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Abstract
The incorporation of disease-associated covariates into studies aiming to identify susceptibility
genes for complex human traits is a challenging problem. Accounting for such covariates in genetic
linkage and association analyses may help reduce the genetic heterogeneity inherent in these
complex phenotypes. For Genetic Analysis Workshop 15 (GAW15) Problem 3 simulated data, our
goal was to compare the power of several two-stage study designs to identify rheumatoid arthritis-
related genes on chromosome 9 (disease severity), 11 (IgM), and 18 (anti-cyclic citrinullated
protein), with knowledge of the answers. Five study designs incorporating an initial linkage step,
followed by a case-selection scheme and case-control association analysis by logistic regression,
were considered. The linkage step was either qualitative-trait linkage analysis as implemented in
MERLIN-nonparametric linkage (NPL), or quantitative-trait locus analysis as implemented in
MERLIN-REGRESS. A set of cases representing either one case from each available family, one case
per linked family (NPL ≥ 0), or one case from each family identified by ordered-subset analysis was
chosen for comparison with the full set of 2000 simulated controls. As expected, the performance
of these study designs depended on the disease model used to generate the data, especially the
simulated allele frequency difference between cases and controls. The quantitative trait loci analysis
performed well in identifying these loci, and the power to identify disease-associated alleles was
increased by using ordered-subset analysis as a case selection tool.

Background
There are many possible mechanisms by which environ-
mental or clinical covariates may either influence the risk
of complex human diseases directly, or partially account
for genetic heterogeneity. For example, they may act as

independent environmental risk factors, or increase the
disease risk in concert with genetic susceptibility via gene
× environment interaction, or define a more homogene-
ous subgroup of patients in which the main effect of a par-
ticular susceptibility gene is more apparent. The purpose
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of our analysis of the Genetic Analysis Workshop 15
(GAW15) simulated data was to evaluate the power of
several two-stage study designs consisting of separate link-
age and association analysis steps. These study designs
incorporated disease-associated continuous covariates in
several different ways. Power comparisons were focused
on two distinct factors: 1) thresholds used for the linkage
analysis step, which determined the subset of markers
included in a subsequent case-control association analy-
sis, and 2) criteria for selecting cases (one per family) to
include in this association analysis.

Methods
With knowledge of the answers, we analyzed the simu-
lated GAW15 microsatellite and SNP data on chromo-
somes 9, 11, and 18 in an attempt to detect the loci
responsible for three disease-associated covariates: disease
severity, IgM, and anti-cyclic citrinullated protein (CCP)
values, respectively. To investigate Type I error, we also
analyzed the relationship of anti-CCP values and geno-
types on chromosome 15, which does not harbor any dis-
ease-associated loci ("null chromosome"). We analyzed
covariate and genotype data from all 1500 nuclear fami-
lies, and genotype data from all 2000 unrelated controls.
We used the MERLIN package [1] to calculate nonpara-
metric multipoint LOD scores for the binary rheumatoid
arthritis (RA) affection status [2]. We analyzed the rela-
tionship between the family-specific nonparametric link-
age (NPL) scores and family averages of the covariates of
interest (severity for chromosome 9, IgM for chromosome
11, anti-CCP for chromosome 18) with the ordered-sub-
set analysis (OSA), using the original OSA software [3]
and the high-to-low covariate ordering. We also analyzed
the covariates themselves as traits in a regression-based
quantitative trait locus (QTL) analysis, implemented in
MERLIN-REGRESS [4]. IgM values were log-transformed
for analysis, and all three covariates were standardized by
the sample mean and standard deviation in all genotyped
individuals.

We examined five distinct study designs (Table 1), each of
which was implemented under two conditions: stringent
(LOD score threshold 1.0, OSA p-value threshold 0.05,
10-cM region centered on the linkage peak) and loose
(LOD score threshold 0.5, OSA p-value threshold 0.5, 40-

cM linkage region). Each design consisted of two stages. If
the first-stage linkage analysis of 1500 families using the
microsatellite marker map met the linkage threshold, it
was followed by a second-stage association analysis of the
SNPs in the linkage region in unrelated cases (one per
family) and 2000 controls, using logistic regression with
an additive allele coding. The case selection strategies are
summarized in Table 1, with Design B being equivalent to
the previously proposed "linked best" strategy [5]. The
power of each study design to reject the null hypothesis of
"no association" (α = 0.05), with or without evidence for
linkage, was estimated as the proportion of replicates for
which the SNP in highest linkage disequilibrium (LD)
with the true disease locus was contained within the link-
age region and the case-control association p-value from
the logistic regression survived the Bonferroni correction
for the number of analyzed markers.

Results
Table 2 summarizes characteristics of the loci of interest to
illustrate the expected power of linkage and case-control
association analyses, respectively. Table 3 shows power
estimates for Study Designs A-E for the stringent vs. loose
linkage thresholds. A QTL analysis with MERLIN-
REGRESS followed by an association analysis of all 1500
cases vs. 2000 controls (Design D) yielded the best results
for chromosome 11 (98% power) and 18 (73% power).
The chromosome 9 locus was difficult to detect regardless
of study design. For chromosome 18, the ability of the
OSA-based Designs C and E to detect SNP 269 was greatly
improved by using loose linkage thresholds. Most of this
effect was due to the thresholds themselves rather than the
increased linkage region (data not shown). Of great prac-
tical importance, these designs used a much smaller aver-
age number of cases in the logistic regression analysis than
the most powerful Design D.

It was previously shown that linkage and association test
statistics are statistically independent under the null
hypothesis of i) no linkage and no association; ii) linkage
and no association; iii) association and no linkage [6].
Consistent with this finding, our analysis of the "null
chromosome" (chromosome 15) and the anti-CCP cov-
ariate yielded a range of estimated type I error rates from
0 to 0.02 for the stringent thresholds and from 0.01 to

Table 1: Definition of study designsa

Design Linkage software Case selection strategy Notes

A MERLIN All
B MERLIN "LINKED BEST" [5]
C MERLIN plus OSA OSA subset if ≥50 families OSA for localization
D MERLIN-REGRESS All
E MERLIN-REGRESS (M-R) plus OSA OSA subset if ≥50 families and difference in OSA and M-R peak ≤20 cM M-R for localization

aLinkage region is centered on maximum LOD score (for all families or OSA subset) and defines SNPs for Stage 2 association analysis.
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0.05 for the loose thresholds across the five study designs.
The range is due to random variation across the limited
number of 100 replicates. Because all null hypotheses for
the different Stage 1 analyzes are based on linkage statis-
tics, neither LOD score nor OSA p-value thresholds affect
the type I error rate of the Stage 2 association analysis.

Discussion
Our study demonstrates that the incorporation of disease-
related covariates into a combined linkage and associa-
tion analysis can help identify genes that contribute
directly or indirectly to the risk of RA. Specifically, results
for chromosome 18 show that the efficiency of a case-con-
trol association analysis can be greatly increased when

linkage and covariate information are used to select the
cases. For the simulation models used to generate the
GAW15 data, the OSA method worked particularly well in
this regard because it uses both the family-specific iden-
tify-by-descent (IBD) sharing information, and the rela-
tionship between covariate distribution and IBD sharing
across families to enrich the case sample for the disease
allele of interest. For the data sets simulated here, the
"linked best" strategy (Design B in our study) was able to
achieve the exact same power as Design A with a 34%
reduction in the number of analyzed cases, even though it
ignored covariate information (Table 3). However, this
result does not hold in general [7], and Design A is
expected to be most powerful under linkage homogeneity.

Table 3: Power estimates for study designs

Proportion of reps. meeting:

Linkage threshold Association threshold (avg. no. SNPs analyzed)c Avg. no. cases analyzed Overall power

Stringenta Looseb Stringent Loose Stringent Loose Stringent Loose

9 (186) A 0 0.14 0 (n/a) 0 (144) 1500 1500 0 0
B 0 0.14 0 (n/a) 0 (144) 983 987 0 0
C 0.13 0.64 0.23 (48) 0.25 (145) 127 136 0.03 0.16
D 0.83 0.96 0.01 (48) 0 (147) 1500 1500 0.01 0
E 0.2 0.65 0.30 (48) 0.20 (148) 129 121 0.06 0.13

11 (389) A 0.06 0.24 1 (52) 1 (147) 1500 1500 0.06 0.24
B 0.06 0.24 1 (52) 1 (147) 988 985 0.06 0.24
C 0.11 0.62 1 (48) 0.92 (147) 258 273 0.11 0.57
D 0.98 1 1 (44) 1 (146) 1500 1500 0.98 1
E 0.23 0.56 1 (46) 1 (147) 281 290 0.23 0.56

18 (269) A 0.21 0.64 1 (28) 1 (97) 1500 1500 0.21 0.64
B 0.21 0.64 1 (28) 1 (97) 998 988 0.21 0.64
C 0.53 0.91 1 (28) 1 (96) 372 390 0.53 0.91
D 0.73 0.99 1 (27) 1 (95) 1500 1500 0.73 0.99
E 0.44 0.88 1 (27) 1 (95) 370 382 0.44 0.88

aStringent linkage thresholds are LOD score ≥ 1.0, OSA p-value ≤ 0.05, 10-cM linkage region.
bLoose thresholds are LOD score ≥ 0.5, OSA p-value ≤ 0.5, 40-cM linkage region.
cThe proportion of replicates meeting the Bonferroni-corrected association threshold, average number of cases and number of SNPs analyzed were 
calculated across replicates meeting the linkage threshold.

Table 2: Characteristics of simulated loci

Averagea

Chr Locus 
(closest SNP)

Distance between true 
locus and closest SNP (cM)

NPL (SD) at locusb SNP MAFc in cases 
(one per family, n = 1500)

SNP MAF in controls 
(n = 2000)

r2 between SNP 
and true locus

9 G (186) 0.08 0.01 (0.30) 0.374 0.384 0.01
11 F (389) 0.01 0.34 (0.49) 0.275 0.501 0.94
18 E (269) 0.05 0.92 (0.81) 0.297 0.223 0.15

aAverages calculated across 100 replicates
bNPL, nonparametric multipoint LOD score from MERLIN when analyzing binary RA affection status
cMAF, minor allele frequency
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The results for SNP 389 on chromosome 11 are not very
representative of real data studies. Due to the large minor
allele frequency (MAF) difference between cases and con-
trols and almost complete LD with the causal allele (Table
1), a single-stage logistic regression analysis of all SNPs on
this chromosome detected the disease-associated SNP in
all replicates, even with the conservative Bonferroni cor-
rection. This was also the case for SNP 269 on chromo-
some 18, although it was still possible to compare the
efficiency of different designs.

The chromosome 9 data presented two challenges: very
weak linkage with respect to affection status, and very
small MAF differences between controls and cases pooled
across severity categories. The combination of using OSA
for case selection, employing loose linkage thresholds,
and using MERLIN-REGRESS for localization (Design E)
resulted in improved power for the association analysis
(from near 0 to 20–30%). However, because OSA used
family-specific NPL scores for the binary affection status
as input, regardless of disease severity, the overall power
of Design E remained low (16% at best). A family-based
association analysis of disease severity with the QTDT
(quantitative transmission-disequilibrium test) package
[8] or a logistic regression analysis comparing only the
most severely affected cases (MAF 0.32) with unrelated
controls (MAF 0.38) were more powerful analysis
approaches for detecting disease severity loci, as simulated
here.

Conclusion
The GAW15 data provided very weak linkage signals for
the three loci considered here, presumably due to substan-
tial within-family heterogeneity with respect to the simu-
lated disease loci (Table 2). This made it difficult for a
two-stage design to be statistically powerful because strin-
gent linkage thresholds eliminated the association analy-
sis altogether. In this situation, a simultaneous linkage
and association analysis with the program LAMP [9] was
more successful [10]. Relaxing the linkage thresholds,
especially the OSA p-value threshold, improved power for
chromosome 18, and to a lesser extent chromosome 11,
since it identified a subgroup of cases with reduced allelic
heterogeneity, even though the linkage evidence in this
subgroup continued to be low. In real data sets, a SNP
map of the density simulated here is unlikely to include
SNPs in high enough LD with susceptibility or quantita-
tive trait loci to detect strong association signals, and the
two-stage approach presented here continues to be of
practical importance.
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