tatic tumor profile on MRI allows to reliably predict the
Gleason’s grade as defined by pathology.75 A study conducted
among patients with colorectal cancer identified a radiogenomic
signature that can reliably predict microsatellite instability
status of the tumors and stratify patients into low-risk and high-
risk groups.76 Another radiomic signature identified KRAS/
neuroblastoma rat sarcaoma virus (RAS) viral oncogene
homolog (NRAS)/B-Raf proto-oncogene (BRAF) mutations

in colorectal cancer, which reduce the response to monoclonal
antibodies cetuximab and panitumumab.77

Tumor Segmentation and Treatment
Planning
Tumor segmentation serves several clinical and research pur-
poses in oncological imaging. Segmentation is used to determine
the volume of tumors, their morphology and relationships with
the surrounding organs and tissues and is crucial for the imaging-
based planning of surgery or radiotherapy.78 Segmentation also
plays an important role in the assessment of treatment response.

From an operational point of view, tumor segmentation
requires the division of an image into multiple parts that are
homogeneous with respect to one or more characteristics or fea-
tures, such as colors, grayscale, spatial textures, or geometric
shapes.79 Before the advent of computer-assisted segmentation
tools, contours were manually traced on each slice of imaging
scans.80 These 2-dimensional segmentations were then put
together to create a 3-dimensional reconstruction of the lesion
within the acquisition volume. Present-day AI segmentation
systems greatly shorten the analysis times and improve the repro-
ducibility and inter-reader variability of segmentations, espe-
cially when compared with inexperienced operators.81 First
machine-assisted segmentation tools were supervised algorithms

Figure 2. Identification of colonic polyps on virtual colonoscopy reconstructions by CAD systems. CAD system identified the presence of a
colonic polypoid lesion (target sign) on double-contrast barium enema-like (A), supine 2D axial (B), and endoluminal (C) views. Abbreviations:
2D, 2-dimensional; CAD, computer-aided detection.
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based on line and edge detection, which traced image gradients
along object boundaries.81 Modern segmentation tools are pre-
dominantly based on a large variety of DL models.82 While
most image segmentation techniques use one imaging modality
at one specific time point, their performance and applicability
can be improved by combining images from several sources
(multispectral segmentation) or integrating images over time
(dynamic or temporal segmentation).83 Multimodal images can
be used to improve the segmentation accuracy by accounting
for the advantages and disadvantages of individual imaging

modalities. For example, CT provides a detailed definition of
bone structures but low soft-tissue contrast,84 whereas MRIs
are characterized by high soft-tissue contrast but lower spatial
resolution. Combined multimodality images would facilitate
segmentation and provide additional imaging information.
However, multimodal images need to be accurately co-registered
to be consistent and are not always available for segmentation.

Several DL segmentation tools have been developed for use
in oncological radiology (Figure 4) and are currently clinically
available for lesion characterization, treatment planning, and

Figure 3. Automatic segmentation of a pulmonary nodule identified on chest CT by the CAD system. CAD system allowed the identification of a
solid pulmonary nodule on axial (A), coronal (B), and sagittal (C) views. The nodule was automatically segmented by an integrated AI interface
on all 3 planes (D). Abbreviations: AI, artificial intelligence; CAD, computer-aided detection; CT, computed tomography.
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follow up. Neuro-oncological imaging is one of the leading
fields for the application of AI segmentation systems with
remarkable potential for workflow and clinical impact.85 For
some types of brain tumors, such as low-grade gliomas, surgical
resection is currently the first therapeutic option. Considering
the diffuse nature of neural networks at the basis of cognitive
functions, the choice of resection margins can dramatically
affect the brain function and the patient’s quality of life. The
development of AI-based systems for the segmentation of
brain tumors allows to individually optimize the so-called
”onco-functional balance” and propose tailored resection
margins. AI can also be used in other phases of personalized
anatomical–functional planning and intraoperative strategy.86

Radiotherapy planning is another important field of applica-
tion of AI in oncological imaging. Prostate radiotherapy is a
well-established curative procedure that moves toward the use
of MRI for targeting of adaptive radiotherapy processes. The
lack of clear prostate boundaries, tissue heterogeneity, and
wide interindividual variety of prostate morphology hinder
MRI radiotherapy planning. Among different ML methods pro-
posed for the automated segmentation of prostate tumors, CNN
demonstrate the most promising results. Recent studies demon-
strated that CNN-based segmentation systems successfully
detect prostatic abnormalities and reliably segment the gland
and its subzones for subsequent precision radiotherapy.87,88

Comelli et al proposed a DL MRI prostate segmentation
model that could be efficiently applied for prostate delineation
even in small training datasets with potential benefit for person-
alized patient management.89

CT is customarily used before radiotherapy to calculate the
absorbed dose through the assessment of the density of irradiated
tissues. However, in everyday clinical practice, most patients
receive both MRI and CT scanning as part of their radiotherapy
workup, and radiotherapy can be moving toward the sole acqui-
sition of MRI with an AI generation of synthetic CT images.90

DL can be used to generate synthetic CT images from
T1-weighted MRI sequences without any significant difference
in dose distribution compared to standard CT imaging.91–93

Predicting Prognosis and Treatment
Response
Response to treatment in solid tumors is a key element of onco-
logical imaging. Spatial and temporal heterogeneity and com-
plexity of tumor responses to treatment represent an ongoing
challenge for oncological radiologists.94,95 The current stan-
dardized response assessment metrics, such as tumor size
changes in response evaluation criteria in solid tumors
(RECIST) criteria, do not reliably predict the underlying biolog-
ical response.96 For example, an initial increase in tumor size,
called pseudoprogression, is commonly seen in immunotherapy
and is a sign of favorable response to treatment. Conversely, an
initial decrease in tumor size, known as pseudoresponse, may
be associated with increased tumor aggressiveness as is
observed with some anti-angiogenesis agents. AI is a valuable
ally for radiologists in determining more accurate methods of

treatment response assessment. The prognostic value of AI
models has been demonstrated for a variety of oncological
fields, including breast, lung, brain, prostate, and head and
neck tumors.97 A recent systematic review and meta-analysis
by Chen et al concluded that radiomics has the potential to non-
invasively predict the response and outcome of immunotherapy
in patients with NSCLC.98 Another model integrating DL
radiomics features with circulating tumor cell count could
predict the recurrence of patients with early-stage NSCLC
treated with stereotactic body radiation therapy.99 Although
AI-based radiomic approaches have not yet been implemented
as a decision-making tool in the clinical setting, additional
external, and clinical validations can facilitate personalized
treatment for patients with NSCLC.

Recent advances in ML algorithms were used for the devel-
opment of multimodality models for accurate predictions of the
survival of individuals with breast cancer.100–102 Ha et al
reported an 88% accuracy of DL-CNN in predicting the
response of breast cancer to neoadjuvant chemotherapy based
on pretreatment MRI.103 The delayed contrast enhancement
on MRI of invasive HER2+ breast tumors could identify
molecular cancer subtypes with better response to HER2+ tar-
geted therapy.104 A radiomic model predicted the pathological
response to neoadjuvant chemotherapy in patients with
locally advanced rectal cancer based on MRI. The performance
of the model further improved when combined with standard
clinical evaluation.105 In hepatocellular carcinoma, AI can
provide great benefits in patients’ management by predicting
the response to a variety of treatments, including transarterial
chemoembolization.106,107

Immunotherapy is one of the most promising tools in onco-
logical treatment. However, despite its remarkable success rate,
immunotherapy is still curbed by high costs and toxicities,
while its clinical benefit is limited to a specific subset of
patients. AI algorithms with integrated imaging biomarkers
allow us to predict the response to immunotherapy, as well as
identify early responders in order to optimize its cost-
effectiveness and clinical impact.108 For example, radiomic sig-
nature inferred from pretreatment and posttreatment CT scans
of patients with NSCLC correlated to the density of tumor-
infiltrating lymphocytes and the expression of programed cell
death (PD) ligand-1 and identified early responders to
immune checkpoint inhibitor therapy.109 In a large multicenter
study, a complex radiomic marker of CD8-cell infiltration pre-
dicted response to PD-1 and PD ligand-1 inhibitors.110 Another
radiomic marker based on precontrast and postcontrast CT
scans and clinical data was able to predict response in patients
with NSCLC undergoing anti-PD-1 immunotherapy, with an
AUC up to 0.78.111 CT radiomic biomarker could predict
response to immunochemotherapy among patients with renal
cell carcinoma.112 Moreover, as described above, AI-based
models can distinguish pseudoprogression from the response
to immunotherapy. A model combining radiomics signature
on PET/CT, tumor volume, and blood markers successfully pre-
dicted pseudoprogression in metastatic melanoma treated with
immune checkpoint inhibition.113 Finally, the use of AI and
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radiomics contribute and empower further research into cancer
immunity in a bid to better understand the interplay of different
genomic and molecular processes at the basis of tumoral
response to immunotherapy.113

The prediction of disease relapse is also crucial for the right
treatment planning and AI can provide benefits in this field.
Prognostic models integrate genomic profiles and clinical infor-
mation to stratify the risk of relapse for the choice of the most
appropriate therapeutic strategy in accordance with the princi-
ples of individualization in cancer treatment.114,115 Mantle
cell lymphoma is an unusual lymphoid malignancy with a
poor prognosis and short durations of treatment response.
Although most patients present with aggressive disease, there
is also an indolent subtype characterized by the translocation
between chromosomes 11 and 14 (q13; q32) with overexpres-
sion of cyclin D1. The heterogeneity of mantle lymphoma
and its outcomes necessitates precise prognosis prediction.
Pretreatment CT-based AI model was able to predict relapse
of mantle cell lymphoma patients with an accuracy of 70%.116

Challenges and Future Perspectives
To date, AI algorithms in oncological radiology have primarily
been applied to manage common and time-consuming problems,
such as breast and lung cancer screening.117 However, as
described in this review, fast-paced research, and development

of AI algorithms in oncological imaging led to rapid upscaling
of their impact and increasing focus on ultra-specialized and
high-precision tasks guiding medical decisions and improving
patients’ therapies. However, several important issues must be
addressed before they can be fully and successfully integrated
into clinical practice.

Rigorous standards and high transparency in the develop-
ment, training, testing, and validation of AI models are all
essential prerequisites to make AI results reliable, explainable,
and interpretable.118 Large volumes of high-quality, representa-
tive, and well-curated data are needed for the development of
robust AI algorithms,119 as data is considered more critical
than hardware and software in the success of AI applications.120

Although increasing demand for diagnostic imaging examina-
tions produces an exponential buildup of imaging data, it
often lacks appropriate quality verification and association
with laboratory and clinical parameters and patients’ outcomes.
Patient privacy and informed permission are also important
ethical and legal predicaments that require concrete legal
steps. Expertise and training are needed to correctly label and
segment the imaging data used for the validation of AI algo-
rithms. As a result, small-size imaging datasets are often
used, reducing the impact of the results, and limiting their appli-
cability. Moreover, data used in the development of AI proto-
cols can be affected by biases related to the clinical, social,
and even geographical scenarios in which they were gathered.

Figure 4. Volumetric segmentation of a renal lesion. A complex renal cyst (A) was detected as a collateral finding during a CT angiography. The
lesion was automatically segmented in axial (B), coronal (C), and sagittal (D) views. The volume of the lesion and mean attenuation values were
calculated based on the 3-dimensional measurements (D). Abbreviation: CT, computed tomography.
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Reproducibility and generalizability of AI models is a major
obstacle that potentially limits their performance in new data-
sets compared to the training data. Reproducibility of AI
results is further complicated by the heterogeneity of acquisi-
tion protocols and a multitude of steps needed for the correct
identification and processing of imaging features. The difficulty
in prospectively collecting unbiased, good-quality, and con-
spicuous data highlights the essential role of large data sets
created through multicenter and multi-institutional collabora-
tions for training and rigorous validation of the algorithms.121

Controlled prospective studies are needed to enable the shift
from research to clinical routine.122 This is particularly impor-
tant for ML and DL algorithms that operate as “black box”
models, where automated decision making cannot be directly
assessed or validated by human operators. Moreover, the inter-
est in unsupervised learning on unlabeled data is constantly
rising. Increased algorithm transparency and explainability are
needed before the large-scale integration of these models into
clinical practice can be possible.123

Interdisciplinarity should always be available when dealing
with AI in healthcare, as it affects research results and their clin-
ical value. The exchange of knowledge and skills between
experts in different fields markedly impacts methodology, pro-
vides robustness to results, and facilitates their translation into
everyday clinical practice.124

Another important aspect that will determine the wide and
routine diffusion of AI in the future is its perception and accep-
tance by both radiologists and patients. Healthcare specialists’
knowledge of AI has a significant impact on their willingness
to learn and apply this technology in their job.125 A survey
on 1041 residents and radiologists highlighted that limited
knowledge of AI was associated with fear of replacement,
whereas intermediate to advanced levels of knowledge were
linked with a positive attitude toward AI.126 Therefore, dedi-
cated training in the AI field may improve its clinical accep-
tance and use.

Patient education and engagement are also essential for the
success of AI in clinical practice.127 Surveys of patients’ per-
ception of AI highlighted a generally positive attitude toward
using AI-based systems, particularly in a supportive role.
However, concerns about cyber-security, accuracy, and lack
of empathy and face-to-face relationship have also been
raised.128 The need of providing AI explanations to ensure
patients’ trust and acceptance is a crucial point.

Conclusions
AI is becoming increasingly integrated into oncological radiol-
ogy workflow, and this tendency will likely continue in the
future, leading to major improvements in patients’management
and quality of life. A wide variety of routine imaging tasks can
be outsourced and automated thanks to AI, including disease
detection and quantification and lesions segmentation.

Moreover, the use of AI radiogenomics in oncological
imaging is undergoing exponential growth, contributing to the
personalization and fine tuning of oncological treatments and

approaches. In the next few years, machine learning and
neural networks models will become a significant aid in every
aspect of oncology, enabling sophisticated analysis of oncolog-
ical patients and detailed disease characterization. AI technolo-
gies in oncological imaging have to overcome several important
obstacles before they can be widely used in routine clinical
practice. One of the main challenges consists in the effective
organization and preprocessing of multi-institutional cohorts
of large-scale data needed to obtain clinically reliable algorithms.
Ultimately, robust AI-powered multidimensional disease profil-
ing through imaging, clinical, and molecular data in patients
with cancer will allow improving clinical strategies and further
breach the gap to truly personalized medicine.
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