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Abstract

Clustering is a challenging problem in machine learning in which one attempts to group N objects 

into K0 groups based on P features measured on each object. In this article, we examine the 

case where N ≪ P and K0 is not known. Clustering in such high dimensional, small sample 

size settings has numerous applications in biology, medicine, the social sciences, clinical trials, 

and other scientific and experimental fields. Whereas most existing clustering algorithms either 

require the number of clusters to be known a priori or are sensitive to the choice of tuning 

parameters, our method does not require the prior specification of K0 or any tuning parameters. 

This represents an important advantage for our method because training data are not available 

in the applications we consider (i.e., in unsupervised learning problems). Without training data, 

estimating K0 and other hyperparameters–and thus applying alternative clustering algorithms–can 

be difficult and lead to inaccurate results. Our method is based on a simple transformation of 

the Gram matrix and application of the strong law of large numbers to the transformed matrix. 

If the correlation between features decays as the number of features grows, we show that the 

transformed feature vectors concentrate tightly around their respective cluster expectations in a 

low-dimensional space. This result simplifies the detection and visualization of the unknown 

cluster configuration. We illustrate the algorithm by applying it to 32 benchmarked microarray 

datasets, each containing thousands of genomic features measured on a relatively small number 

of tissue samples. Compared to 21 other commonly used clustering methods, we find that the 

proposed algorithm is faster and twice as accurate in determining the “best” cluster configuration.
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I. INTRODUCTION

Clustering is an unsupervised learning technique used to discover natural groups among 

N objects. Vectors of P measurements, or features, measured on each object define the 

groups. The concept of a cluster can be subjective, and clustering techniques have been 

studied extensively with varying notions of “similarity” defined on the feature vectors in 

various scientific domains [1]. Large datasets containing a comparatively small number of 

features for large numbers of objects have become common in many fields because modern 

technology facilitates the collection of these data. In contrast, advances in neuroimaging, 

genomics, motion-tracking, and many other technology-based data collection methods have 

led to many datasets containing a small number of samples and many features. Limited 

sample numbers are also common because experimental protocols designed to discriminate 

between treatment groups have high costs and involve human participants. Hence, it is 

common to acquire several thousands of features on a limited number of objects in various 

scientific domains. Such measurements give rise to high-dimensional data where N ≪ P, 

leading to a “small data” challenge that requires an entirely different mindset than that 

used in the “big data,” or N ≫ P paradigm. As one of many such examples, we consider 

here a large set of well-studied benchmarked microarray datasets, where thousands of gene 

expression values were measured on a moderate number of excised tumor tissue samples.

To detect clusters in high dimensional data, one class of clustering techniques (including, 

[2], [3], [4], [5], [6], [7], [8], [9]) assumes that information regarding meaningful clusters 

is contained in a small number of features. These algorithms, often referred to as sparse 
clustering procedures, rely on “relevant” feature extraction that influences resulting cluster 

partitions. Another class of algorithms focuses on finding clusters in a lower-dimensional 

latent space representation using either deep learning embedding or non-deep learning 

embedding, often referred to as embedding clustering procedures. This class of techniques 

is popular for clustering non-rectilinear data, like images, text, or web documents. Popular 

methods include [10], [11], [12], and [13]. Although the deep learning clustering procedures 

have become popular for large datasets involving thousands of data points, they fail to 

control the problem of over-fitting when the sample sizes are small.

Over the last two decades, spectral-based clustering (e.g., [14] and [15]) and its variants 

([10], [16]) have become popular and are based on detecting clusters using the Gram matrix 

and variations of it. In specific contexts, an optimal solution is obtained using the spectral 

decomposition of the Gram matrix and the cluster information embedded in its eigenvectors. 

The choice for the number of clusters K0 is not well established and is often based on 

“eigen-gap” heuristics. Unfortunately, the limiting properties of the eigenvectors in noisy 

settings can be unstable, and these methods often do not converge to suitable partitions; 

these limitations are explored in [17] and the study below.

Many existing clustering algorithms are popular in specific applications. Still, they typically 

have two significant limitations: (1) most current algorithms assume that the number of 

true clusters, K0, is known, and (2) they are often equipped with several hyperparameters 

that need to be finely tuned to apply in various applications. In contrast to the supervised 

setting, in unsupervised problems like clustering, training data are not available to provide 
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guidelines on labels. Hence, a technique like cross-validation is not plausible in such 

a setting. The challenges of selecting hyperparameters are well known, and the clusters 

produced by algorithms that depend on hyperparameters can be sensitive to their selection. 

As a result, clustering algorithms that depend on the selection of hyperparameters are often 

not effective in limited sample settings.

A standard empirical procedure that many clustering algorithms use for selecting 

hyperparameters is stability selection [18], [19]. However, such procedures are not 

accompanied by any theoretical guarantees [20]. They split the data into repeated folds (like 

bootstrap samples) and select hyperparameters with the most stable solution. The repeated 

sampling approaches are often computationally intensive and sometimes lead to infeasible 

clustering results. A recent discussion on the problems of fine-tuning hyperparameters 

while studying the sensitivity of various popular and state-of-the-art clustering algorithms in 

real-life applications is presented in [21]. As pointed out in this article, implementing these 

methods is computationally challenging when estimating the optimal number of clusters, 

thus impairing their performance.

In this article, we describe a hyperparameter-free, robust, and computationally efficient 

clustering framework for high dimensional data, where the number of clusters is not required 

to be specified by the user. Drawing inspiration from the strong law of large numbers, our 

framework involves a simple algebraic transformation on the Gram matrix of features. When 

the correlation among the original features is “weak” as the number of features, P, grows, we 

show that the transformed feature vectors concentrate tightly around their lower-dimensional 

expectation vectors. Thus, the proposed transformation significantly simplifies and improves 

the detection and visualization of the hidden clusters. Unlike spectral clustering, our method 

does not attempt to discover the underlying clusters from the spectral characteristic of the 

Gram matrix, which can be expensive to compute. Instead, we propose to detect clusters 

from transformed lower-dimensional row vectors of the Gram matrix, which significantly 

reduces computational costs. In this paper, we use the Bayesian Information Criteria (BIC), 

a model selection tool to estimate the number of clusters, as in other works including, 

[2], [3], [22], [23], and [24]. While previous methods have implemented BIC on original 

features, we apply it to a transformed feature matrix to estimate the unknown number of 

clusters.

The rest of this paper is organized as follows. In Section II, we propose a two-step 

transformation on the Gram matrix and provide the motivation and illustration of the 

transformation. In Section III, we state the assumptions on the original feature space. We 

show that as the number of features grows, the transformed feature vectors concentrate 

tightly around their cluster-specific means at a rate that is order O(1 ∕ P). We present 

our clustering algorithm in Section IV. To confirm the performance of our proposed 

clustering algorithm, we present a large-scale real-life data study in Section V, where 21 

high-dimensional clustering algorithms are applied to 32 benchmarked microarray datasets. 

Finally, we conclude the paper with a discussion on future research directions.
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A. ABBREVIATIONS AND ACRONYMS

We denote matrices by upper case bold letters (e.g., X) and column vectors by lower case 

bold letters (e.g., u). We use 1P to denote the P-dimensional vector of ones, and IA to 

represent the indicator function, which equals 1 if A is true and 0 otherwise. We let ∥ · ∥2 

denote the Euclidean distance of a vector or Frobenius norm of a matrix, and ∥ · ∥1 denote 

the absolute sum of the entries of a vector or matrix. We define Im as the m dimensional 

identity matrix. We write i ≃ j if objects i and j are in the same cluster, and i ≄ j otherwise. 

We use E( ⋅ ) and Var(·) to denote the expectation and variance of a random entity. We also 

use E(A ∣ B) to denote the conditional expectation of A given B. When a P-dimensional 

random vector u follows a multivariate normal distribution with P-dimensional mean vector, 

θ, and P × P covariance matrix, Γ, we denote the multivariate normal density of u by

N(u ∣ θ, Γ) =
exp − 1

2(u − θ)TΓ−1(u − θ)

(2π)N ∕ 2det(Γ)1 ∕ 2 , (1)

where det(·) is the determinant of a matrix.

B. FRAMEWORK

Let K0 denote the unknown number of real clusters. Let zi
T = (zi, 1, …, zi, P) ∈ ℝP  denote the 

feature vector measured on object i and stack the feature vectors of N objects into an N × P 
feature matrix Xraw. We standardize the columns of Xraw so that each column has median or 

mean 0 and standard deviation 1. We denote xi
T = (xi, 1, …, xi, P) ∈ ℝP  as the ith row of X and 

treat this as the feature vector of object i. For a given K0, define δi to be an integer in {1, …, 

K0} that denotes the cluster membership of object i. We denote δ = (δ1, …, δN) as the vector 

of cluster identifiers, where Pr(δi = a) = wa with ∑a = 1
K0 wa = 1. We assume that {xi}i = 1

N  are P 

dimensional random vectors with E(xi ∣ δi = a) = μa, where μa
T = (μa, 1, …, μa, P) ∈ ℝP  and finite 

covariance matrix Var(xi ∣ δi = a) = Σa ∈ ℝP × P . We make no further assumptions on the 

distribution of xi. We denote the vector of diagonal elements of Σa as da
T = (σ1

a, …, σP
a) ∈ ℝP . 

For any two clusters, a, b ∈ {1, …, K0}, we define the following quantities,

θa, b = μa
Tμb ∕ P ∈ ℝ, (2)

and

θa = μa
Tμa ∕ P + da

T1P ∕ P ∈ ℝ .

II. THE TRANSFORMATION ON GRAM MATRIX

The goal of our clustering algorithm is to partition N objects into K0 clusters using a 

transformed Gram matrix rather than the X matrix itself. We assume that K0 is unknown. 

The algorithm consists of two simple transformations, followed by the application of 

standard clustering algorithms to the transformed version of the Gram matrix. To the best 

of our knowledge, the following transformation has not been previously considered. In 
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this section, we present the motivation and details of the transformation. We present its 

theoretical properties in section III.

A. THE G-VECTORS

Definition 2.1: Using the standardized feature matrix, X, we construct the matrix G 
according to

G = XXT ∕ P = (gi, j) ∈ ℝN × N . (3)

Instead of the original feature vector xi ∈ ℝP , each object i is now represented by row i of the 

G matrix, denoted as gi ∈ ℝN. We refer to the rows of the G matrix as g-vectors.

In Lemma 2 of the appendix we show that the clusters can be recovered from the expectation 

of the G matrix. Specifically we show that if object i belongs to cluster a and object j 
belongs to cluster b, then the conditional expectation of the entries of the G matrix is

E(gi, j ∣ δi = a, δj = b) = θa, b for i ≠ j,
E(gi, i ∣ δi = a) = θa, (4)

where, θa,b and θa ∈ ℝ are defined in (2). We also show in equation (13) and (14) in Lemma 

3 that when the features have a weak dependence structure, the variance of the g-vectors is 

of order O(1/P). The law of large numbers implies that the g-vectors cluster tightly around 

their cluster-dependent expectations as the number of features increases. Thus, clustering the 

objects by their N-dimensional g-vectors can be easier than clustering them by their P(≫ N) 

dimensional feature vectors. We illustrate this critical property of the rows of the G matrix in 

Fig. 1, where clusters are visually more apparent using g-vectors than by using the original 

feature vectors of X.

Next, we illustrate the structure of the expectation of the G matrix for N = 6 objects with 

P features. Here objects 1 and 2 belong to cluster 1, objects 3 and 4 belong to cluster 2, 

and objects 5 and 6 belong to cluster 3. There are thus 6 g-vectors ∈ ℝ6 that correspond 

to 6 objects. Using equation (2), one can observe the cluster-dependent partition of the 

expectation of G when the objects are arranged according to their cluster labels:

(5)

Equation (5) illustrates that when objects belong to different clusters, their corresponding 

g-vector expectations are different. However, when objects belong to the same cluster, their 

g-vector expectations are identical–except for two diagonal entries. From this illustration, we 

can see that if the cluster labels are known, the rearrangement of the diagonal entries can 
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lead to the re-alignment of the g-vectors to achieve similar centroid expectations. However, 

in an unsupervised setting, we are not provided with knowledge of the cluster labels of the 

objects. Hence, finding the optimal rearrangement of the diagonals that align the g-vectors 
correctly is not possible without an estimate of the object labels. Therefore, we propose the 

following transformation on the rows of the G matrix to align the g-vectors so that they have 

more similar means on the diagonal of G.

B. PARTIAL ALIGNMENT OF G-VECTORS

To realign the columns of G so that the cluster means match more closely, we begin by 

appending the diagonal elements of G as an additional column to a juxtaposed version of G; 

we call this matrix M. Next, we define the diagonal entries of M to be the average of the 

remaining elements of the corresponding column. More specifically, we define the M matrix 

as follows.

Definition 2.2: Given the N × N matrix G, we define the N × (N + 1) dimensional matrix M 
with entries

mi, j =

gi, j, for j ≠ i = 1, …, N
gi, i, for j = N + 1

1
N − 1 ∑j = 1

j ≠ i

N
gi, j, for j = i .

We refer the rows of M matrix as m-vectors and denote by mi ∈ ℝN + 1 the ith m-vector.

To illustrate the above transformation, we consider an example with N = 4 objects where 

objects 1 and 2 belong to cluster 1, and objects 3 and 4 belong to cluster 2. Then we 

transform the G matrix,

G =

g1, 1 g1, 2 g1, 3 g1, 4

g2, 1 g2, 2 g2, 3 g2, 4

g3, 1 g3, 2 g3, 3 g3, 4

g4, 1 g4, 2 g4, 3 g4, 4

to the M matrix displayed in Equation (6).

It follows that the expectations of the non-diagonal entries of the M matrix are identical 

whenever the objects corresponding to the rows belong to the same cluster. The expectations 

of m-vectors i and j are nearly identical except for their ith and the jth entries. If N is not too 

small, then the Euclidean distance between the expected m-vectors from the same cluster is 

small, differing only by those two entries.

When the original features are weakly dependent (see assumption 2 below), Fig. 1 shows 

how the g-vectors concentrate around their expected means. By Definition 2.2, it follows 

that the m-vectors also concentrate around their expectations as P increases, despite the 

small bias introduced by the diagonal of M. Importantly, when objects, say, i and (i + 1) are 

in the same cluster, the difference between the expectations of mi,i and mi+1,i is generally 
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smaller than the difference between the expectations of gi,i and gi+1,i because the diagonal 

elements of G tend to be larger than the non-diagonal elements.

The m-vectors are usually more easily clustered than the original feature vectors for two 

reasons. First, because the elements of M represent averages of cross-products of P features, 

they are less variable than standardized feature vectors. Second, the dimension of the m-
vectors is, by assumption, much lower than the dimension of the original feature vectors 

(i.e., N ≪ P). The m-vectors thus simplifies the task of clustering for standard clustering 

techniques that can effectively detect clusters in a lower-dimensional space.

Fig. 2 illustrates this effect for benchmarked, high-dimensional microarray data presented 

in Armstrong-v1 (described further below in Tables 1 and 2). These data contain 1, 083 

gene expression values for 72 tissue samples taken from patients suffering from one of three 

leukemia subtypes (Acute Myeloid Leukemia (AML), Acute Lymphocytic Leukemia (ALL), 

and Mixed-lineage leukemia (MLL)). To visualize this high-dimensional data, we applied 

two popular non-linear dimension reduction techniques, t-SNE [26] and UMAP [27], to 

both the original gene expression data xi ∈ ℝP  and the m-vectors, mi ∈ ℝN + 1. This figure 

demonstrates that t-SNE and UMAP more clearly separate the AML, ALL, and MLL tissue 

samples when they are applied to the m-vectors.

C. FULL ALIGNMENT OF G-VECTORS

The goal of this final transformation is to make the means of the m-vectors for objects in the 

same cluster equal. In section II-B we defined entry i of the m-vector mi to be the mean of 

all the entries of column i of G, excluding gi,i. We now replace this value with the average 

of entries in column i that are estimated to belong to the same cluster. That is, we use 

the estimate of the cluster label vector δ, obtained after clustering the m-vectors to define 

Mδ ∈ ℝN × (N + 1) as follows.

Definition 2.3: Define Mδ to be the N × (N + 1) matrix having elements

mi, j
δ =

∑j = 1
j ≠ i

N gj, i . I{δ j = δi}

∑j = 1
j ≠ i

N I{δ j = δi}

, for j = i

mi, j, for j ≠ i .

We refer the rows of Mδ as mδ-vectors.

This additional transformation can be significant for small N when the pairwise distance 

between the expectations of the m-vectors for objects in the same cluster is not negligibly 

small. Because the expectations of the m-vectors for objects in the same cluster are slightly 

different in the M matrix, model selection criteria tend to overfit the number of clusters. 

Hence, in the model-selection phase of our algorithm, we reestimate the diagonal elements 

of M using the current estimates of the cluster labels. Experimentally we find that this 

transformation improves the performance of model selection criteria when N is small. We 
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do not use the Mδ matrix in the estimation phase of the algorithm to avoid repeated updates 

of the M matrix within each iteration of a clustering algorithm; doing so can increase 

computational costs without providing significant gains in accuracy.

M =

g2, 1 + g3, 1 + g4, 1

3 g1, 2 g1, 3 g1, 4 g1, 1

g2, 1
g1, 2 + g3, 2 + g4, 2

3 g2, 3 g2, 4 g2, 2

g3, 1 g3, 2
g1, 3 + g2, 3 + g4, 3

3 g3, 4 g3, 3

g4, 1 g4, 2 g4, 3
g1, 4 + g2, 4 + g3, 4

3 g4, 4

. (6)

We now define the expectation of the mδ-vectors as follows:

Definition 2.4: If δi = a (i.e., object i belongs to cluster a), we denote the expectation of row i 

of Mδ by θa, defined as

E mi
δ ∣ δi = a = θa ≡ {θa, δj}j = 1

N , θa ∈ ℝN + 1, (7)

where θa, δj ∈ ℝ is defined in (2) for δj ∈ {1, …, K}.

To illustrate, consider again the example in (6). The transformation from the G matrix to Mδ 

is

Mδ =

g2, 1 g1, 2 g1, 3 g1, 4 g1, 1

g2, 1 g1, 2 g2, 3 g2, 4 g2, 2

g3, 1 g3, 2 g4, 3 g3, 4 g3, 3

g4, 1 g4, 2 g4, 3 g3, 4 g4, 4

.

Let Θ = E Mδ ∣ δ , where Θ = θδ1, ⋯, θδN
T ∈ ℝN × (N + 1) represents the expected value of 

Mδ in the transformed space. Then this transformation of the M matrix makes the expected 

value of mi
δ and mj

δ equal whenever objects i and j belong to the same cluster. Using the 

example considered in (6), we now illustrate Θ in the equation (8) below.

(8)
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III. CONCENTRATION OF THE mδ -VECTORS

In this section, we assume the following separability condition holds on the distinct cluster 

means on the transformed space.

Assumption 1: There exists η > 0 such that

∣ ∣ θa − θb ∣ ∣2 > η, (9)

for any two clusters, a ≠ b ∈ {1, …, K0}.

Such a condition is required to ensure the identification of distinct clusters. It also implies 

that the proportion of informative features measured on objects does not converge to 0 as P 
grows.

In the following lemma, we obtain a rate of convergence for the L2 distance between Mδ 

and Θ. To allow for convergence in the high-dimensional settings, we make the following 

assumptions about the covariance matrix of the feature vector xi ∈ ℝP .

Recall that Σa = Var(xi∣δi = a) denotes the P × P covariance matrix of the feature vector when 

an object belongs to cluster a. We define τP = max1 ≤ a ≤ K0 ‖Σa‖1
1 ∕ 2, where ∥A∥1 is defined to be 

the sum of the absolute value of the entries of the matrix A.

We let yi,p = xi,p − μδi,p denote the centered feature values for each feature p = 1, 

…, P. We also define the vector zi
T = yi, 1

2 , …, yi, P
2 ∈ ℝP , and let ϒa = Var(zi∣δi = a) and 

κP = max1 ≤ k ≤ K0 ‖Υk‖1
1 ∕ 2.

We now make the following assumption.

Assumption 2: We assume that κP/P = O(P−1/2) and τP/P = O(P−1/2) as P → ∞.

We call the features weakly dependent when they follow assumption 2.

Lemma 1: Suppose Assumption 1 and 2 hold. Let μsup = supa,p ∣μa,p∣ < ∞ and 

σsup = supa, p σp
a < ∞. Then

E Mδ − Θ 2
2

≤ ΔP
2

where

ΔP = 1
P N{(N − 1)τP

2(2μsup + σsup)2 +

(κP + 2τPμsup)2} 1 ∕ 2 .

The proof of this lemma is provided in the appendix.
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For a correctly specified cluster configuration in which δ = δ, this lemma implies that Mδ 

converges in probability to Θ. For weakly dependent features, the rate of convergence 

is of order Op(P−1/2). For K ≤ K0, the identifiability condition (9) guarantees that this 

sum-of-squares is bounded away from 0. For K > K0, the BIC penalty is sufficiently 

large to prevent sub-clusters from a given cluster from forming since the decrease in the 

sum-of-squares accumulated from such a split cannot offset a fixed penalty greater than 

log(N). Thus, standard center-based clustering algorithms are likely to identify the correct 

cluster identifiers, provided that the conditions stated above are satisfied and P is sufficiently 

large.

IV. THE CLUSTERING ALGORITHM: GMAC

To estimate the underlying number of clusters K0 and the cluster indicator vector δ, we 

maximize a quasi-mixture likelihood for each possible value of K = 1, …, Kmax. Here, Kmax 

is a user-defined upper bound on K0, which may equal N if a prior bound is unknown. 

Because the elements of M and Mδ represent an average of P pairwise products, under 

certain regularity conditions, the rows of M and Mδ converge to a multivariate normal 

distribution. We, therefore, maximize a quasi-mixture likelihood function of the form

LK(M) = ∑
i = 1

N
log ∑

k = 1

K
wkN mi ∣ θk, Γk , (10)

where  is defined in (1) and the mixing weights wk satisfy wk ≥ 0 and ∑k = 1
K wk = 1.

Let LK(M) = LK(M; wK, θK, ΓK) denote the maximized quasi log-likelihood for an assumed 

value of K. For a given K, the EM algorithm [28] is used to obtain maximum likelihood 

estimates for the parameters {wk, θk, Γk}k = 1
K  of the mixture model and the latent cluster 

identifiers δ.

We estimate the number of clusters by maximizing the Bayesian Information Criterion (BIC) 

[29], which can be expressed as

BICK = 2LK(Mδ) − vK log N,

where νK is the number of estimated parameters in the likelihood function LK (·).

The EM algorithm is only guaranteed to arrive at a local maximum of the mixture likelihood 

criterion [30]. Consequently, the choice of starting values for δ is important. Previous studies 

on clustering low-dimensional multivariate mixture models by [31], [32], and [2] suggest 

that an initial estimate, δ, obtained from agglomerative hierarchical clustering technique 

can provide effective initialization. We thus implemented an agglomerative hierarchical 

clustering technique on the (N + 1) dimensional rows of the M matrix to obtain an initial 

estimate δ for a given K.

The pseudocode for implementing the resulting algorithm is described in Algorithm 1.
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V. A COMPARATIVE STUDY ON A GENE EXPRESSION DATASETS

The evaluation of machine learning methods on real data is essential when comparing 

algorithms since the settings of simulation studies can be adjusted to favor one particular 

algorithm over another. Here, we test our clustering algorithm on a large collection of 

benchmarked, high-dimensional microarray datasets to evaluate the performance accuracy of 

our method. However, there is no acknowledged measure of choice to compare partitions 

and in practice many measures are used. To validate cluster solutions to a reference 

clustering, we use an information theoretic measure, adjusted mutual information (AMI), 

proposed by [33] and [34] that has been popular in validating many clustering studies( [8], 

[11], [35], etc). The AMI between two cluster configurations, say A and B, is defined as

AMI(A, B) = MI(A, B) − E[MI(A, B)]
H(A)H(B) − E[MI(A, B)] ,

where H(·) denotes entropy and MI(·, ·) denotes mutual information. An AMI value of 

1 occurs when the two partitions are equal, and 0 represents the AMI value expected by 

chance under a hypergeometric sampling model for the partitions.

A. BENCHMARKED MICROARRAY DATA SETS

The gene expression data sets that we studied are available at DataLink [36]. Thirty-two 

studies of various tissue samples were included in our comparison. As discussed in [37], 

the scales upon which features are measured can have a strong influence on determining 

estimated cluster configurations. Because of the wide dynamic range of gene expression 

data, some of the data sets, including Alizadeh-v1, Alizadeh-v2, Alizadeh-v3, Bittner, 
Garber, Lapointe-v1, Liang, Risinger, Singh-v1, Tomlins-v1 and West, was preprocessed 

and centered by the original authors. We did not apply additional transformations to these 

data. For the remaining data sets, we took the logarithm transformation on the feature matrix 

X ∈ ℝN × P  and then standardized each column (gene) of the resulting feature matrix by 

centering (with median) and scaling (with standard deviation). The “Microarray-data” folder, 

available in the GitHub repository https://github.com/srahman-24/GMac, provides all the 

transformed datasets and their respective cluster information.

Shah and Koltun [11] provided a recent comparison of 12 popular clustering methods 

for these 32 gene expression data sets. They based their comparison on the adjusted 

mutual information (AMI) [33] of estimated cluster configurations. The “true” cluster 

configurations of these data sets are well-studied, validated and available at DataLink [36]. 

To evaluate our method, GMAC, we compared its performance to the clustering methods 

considered in [11], adding 8 additional state-of-the-art algorithms to the comparison.
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We broadly divided the 21 other clustering methods into two categories, according to 

whether or not the algorithms estimated the number of clusters. Out of 21, 13 algorithms 

required pre-specification of the number of clusters K0 : k-means++ (KM++) [38], Gaussian 

mixture models (GMM) [32], fuzzy clustering (FUZZY) [39], mean-shift clustering (MS) 

[40], agglomerative hierarchical clustering with ward linkage (AC-W), normalized cuts 

(N-Cuts) [15], Zeta l-links (ZELL) [41], spectral embedded clustering (SEC) [10], clustering 

using local discriminant models and global integration (LDMGI) [42], path integral 

clustering (PIC) [43], sparse k-means (SP-KM) [4], sparse subspace clustering (SSC) 

[44] and deep embedding clustering (DEC) [12]. We also considered 8 other clustering 

methods that do not require the pre-specification of K0: Extended K-means with BIC 

(X-KM) [22], affinity propagation (AP) [45], a robust graph continuous clustering (RCC) 

[11], GAP statistics implemented with sparse K-means (GAP+S-KM) [4], [46], a model 

based clustering with variable selection (CVAR) [2], a high dimensional data clustering 

(HDDC) [24], a graph clustering based on tensors (SPEC) [16] and recent clustering 

method with simultaneous variable selection and estimation of K that is based on resampling 

method (S4) [9]. Overall, we compared GMAC with 13 clustering algorithms that require 
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pre-specification of the number of clusters and 8 clustering algorithms that do not. Out of the 

8 clustering methods in the second category, X-KM, CVAR, HDDC and GMAC implement 

the BIC criterion to select the number of clusters K. Details of the hyperparameter settings 

used for these methods are provided in Table 4 in appendix. The number of clusters was 

estimated in all implementations of GMAC.

B. RESULTS

We provide the AMI values achieved by each clustering algorithm for each data set in Table 

1 and 2. For brevity, we have excluded the AMI results from GMM, FUZZY, MS, SSC, and 

DEC and displayed the AMI results from 17 algorithms that yielded the best AMI value for 

at least 1 out of 32 data sets in Table 1 and 2. Figs. 4 and 3 summarizes the results of these 

comparisons. The barplot depicts the frequency at which each method yielded the highest 

accuracy based on AMI. The figure shows that GMAC achieved the highest AMI for 15 data 

sets, while the next best algorithm, S4, provided the highest AMI in 8 data sets. The boxplot 

in Fig. 3 shows how well the clustering methods estimate the number of clusters. Fig. 3 

shows that GMAC provides the best estimates, K, of K0.

We also compared the computational performance of GMAC to six other algorithms that, 

like GMAC, also estimated the number of clusters, K0. Because the runtime complexity of 

the GMAC algorithm is linear in P, it was typically faster than the other algorithms (Fig. 

5). Indeed, except for the AP algorithm (which achieved the best AMI in three microarray 

data set in Table 2 and relatively produced the largest bias and variability in estimating 

the number of clusters K shown in Fig. 3), GMAC was faster, on average, than all other 

algorithms that we tested, and was substantially faster for NP < 400, 000. All comparisons 

were performed on a workstation with an Intel(R) Core(TM) i7-3770 CPU clocked at 

3.40GHz with 8.00 GB RAM. The data sets and algorithms that produced these results are 

available at https://github.com/srahman-24/GMac.

VI. CONCLUSION

The clustering task is exceptionally challenging when high-dimensional features are 

collected on only a limited number of samples (N ≪ P). Most existing clustering 

algorithms either assume the number of clusters is known a priori or require tuning 

several hyperparameters. The lack of training data makes the selection of hyperparameters 

very difficult in unsupervised settings. Stability methods used to select hyperparameters 

suffer high computational costs and typically do not guarantee an optimal solution. Our 

clustering algorithm offers a simple and computationally efficient technique to detect and 

visualize cluster configurations. It estimates the number of clusters and does not require 

the specification of hyperparameters; this allows the user to avoid subjective or default 

parameter choices. The overall complexity of the current algorithm is O(N2P), which makes 

it efficient in N ≪ P settings. Our method yielded the highest accuracy, as measured by 

AMI, more than twice as often as 21 competing algorithms when applied to 32 real-world 

genomic datasets.

A software implementation of our proposed algorithm, GMAC, is available in the R 

package, RJcluster [47].1 In ongoing work, we plan to extend the algorithm for efficient 
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clustering in the “big data” paradigm, where both N and P are large. We are also 

developing transformations to cluster non-rectilinear high-dimensional data, like images and 

text documents.
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APPENDIX PROOF OF LEMMA 3.1

The proof of Lemma 1 follows from the proof of the following two lemmas.

Lemma 2: Recall that gi, j = ∑p = 1
P xi, pxj, p ∕ P  with E(xi, p ∣ δi) = μδi, p and E(xi ∣ δi) = μδi and 

Var(xi ∣ δi) = Σδi. Also recall that for clusters a, b ∈ {1, …, K0}, in equation 2 we defined 

θa, b = μa
Tμb ∕ P  and θa = μa

Tμa ∕ P + da
T1P ∕ P , where da

T = (σ1
a, …, σP

a) are the diagonal entries of 

Σa. Then for a, b ∈ {1, …, K0}, E[gi, j ∣ δi = a, δj = b] = θa, b and E[gi, i ∣ δi] = θa.

Proof:

Suppose Assumption 2 holds. We define a P-dimensional vector yi = (yi, 1, …, yi,P) with 

components yi,p = xi,p − μδi,p. It follows that E[yi, p ∣ δi = a] = 0 and E[yi, p
2 ∣ δi = a] = σp

a. For a ≠ 

b ∈ {1, …, K0}, If i ≠ j, δi. = a, and δj = b, then

gi, j − θa, b = 1
P ∑p = 1

P yi, pyj, p

+ 1
P ∑p = 1

P μa, pyj, p + 1
P ∑p = 1

P μb, pyi, p,
(11)

and for i = j
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gi, i − θa = 1
P ∑

p = 1

P
(yi, p

2 − σp
a) + 2

P ∑
p = 1

P
μa, pyi, p . (12)

Using the above and evaluating the conditional expectations E[gi, j ∣ δi, δj] and E[gi, i ∣ δi] proves

E(gi, j ∣ δi = a, δj = b) = θa, b and E(gi, i ∣ δi = a) = θa .

Lemma 3: Suppose Assumption 2 holds. Recall in section III for the P-dimensional vector 

yi
T, we defined ϒk = Var(yi∣δi = k) and κP = sup1 ≤ k ≤ K0 ‖Υk‖1

1 ∕ 2 and τP = sup1 ≤ k ≤ K0 ‖Σk‖1
1 ∕ 2. Let 

μsup = supk,p ∣μk,p∣ and σsup = supk, p σp
k. Then for i ≠ j

E ∣ gi, j − θδi, δj ∣2 1 ∕ 2 ≤ τP

P (2μsup + σsup) (13)

and

E ∣ gi, i − θδi ∣2 1 ∕ 2 ≤ 1
P (κP + 2τPμsup) . (14)

Furthermore,

E mi
δ − θδi 2

2 ≤ 1
P2 [(N − 1)τP

2(2μsup + σsup)2

+ (κP + 2τPμsup)2],
(15)

and

E Mδ − Θ 2
2

≤ N
P2 [(N − 1)τP

2(2μsup + σsup)2

+ (κP + 2τPμsup)2] .
(16)

Proof: We first prove (13), for the case i ≠ j. We use (11) to give the bound

(E ∣ gi, j − θδi, δj ∣2 )1 ∕ 2 ≤ E 1
P ∑

p = 1

P
yi, pyj, p

2 1 ∕ 2

+ E 1
P ∑

p = 1

P
μδi, pyj, p

2 1 ∕ 2

+ E 1
P ∑

p = 1

P
μδj, pyi, p

2 1 ∕ 2
.

Recall that E(A2) = E[E(A2 ∣ δ)] and if E[A ∣ δ] = 0, then E(A2) = E[var(A ∣ δ)]. This implies
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(E ∣ gi, j − θδiδj ∣2 )1 ∕ 2 ≤ A1, P + A2, P + A3, P, (17)

where A1, P = E var 1
P ∑p = 1

P yi, pyj, p ∣ δi, δj
1 ∕ 2

,

A2, P = E var 1
P ∑p = 1

P μδj, pyi, p ∣ δi, δj
1 ∕ 2

, and

A3, P = E var 1
P ∑p = 1

P μδi, pyj, p ∣ δi, δj
1 ∕ 2

.

We now bound each of the terms A1,P, A2,P and A3,P. To bound A1,P we use the following 

decomposition:

var 1
P ∑

p = 1

P
yi, pyj, p ∣ δi = a, δj = b

= 1
P2 ∑

p1, p2 = 1

P
cov yi, p1yj, p1, yi, p2yj, p2 ∣ δi = a, δj = b

= 1
P2 ∑

p1, p2 = 1

P
cov[yi, p1, yi, p2 ∣ δi = a]cov yj, p1, yj, p2 ∣ δj = b

≤ sup
a, p

σa, p
1

P2sup
a

∑
p1, p2 = 1

P
∣ cov yi, p1, yi, p2 ∣ δi = a ∣

≤ τP
2

P2σsup
2 .

It follows that

A1, P ≤ E var 1
P ∑p = 1

P yi, pyj, p ∣ δi, δj
1 ∕ 2

≤ τP
P σsup .

Using a similar argument to bound the conditional variance inside A2,P, we have

var 1
P ∑

p = 1

P
μi, pyj, p ∣ δi = a, δj = b

≤ μsup
2 1

P2 ∑
p1, p2 = 1

P
∣ cov(yi, p1, yi, p2) ∣ ≤ 1

P2μsup
2 τP

2 .

This leads to

A2, P ≤ τP
P μsup,

and by a similar argument to A3, A3, P ≤ τP
P μsup. Substituting these bounds into (17) we obtain

(E ∣ gi, j − θδi, δj ∣2 )1 ∕ 2 ≤ τP
P (2μsup + σsup),
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thus proving (13). We next bound (E ∣ gi, i − θδi ∣2 )1 ∕ 2. We use (12) to give

(E ∣ gi, i − θδi ∣2 )1 ∕ 2 ≤ B1, P + B2, P + B3, P, (18)

where

B1, P = E var 1
P ∑

p = 1

P
yi, p

2 ∣ δi

1 ∕ 2

B2, P = E var 1
P ∑

p = 1

P
μδi, pyi, p ∣ δi

1 ∕ 2

and B3, P = E var 1
P ∑

p = 1

P
μδi, pyi, p ∣ δi

1 ∕ 2
.

Using the same methods used to bound A2,P and A3,P, it is straightforward to show that B2,P, 

B3,P ≤ τPμsup/P. To bound B1,P we note that

var 1
P ∑

p = 1

P
yj, p

2 ∣ δi = a

= 1
P2 ∑

p1, p2 = 1

P
cov[yi, p1

2 , yi, p2
2 ∣ δi = a]

≤ P−2κP
2 ,

which follows from Assumption 2. Thus B1,P ≤ P−1 κP. Substituting into (18) gives

E ∣ gi, i − θδi)
2 ∣ 1 ∕ 2 ≤ 1

P (κP + 2τPμsup),

thus proving (14).

To prove (15), we apply (13) and (14), leading to

E mi
δ − θδi 2

2

= ∑
i, j = 1, i ≠ j

N
E(gi, j − θδi, δj)

2 + ∑
i = 1

N
E(gi, i − θδi)

2

≤ (N − 1) 1
P2τP

2(2μsup + σsup)2

+ 1
P2(κP + 2τPμsup)2

≤ 1
P2[(N − 1)τP

2(2μsup + σsup)2

+ (κP + 2τPμsup)2],

proving (15). Finally, to prove (16) we note that
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E Mδ − Θ 2
2

= ∑
i = 1

N
E mi

δ − θδi 2
2 .

By substituting (15) in the above we have

E Mδ − Θ 2
2

≤ N
P2 (N − 1)τP

2(2μsup + σsup)2 + (κP + 2τPμsup)2 ,

which proves (16) and hence Lemma 1.

APPENDIX PERFORMANCE IN SIMULATIONS

To evaluate our method when the underlying “truth” was known, we compared our method 

to eight other methods. We estimated the number of clusters using a simulation design 

that was proposed in [23], a similar design was also used in other works, including [3] 

and [48]. The eight other algorithms tested included extended K-means with BIC (X-KM) 

[22], affinity propagation (AP) [45], GAP statistics implemented with sparse K-means 

(GAP+S-KM) [4], [46], a model based clustering with variable selection (CVAR) [2], a 

high dimensional data clustering (HDDC) [24], a robust graph continuous clustering (RCC) 

[11], a graph clustering based on tensors (SPEC) [16] and a recent clustering method that 

performs simultaneous variable selection and estimation of K based on a resampling method 

(S4) [9]. We used the default parameter settings for each of these methods as implemented in 

their associated software packages. These included the following R packages: apcluster [49], 

cvarsel [50], cluster [51], HDclassif [52], sparcl [53], Spectrum [16], and RJcluster [47], as 

well as the implementation of X-KM in the Python library, ‘pyclustering.cluster.xmeans’. 

For the S4 and RCC methods, we used code and parameter settings available at S4github 

and RCCgithub, respectively.

The simulation designs always contained K0 = 4 clusters, and P varied in {100, 200, 500, 

1000, 2000}. For each P, we generated 100 replications, and each replication contained 

100 observations, with 15 observations taken from cluster 1, 20 observations from cluster 

2, 35 observations from cluster 3, and 30 observations from cluster 4. Only 10% of the 

features were informative in the sense that the distributions of the informative features 

differed across the clusters. Specifically, five percent of the features in each cluster were 

generated according to normal distribution with a mean taken from the first row of Table 3 

and standard deviation 1, and five percent were generated from a normal distribution with a 

mean taken from the second row in Table 3 and standard deviation 1. The remaining 90% of 

features for each cluster were generated as independent N(0, 1) random deviates. The latter 

features were thus non-informative in identifying the clusters. We used a common value of 

σ = 1, as suggested in [23]. This setting corresponds to a high “signal-to-noise ratio (SNR)” 

scenario. Samples used in this simulation can be obtained from the R package, RJcluster 
[47] using the function
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simulate_HD_data(size_vector = c(15, 20,

35, 30), p = 100, sparsity = 0.1).

TABLE 3.

Means of features in the simulation study.

Features Cluster 1 Cluster 2 Cluster 3 Cluster 4

First 5% 2.5 0 0 −2.5

Second 5% 1.5 1.5 −1.5 −1.5

Remaining 90% 0 0 0 0

Based on the 100 replications for each P, we report the average Adjusted Mutual Index 

(AMI) and proportion of times the correct cluster number was identified as performance 

measures. These performance measures are displayed in Figs. 4 and 7. The simulations 

demonstrate that GMAC provided the highest AMI values and most accurate estimates of 

the number of clusters for this simulation design.

A. COMPUTATION TIMES

We compared the execution time of our proposed method, GMAC algorithm to other 

algorithms which do not require the prespecification of the number of clusters. The overall 

distribution of the computation times taken by these algorithms across 32 datasets is 

displayed in Fig. 5. Execution times are displayed in log seconds. The GMAC, AP, RCC, 

and SPEC algorithms are much more computationally efficient than GAP, HDDC, S4 and 

CVAR methods. Excluding the AP algorithm, which provided the best AMI in only 3 

microarray dataset, the GMAC algorithm was significantly faster than all of the remaining 

algorithms.
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FIGURE 6. 
This plot summarizes the average Adjusted Mutual Index (AMI) that each clustering 

methods achieved over 100 replications of the simulation design for each value of P.
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FIGURE 7. 
This plot summarizes the proportion of correct cluster number identifications that each 

clustering method recorded over 100 replications of the simulation design for each value of 

P.

TABLE 4.

Hyperparameters and software used for other methods in the comparative study.

Methods hyper-parameters Values Software

AP iter.max 100 apcluster (R package)

s negDistMat(r=2)

CVAR search headlong clustvarsel (R package)

direction forward

parallel T

iter.max 100

GAP (with partitioning around 
mediod)

maximum number of 
clusters

20 cluster (R package)

d.power 2
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Methods hyper-parameters Values Software

bootstrap samples max(100,n)

metric Euclidean cluster

iter.max 100

HDDC max number of clusters 20 HDclassif (R package)

model “ALL"

threshold 0.2(default)

criterion bic(default)

dmax 100(default)

S-KM iter.max 100 sparcl (R package)

wbounds grid [1, 10](default)

nperm 100

SPEC method 2(default: multimodal eigen 
gap)

Spectrum (R package)

kernel-type density(default)

maxk 20

Nearest-Neighbor 7(default)

iter.max 100

S4 lam1 1.5 S4 (R package)

iteratio 100

kvector 2:7

GMAC Cmax 20 RJcluster (R package)

iter.max 100

penalty bic

B. HYPERPARAMETER SETTINGS OF OTHER CLUSTERING METHODS

We used the same hyperparameters settings recommended in [11] for the following 

clustering algorithms: KM++, AC-W, N-CUT, ZELL, SEC, LDMGI, PIC and RCC. 

Table 4 provides the hyperparameter settings and software used to obtain the results from the 

other methods we used in addition.

APPENDIX DATA TRANSFORMATIONS IN MICROARRAY GENE STUDIES

We took the logarithmic transformation of all data that contained only positive values. 

Several data sets were already preprocessed and centered and were therefore not log-

transformed further. These data sets included Alizadeh-v1,v2,v3, Bittner, Garber, Lapointe-

v1, Liang, Risinger, Singh-v1, Tomlins-v1 and West. For the remaining data sets, after 

logarithm transformation we standardized by centering on the median and scaling by the 

standard deviation. All the transformed data on which the clustering algorithms were applied 

can be found in the “Microarray-data” folder in the RJclust folder provided in the github 

repository https://github.com/srahman-24/GMac.
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Data Availability and Software

The datasets used for the comparisons are available at DataLink. We executed all algorithms 

on a workstation with an Intel(R) Core(TM) i7-3770 CPU clocked at 3.40GHz with 8.00 

GB RAM. The datasets and algorithms that produced the results are available at https://

github.com/srahman-24/GMac.
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FIGURE 1. 
(a) Contour plot of the simulated distribution of the original feature vectors for object 1, 

x1
T = (x11, x12) drawn from  ([0, 0], 0.5I2) and object 2, x2

T = (x21, x22) drawn from  ([−1, 

−1], 0.5I2). (b) The contour plot of the distribution of the simulated g-vectors corresponding 

to object 1 and 2.
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FIGURE 2. 
Application of two popular non-linear dimension reduction techniques, t-SNE (top) and 

UMAP (bottom) to original gene expression vectors (left) and m-vectors (right). The tumor 

clusters labels, ALL, AML, and MLL, are well-established and validated in [25].
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FIGURE 3. 
Boxplot displays of the distribution of (K − K0) for each of the clustering methods 

considered in Table 2. Here, K is the estimated number of clusters and K0 the validated 

number of clusters. Detailed information of K0 and K for each method is provided in Table 

2. In addition to GMAC, X-KM, CVAR, and HDDC (defined in Section V-A) also used BIC 

to select the number of clusters. From the boxplot and Table 2, we see that GMAC provided 

the best estimates of K0, followed closely by X-KM.
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FIGURE 4. 
(a) Barplot summaries of the AMI results for the clustering algorithms displayed in Table 1 

where the number of clusters, K0, was assumed to be known. The plot shows how frequently 

each of the 14 clustering algorithms obtained the highest AMI across 32 gene expression 

data sets. When K0 is known, GMAC achieved the highest AMI for 12 out of 32 datasets. 

Abbreviations for algorithms are provided in Section V-A. (b) Barplot summaries of the 

AMI results for the clustering algorithms displayed in Table 2 when K0 is estimated. The 

plot shows how frequently each of the 10 clustering algorithms obtained the highest AMI 

across 32 gene expression data sets. When K0 is unknown, GMAC achieved the highest 

AMI for 15 out of 32 datasets.
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FIGURE 5. 
This plot illustrates the average computational speed of the clustering algorithms that 

estimate the number of clusters. Computational times are displayed in log seconds (with 

base e) as a function of NP.

RAHMAN et al. Page 31

IEEE Access. Author manuscript; available in PMC 2023 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

RAHMAN et al. Page 32

TA
B

L
E

 1
.

A
dj

us
te

d 
M

ut
ua

l I
nf

or
m

at
io

n 
(A

M
I)

 d
is

pl
ay

ed
 f

or
 9

 c
lu

st
er

in
g 

al
go

ri
th

m
s 

co
m

pa
re

d 
ov

er
 3

2 
di

ff
er

en
t m

ic
ro

ar
ra

y 
da

ta
se

ts
. F

or
 b

re
vi

ty
, r

es
ul

ts
 f

ro
m

 5
 

ad
di

tio
na

l c
lu

st
er

in
g 

al
go

ri
th

m
s 

ar
e 

no
t s

ho
w

n 
be

ca
us

e 
no

ne
 o

f 
th

em
 p

ro
du

ce
d 

th
e 

hi
gh

es
t A

M
I 

fo
r 

an
y 

of
 th

e 
da

ta
se

ts
 c

on
si

de
re

d 
he

re
. H

er
e,

 th
e 

cl
us

te
ri

ng
 a

lg
or

ith
m

s 
us

ed
 th

e 
tr

ue
 n

um
be

r 
of

 c
lu

st
er

s 
K

0.
 F

or
 e

ac
h 

da
ta

se
t, 

th
e 

m
ax

im
um

 a
ch

ie
ve

d 
A

M
I 

is
 h

ig
hl

ig
ht

ed
 in

 b
ol

d.
 T

he
 n

um
be

r 
of

 ti
m

es
 e

ac
h 

m
et

ho
d 

ac
hi

ev
es

 th
e 

hi
gh

es
t A

M
I 

is
 r

ep
or

te
d 

in
 th

e 
la

st
 r

ow
.

K
0 

is
 fi

xe
d

D
at

as
et

s
N

P
K

 0
K

M
++

SP
-K

M
A

C
-W

N
-C

ut
s

Z
E

L
L

SE
C

L
D

G
M

I
P

IC
G

M
A

C

A
liz

ad
eh

-v
1

42
10

97
2

0.
34

0
−

0.
01

5
0.

10
1

0.
09

6
0.

25
0

0.
23

8
0.

12
3

0.
03

3
0.

66
0

A
liz

ad
eh

-v
2

62
20

95
3

0.
56

8
0.

87
2

0.
92

2
0.

92
2

0.
92

2
0.

92
2

0.
73

8
0.

92
2

1

A
liz

ad
eh

-v
3

62
20

95
4

0.
58

6
0.

64
9

0.
61

6
0.

60
1

0.
70

2
0.

57
4

0.
58

2
0.

62
5

0.
64

9

A
rm

st
ro

ng
-v

1
72

10
83

2
0.

37
2

0.
37

0
0.

30
8

0.
37

2
0.

30
8

0.
32

3
0.

35
5

0.
30

8
0.

37
2

A
rm

st
ro

ng
-v

2
72

21
96

3
0.

89
1

0.
37

5
0.

74
6

0.
83

0.
80

2
0.

89
1

0.
50

9
0.

80
2

0.
67

8

B
ha

tt
ac

ha
rj

ee
20

3
15

45
5

0.
44

4
0.

29
6

0.
60

1
0.

56
3

0.
49

6
0.

57
0

0.
37

8
0.

37
8

0.
39

5

B
it

tn
er

38
22

03
2

−
0.

01
2

0.
19

5
0.

00
2

0.
04

2
0.

11
5

−
0.

00
2

0.
01

4
0.

11
5

0.
00

2

B
re

de
l

28
10

72
3

0.
29

7
0.

00
0

0.
38

4
0.

20
3

0.
27

8
0.

25
9

0.
29

5
0.

27
8

0.
00

0

C
ho

w
da

ry
10

4
18

4
2

0.
76

4
0.

59
5

0.
85

9
0.

85
9

0.
85

9
0.

85
9

0.
85

9
0.

85
9

0.
85

9

D
yr

sk
jo

t
40

12
05

5
0.

50
7

0.
76

0
0.

47
4

0.
30

3
0.

26
9

0.
38

9
0.

38
5

0.
17

7
0.

82
1

G
ar

be
r

66
45

55
4

0.
24

2
0.

02
6

0.
21

0
0.

20
4

0.
24

6
0.

20
0

0.
19

1
0.

24
6

0.
06

3

G
ol

ub
-v

1
72

18
70

2
0.

68
8

0.
70

1
0.

83
1

0.
65

0
0.

61
5

0.
61

5
0.

61
5

0.
61

5
0.

62
0

G
ol

ub
-v

2
72

18
70

3
0.

68
0

0.
61

7
0.

73
7

0.
69

3
0.

68
9

0.
70

3
0.

60
0

0.
68

9
0.

49
5

G
or

do
n

18
1

16
28

2
0.

65
1

0.
93

7
0.

48
3

0.
68

1
−

0.
00

5
0.

79
1

0.
66

9
0.

66
4

0.
93

7

L
ai

ho
37

22
04

2
0.

00
7

0.
06

2
−

0.
00

7
0.

03
0

0.
07

3
−

0.
00

7
0.

09
3

0.
04

4
0.

20
3

L
ap

oi
nt

e-
v1

69
16

27
3

0.
08

8
0.

01
2

0.
15

1
0.

17
9

0.
15

1
0.

08
8

0.
14

9
0.

15
1

0.
15

8

L
ap

oi
nt

e-
v2

11
0

24
98

4
0.

00
8

0.
09

7
0.

03
3

0.
15

3
0.

14
7

0.
02

8
0.

11
8

0.
17

1
0.

15
1

L
ia

ng
37

14
13

3
0.

30
1

0.
30

1
0.

30
1

0.
30

1
0.

30
1

0.
30

1
0.

30
1

0.
30

1
0.

30
1

N
ut

t-
v1

50
13

79
4

0.
17

1
0.

31
1

0.
15

9
0.

15
6

0.
10

9
0.

08
6

0.
07

8
0.

11
3

0.
18

8

N
ut

t-
v2

28
10

72
2

−
0.

02
5

0.
00

0
−

0.
02

4
−

0.
02

5
−

0.
03

1
−

0.
02

5
−

0.
02

7
−

0.
03

0
0.

00
0

N
ut

t-
v3

22
11

54
2

0.
06

3
0.

00
0

0.
00

4
0.

08
0

0.
05

9
0.

08
0

0.
17

4
0.

05
9

0.
17

4

P
om

er
oy

-v
1

34
85

9
2

0.
01

2
−

0.
03

2
−

0.
02

0
−

0.
00

6
−

0.
02

0
0.

00
8

−
0.

02
6

−
0.

03
2

0.
06

1

IEEE Access. Author manuscript; available in PMC 2023 June 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

RAHMAN et al. Page 33

K
0 

is
 fi

xe
d

D
at

as
et

s
N

P
K

 0
K

M
++

SP
-K

M
A

C
-W

N
-C

ut
s

Z
E

L
L

SE
C

L
D

G
M

I
P

IC
G

M
A

C

P
om

er
oy

-v
2

42
13

81
5

0.
50

2
0.

57
6

0.
59

1
0.

61
7

0.
56

8
0.

57
7

0.
60

2
0.

56
8

0.
45

0

R
am

as
w

am
y

19
0

13
65

14
0.

61
8

0.
40

1
0.

62
3

0.
65

1
0.

61
8

0.
62

0
0.

66
3

0.
63

9
0.

49
3

R
is

in
ge

r
42

17
73

4
0.

21
0

0.
16

2
0.

29
7

0.
22

3
0.

20
1

0.
25

8
0.

15
3

0.
20

1
0.

39
3

Sh
ip

p-
v1

77
80

0
2

0.
26

4
0.

03
5

0.
20

8
0.

13
2

−
0.

00
2

0.
16

8
0.

20
3

−
0.

00
2

0.
04

2

Si
ng

h
10

2
34

1
2

0.
04

8
0.

03
7

0.
01

9
0.

03
3

−
0.

00
3

0.
06

9
−

0.
00

3
0.

06
6

0.
01

6

Su
17

4
15

73
10

0.
66

6
0.

67
2

0.
66

2
0.

73
8

0.
68

7
0.

65
0

0.
66

7
0.

66
0

0.
73

9

To
m

lin
s-

v1
10

4
23

17
5

0.
39

6
0.

38
2

0.
45

4
0.

40
9

0.
64

7
0.

46
9

0.
41

9
0.

59
0

0.
35

2

To
m

lin
s-

v2
92

12
90

4
0.

36
8

0.
22

2
0.

21
5

0.
29

2
0.

22
6

0.
38

3
0.

35
4

0.
31

1
0.

17
7

W
es

t
49

12
00

2
0.

48
9

0.
40

3
0.

48
9

0.
44

2
0.

51
5

0.
48

9
0.

44
2

0.
51

5
0.

40
1

Y
eo

hv
2

24
8

25
28

6
0.

38
5

0.
00

2
0.

38
3

0.
47

9
0.

53
0

0.
55

0
0.

33
7

0.
44

2
0.

13
7

C
ou

nt
 o

f 
H

ig
he

st
 A

M
I

4
6

6
6

5
6

4
5

12

IEEE Access. Author manuscript; available in PMC 2023 June 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

RAHMAN et al. Page 34

TA
B

L
E

 2
.

A
dj

us
te

d 
M

ut
ua

l I
nf

or
m

at
io

n 
an

d 
th

e 
nu

m
be

r 
of

 e
st

im
at

ed
 c

lu
st

er
s 

di
sp

la
ye

d 
as

 A
M

I 
(K

) 
fo

r 
9 

cl
us

te
ri

ng
 a

lg
or

ith
m

s 
co

m
pa

re
d 

ov
er

 3
2 

di
ff

er
en

t 

m
ic

ro
ar

ra
y 

da
ta

se
ts

. H
er

e,
 th

e 
cl

us
te

ri
ng

 a
lg

or
ith

m
s 

es
tim

at
ed

 th
e 

tr
ue

 n
um

be
r 

of
 c

lu
st

er
s 

K
0.

 F
or

 e
ac

h 
da

ta
se

t, 
th

e 
m

ax
im

um
 a

ch
ie

ve
d 

A
M

I 
is

 

hi
gh

lig
ht

ed
 in

 b
ol

d.
 T

he
 n

um
be

r 
of

 ti
m

es
 e

ac
h 

m
et

ho
d 

ac
hi

ev
es

 th
e 

hi
gh

es
t A

M
I 

is
 r

ep
or

te
d 

in
 th

e 
pe

nu
lti

m
at

e 
ro

w
. T

he
 la

st
 r

ow
 d

is
pl

ay
s 

th
e 

sq
ua

re
 r

oo
t 

of
 th

e 
av

er
ag

e 
sq

ua
re

d 
er

ro
r 

in
 e

st
im

at
in

g 
th

e 
nu

m
be

r 
of

 c
lu

st
er

s.

M
et

ho
ds

 (
K

0 
is

 e
st

im
at

ed
)

D
at

as
et

s
N

P
K

 0
X

-K
M

R
C

C
C

V
A

R
A

P
H

D
D

C
SP

E
C

G
A

P
+S

-K
M

S4
G

M
A

C

A
liz

ad
eh

-v
1

42
10

97
2

0.
00

0 
(1

)
0.

00
3 

(2
)

−
0.

00
6 

(1
)

0.
21

1 
(6

)
0.

13
3 

(8
)

0.
15

7 
(2

)
0.

00
0 

(1
)

0.
12

3 
(7

)
0.

66
0 

(2
)

A
liz

ad
eh

-v
2

62
20

95
3

0.
75

7 
(4

)
0.

60
8 

(6
)

0.
53

3 
(3

)
0.

56
3 

(6
)

0.
57

1 
(6

)
0.

75
3 

(4
)

0.
87

2 
(3

)
0.

85
6 

(2
)

0.
81

8 
(4

)

A
liz

ad
eh

-v
3

62
20

95
4

0.
63

6 
(2

)
0.

49
6 

(6
)

0.
29

5 
(3

)
0.

54
0 

(6
)

0.
54

8 
(6

)
0.

60
9 

(4
)

0.
64

8 
(4

)
0.

64
9 

(2
)

0.
64

9 
(4

)

A
rm

st
ro

ng
-v

1
72

10
83

2
0.

33
8 

(2
)

0.
00

0 
(1

)
0.

30
2 

(9
)

0.
38

1 
(8

)
0.

46
1 

(3
)

0.
61

7 
(3

)
0.

61
1 

(3
)

0.
35

5 
(2

)
0.

61
2 

(3
)

A
rm

st
ro

ng
-v

2
72

21
96

3
0.

66
0 

(2
)

0.
00

0 
(1

)
0.

51
3 

(7
)

0.
58

6 
(8

)
−

0.
01

 (
2)

0.
69

3 
(3

)
0.

80
3 

(3
)

0.
71

8 
(2

)
0.

61
1 

(4
)

B
ha

tt
ac

ha
rj

ee
20

3
15

45
5

0.
40

1 
(3

)
0.

00
0 

(1
)

0.
17

 (
15

)
0.

38
 (

17
)

0.
26

9 
(2

)
0.

50
5 

(3
)

0.
54

2 
(8

)
0.

37
2 

(3
)

0.
47

5 
(9

)

B
it

tn
er

38
22

03
2

0.
01

6 
(2

)
0.

15
6 

(4
)

−
0.

02
 (

3)
0.

24
3 

(9
)

0.
28

8 
(6

)
0.

01
3 

(2
)

0.
00

0 
(1

)
0.

45
3 

(7
)

0.
12

5 
(5

)

B
re

de
l

28
10

72
3

0.
00

0 
(1

)
0.

06
0 

(2
)

−
0.

03
 (

4)
0.

13
9 

(4
)

0.
22

7 
(6

)
0.

35
6 

(3
)

0.
11

6 
(3

)
0.

20
3 

(5
)

0.
14

4 
(4

)

C
ho

w
da

ry
10

4
18

4
2

0.
64

6 
(3

)
0.

58
3 

(6
)

0.
44

8 
(5

)
0.

44
 (

11
)

0.
85

9 
(2

)
0.

57
5 

(5
)

0.
43

 (
16

)
0.

64
9 

(3
)

0.
48

3 
(7

)

D
yr

sk
jo

t
40

12
05

5
−

0.
00

2 
(3

)
0.

00
0 

(1
)

0.
40

 (
10

)
0.

55
8 

(9
)

0.
60

7 
(9

)
0.

62
9 

(3
)

0.
40

3 
(2

)
0.

40
3 

(2
)

0.
76

6 
(6

)

G
ar

be
r

66
45

55
4

0.
03

7 
(2

)
0.

10
 (

20
)

0.
17

5 
(2

)
0.

27
 (

10
)

0.
16

4 
(5

)
0.

13
7 

(2
)

0.
35

 (
19

)
0.

53
1 

(3
)

0.
06

3 
(4

)

G
ol

ub
-v

1
72

18
70

2
0.

06
5 

(2
)

0.
00

0 
(1

)
0.

62
 (

15
)

0.
43

 (
11

)
0.

47
8 

(3
)

0.
13

7 
(2

)
0.

04
4 

(7
)

0.
70

6 
(5

)
0.

62
0 

(3
)

G
ol

ub
-v

2
72

18
70

3
0.

09
7 

(2
)

0.
00

0 
(1

)
0.

14
 (

20
)

0.
52

 (
11

)
0.

47
8 

(3
)

0.
35

2 
(2

)
0.

00
0 

(7
)

0.
61

7 
(5

)
0.

46
3 

(3
)

G
or

do
n

18
1

16
28

2
0.

65
7 

(3
)

0.
00

9 
(5

)
0.

24
8 

(3
)

0.
30

 (
29

)
0.

00
3 

(2
)

0.
93

7 
(2

)
0.

44
 (

11
)

0.
93

7 
(2

)
0.

46
6 

(8
)

L
ai

ho
37

22
04

2
−

0.
02

 (
2)

0.
00

0 
(1

)
0.

03
 (

18
)

0.
06

1 
(6

)
0.

16
 (

10
)

0.
03

6 
(2

)
0.

00
0 

(1
)

0.
03

1 
(6

)
0.

16
5 

(3
)

L
ap

oi
nt

e-
v1

69
16

27
3

0.
01

2 
(2

)
−

0.
00

4 
(4

)
0.

15
8 

(3
)

0.
15

2 
(5

)
0.

25
3 

(9
)

0.
01

2 
(2

)
0.

21
6 

(3
)

0.
21

6 
(3

)
0.

15
8 

(5
)

L
ap

oi
nt

e-
v2

11
0

24
98

4
−

0.
00

5 
(2

)
0.

00
2 

(3
)

0.
13

3 
(3

)
0.

21
0 

(7
)

0.
13

8 
(2

)
−

0.
00

6 
(2

)
0.

21
6 

(6
)

−
0.

00
6 

(2
)

0.
24

9 
(8

)

L
ia

ng
37

14
13

3
0.

29
4 

(3
)

0.
23

9 
(3

)
0.

43
2 

(6
)

0.
48

1 
(4

)
0.

30
1 

(3
)

0.
48

1 
(4

)
0.

48
1 

(4
)

0.
48

1 
(4

)
0.

48
1 

(4
)

N
ut

t-
v1

50
13

79
4

0.
11

3 
(2

)
0.

07
5 

(2
)

0.
11

2 
(6

)
0.

11
6 

(6
)

0.
28

4 
(9

)
0.

21
5 

(3
)

0.
00

0 
(1

)
0.

36
3 

(7
)

0.
45

9 
(6

)

N
ut

t-
v2

28
10

72
2

−
0.

02
4 

(2
)

0.
06

0 
(2

)
−

0.
01

6 
(4

)
0.

15
 (

10
)

0.
25

0 
(3

)
−

0.
02

7 
(4

)
0.

11
6 

(3
)

0.
25

5 
(5

)
0.

25
6 

(4
)

N
ut

t-
v3

22
11

54
2

0.
43

0 
(2

)
0.

00
0 

(1
)

0.
22

5 
(4

)
−

0.
00

2 
(4

)
0.

32
1 

(5
)

0.
51

1 
(2

)
0.

00
0 

(1
)

0.
25

9 
(2

)
0.

64
5 

(4
)

P
om

er
oy

-v
1

34
85

9
2

0.
02

1 
(2

)
0.

00
0 

(1
)

0.
06

 (
20

)
0.

06
1 

(4
)

0.
11

8 
(7

)
−

0.
01

4 
(2

)
−

0.
03

2 
(2

)
−

0.
03

2 
(2

)
0.

06
1 

(4
)

IEEE Access. Author manuscript; available in PMC 2023 June 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

RAHMAN et al. Page 35

M
et

ho
ds

 (
K

0 
is

 e
st

im
at

ed
)

D
at

as
et

s
N

P
K

 0
X

-K
M

R
C

C
C

V
A

R
A

P
H

D
D

C
SP

E
C

G
A

P
+S

-K
M

S4
G

M
A

C

P
om

er
oy

-v
2

42
13

81
5

0.
32

7 
(2

)
0.

00
0 

(1
)

0.
60

6 
(8

)
0.

60
6 

(8
)

0.
51

3 
(9

)
0.

54
4 

(3
)

0.
36

2 
(2

)
0.

47
3 

(4
)

0.
39

6 
(3

)

R
am

as
w

am
y

19
0

13
65

14
0.

40
1 

(4
)

0.
68

 (
20

)
0.

18
4 

(7
)

0.
59

 (
25

)
0.

24
6 

(2
)

0.
54

7 
(4

)
0.

43
 (

13
)

0.
49

5 
(3

)
0.

44
 (

15
)

R
is

in
ge

r
42

17
73

4
0.

03
6 

(2
)

−
0.

00
5 

(2
)

0.
14

8 
(3

)
0.

30
9 

(6
)

0.
37

7 
(9

)
0.

30
8 

(3
)

0.
00

0 
(1

)
0.

03
9 

(2
)

0.
37

8 
(4

)

Sh
ip

p-
v1

77
80

0
2

0.
03

7 
(2

)
0.

00
0 

(1
)

0.
03

 (
13

)
0.

11
 (

10
)

0.
03

8 
(4

)
0.

06
9 

(4
)

0.
08

9 
(3

)
0.

09
8 

(3
)

0.
13

3 
(3

)

Si
ng

h
10

2
34

1
2

0.
03

8 
(4

)
0.

03
4 

(2
)

0.
03

0 
(5

)
0.

08
 (

12
)

0.
00

0 
(1

)
0.

02
9 

(3
)

0.
10

 (
18

)
0.

05
0 

(2
)

0.
10

 (
10

)

Su
17

4
15

73
10

0.
31

1 
(2

)
0.

00
2 

(3
)

0.
59

 (
11

)
0.

66
 (

20
)

0.
38

1 
(2

)
0.

82
4 

(6
)

0.
73

 (
16

)
0.

42
4 

(2
)

0.
70

 (
11

)

To
m

lin
s-

v1
10

4
23

17
5

0.
03

4 
(2

)
0.

06
 (

12
)

0.
18

2 
(2

)
0.

37
 (

19
)

0.
00

0 
(1

)
0.

48
5 

(3
)

0.
00

0 
(1

)
0.

35
6 

(4
)

0.
35

2 
(6

)

To
m

lin
s-

v2
92

12
90

4
0.

12
9 

(2
)

0.
00

6 
(7

)
0.

13
2 

(3
)

0.
19

 (
18

)
0.

05
1 

(8
)

0.
16

6 
(2

)
0.

00
0 

(1
)

0.
15

7 
(2

)
0.

20
6 

(6
)

W
es

t
49

12
00

2
−

0.
00

1 
(2

)
0.

00
0 

(1
)

0.
09

7 
(2

)
0.

26
 (

10
)

0.
20

2 
(8

)
0.

41
3 

(2
)

0.
00

0 
(1

)
0.

40
3 

(3
)

0.
41

3 
(3

)

Y
eo

hv
2

24
8

25
28

6
0.

00
6 

(2
)

0.
00

0 
(1

)
0.

02
7 

(1
1)

0.
41

 (
36

)
0.

22
9 

(6
)

0.
17

2 
(2

)
0.

00
0 

(1
)

0.
00

1 
(2

)
0.

04
2 

(4
)

C
ou

nt
 o

f 
H

ig
he

st
 A

M
I

0
1

1
3

6
6

7
8

15

Av
g(

K
−

K
0)2

2.
77

4.
11

6.
83

9.
92

4.
29

2.
52

5.
43

3.
26

2.
57

IEEE Access. Author manuscript; available in PMC 2023 June 02.


	Abstract
	INTRODUCTION
	ABBREVIATIONS AND ACRONYMS
	FRAMEWORK

	THE TRANSFORMATION ON GRAM MATRIX
	THE G-VECTORS
	PARTIAL ALIGNMENT OF G-VECTORS
	FULL ALIGNMENT OF G-VECTORS

	CONCENTRATION OF THE mδ -VECTORS
	THE CLUSTERING ALGORITHM: GMAC
	A COMPARATIVE STUDY ON A GENE EXPRESSION DATASETS
	BENCHMARKED MICROARRAY DATA SETS
	RESULTS

	CONCLUSION
	APPENDIX PROOF OF LEMMA 3.1
	APPENDIX PERFORMANCE IN SIMULATIONS
	TABLE 3.
	FIGURE 6.
	FIGURE 7.
	TABLE 4.
	APPENDIX DATA TRANSFORMATIONS IN MICROARRAY GENE STUDIES
	References
	FIGURE 1.
	FIGURE 2.
	FIGURE 3.
	FIGURE 4.
	FIGURE 5.
	TABLE 1.
	TABLE 2.

