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ABSTRACT

The accumulation of calcium in atherosclerotic plaques is a prominent feature of advanced 
atherosclerosis, and it has a strong positive correlation with the total burden of atherosclerosis. 
Atherosclerotic calcification usually appears first at the necrotic core, indicating that cell death 
and inflammatory processes are involved in calcification. During atherosclerotic inflammation, 
various cell types, such as vascular smooth muscle cells, nascent resident pericytes, circulating 
stem cells, or adventitial cells, have been assumed to differentiate into osteoblastic cells, 
which lead to vascular calcification. Among these cell types, vascular smooth muscle cells are 
considered a major contributor to osteochondrogenic cells in the atherosclerotic milieu. In this 
review, we summarize the molecular mechanisms underlying the osteochondrogenic switch of 
vascular smooth muscle cells in atherosclerotic plaques.
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INTRODUCTION

Atherosclerosis is a major pathological process underlying most cardiovascular diseases (such 
as heart disease, stroke, angina pectoris, and aneurysms), which combined are the leading 
cause of global death.1 Once largely limited to Western nations, atherosclerosis now affects 
people worldwide, including those living in developing countries, mainly due to population 
growth and increased life expectancy.2 Atherosclerosis reproducibly affects multifocal sites 
of the arterial tree. It typically impacts the inner curvatures and branch points, such as the 
coronary arteries, iliofemoral arteries, abdominal arteries, and carotid bifurcations, which are 
areas with low or oscillatory endothelial shear stress.3 Atherosclerosis is primarily driven by 
native or aggregated low-density lipoproteins (LDLs) in combination with other risk factors, 
including diabetes mellitus, smoking, hypertension, and male sex. Once accumulated in the 
arterial intima, LDLs are modified by oxidation and aggregation and act as chronic stimulators 
of innate and adaptive immune responses. In turn, endothelial cells and vascular smooth 
muscle cells (VSMCs) express adhesion molecules, chemoattractants, and variable cytokines 
that attract monocytes, which then differentiate into macrophages and monocyte-derived 
dendritic cells. Lipid-phagocytized macrophages are involved in various pathological events, 
including apoptosis, necrosis, VSMC proliferation, matrix synthesis, and calcification.3
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Based on their progression, atherosclerotic lesions can be classified into several histological 
subtypes, including adaptive intimal thickening, intimal xanthoma, pathological intimal 
thickening, fibroatheroma, and fibrocalcific plaque.4 Adaptive intimal thickening—the 
earliest type of lesion to appear—is characterized by the intimal accumulation of VSMCs, 
while intimal xanthoma involves the intimal accumulation of foam cells. The lesion 
then progresses to pathological intimal thickening, characterized by the extracellular 
accumulation of lipid pools without apparent necrosis. Fibroatheroma indicates an advanced 
stage of atherosclerosis, characterized by the formation of a fibrous cap and necrotic core, as 
well as the accumulation of a collagenous extracellular matrix (ECM). The lesion eventually 
accumulates calcified areas in the necrotic core and surrounding tissues and becomes a 
fibrocalcific plaque.

Atherosclerosis causes clinical complications primarily via thrombosis or the limitation of 
blood flow. Depending on the affected vascular beds, various clinical sequelae can occur, 
such as angina and myocardial infarction in the coronary arteries or stroke in the carotid 
arteries.5 In the past, the rupture of vulnerable plaques, histologically characterized by a large 
lipid- and macrophage-rich necrotic core and a thin fibrous cap, was considered a major 
mechanism of atherosclerotic thrombosis.3 However, recent clinical studies have suggested 
that other mechanisms—such as plaque erosion, which is histologically characterized by 
thrombosis formation on an ECM-rich, less inflamed, and lipid-laden plaque without a thin 
fibrous cap—can be principal causes of atherosclerosis-induced thrombosis.6 In addition 
to plaque rupture and erosion, calcified nodules, which are formed by atherosclerotic 
calcification and have distinct morphology, reportedly contribute to a small proportion (up to 
5%) of atherosclerosis-induced thrombosis cases.4,7

In this review, we discuss calcification in atherosclerosis, which is a characteristic feature 
of advanced atherosclerotic plaques. We detail the cell types and underlying mechanisms 
responsible for atherosclerotic calcification, particularly VSMCs, which are considered a 
major contributor to atherosclerotic calcification through the osteochondrogenic transition.

CALCIFICATION IN ATHEROSCLEROSIS

Atherosclerotic lesions contain various noncellular components, such as collagen, elastin, 
proteoglycans, glycosaminoglycan, and calcium. As lesions progress, these noncellular 
components, especially fibrous tissue and calcium, tend to accumulate gradually and often 
become the primary plaque components.3 Coronary artery calcification can be readily 
measured and quantified through computed tomography. The resulting coronary artery 
calcium (CAC) score is strongly positively associated with the total burden of atherosclerosis, 
indicating that calcification is a characteristic phenomenon of atherosclerosis.8 The CAC 
score can be used as a sensitive and specific predictor of clinically significant coronary artery 
disease and identify patients at risk for adverse cardiac events. Currently, it is generally agreed 
that high CAC scores predict high risk at the patient level rather than a vulnerable plaque or 
vessel. Potential roles of atherosclerotic calcification in plaque stability have been proposed 
based on the size, location, and shape of the calcification. For instance, microcalcifications 
and spotty calcifications are regarded as pro-inflammatory processes and negatively impact 
plaque stability. In contrast, macrocalcifications formed in the deep intima or necrotic core 
are considered to stabilize plaques.9 However, substantial debate persists regarding whether 
atherosclerotic calcification can serve as a marker of plaque stability or instability.8
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Atherosclerotic calcification can give rise to a distinct type of lesion termed a calcified 
nodule, which is histologically characterized by erupted and fractured calcified plates on a 
disrupted fibrous cap, accompanied by a luminal thrombus.10 Although calcified nodules 
account for a minority (up to 5%) of the causes of atherosclerosis-related thrombosis, their 
clinical implications have been highlighted in a retrospective study. Calcified nodules were 
found to be associated with higher incidence rates of hypertension, chronic kidney disease 
(CKD), and maintenance hemodialysis. A follow-up study revealed that calcified nodules 
are highly correlated with major adverse cardiac events, as defined by a combined outcome 
of death related to cardiac failure, recurrence of acute coronary syndrome, and target lesion 
revascularization. In addition, when target lesion revascularization was performed after the 
installment of drug-eluting stents in patients with calcified nodules, the recurrence rate of 
the calcified nodules within the stents was 82.4%.7 These observations indicate that calcified 
nodules can hinder the neointimal suppression capacity of drug-eluting stents, suggesting 
that different treatment approaches may be required for atherosclerotic lesions that harbor 
calcified nodules. To date, drugs that prevent or treat atherosclerotic calcification—including 
statins, a major treatment option for atherosclerosis—are not available.11

Atherosclerotic calcification usually appears first in the necrotic core, implying that cell 
death (necrosis and apoptosis) and inflammation are involved in the calcification process. 
Previous findings indicate that apoptotic bodies and matrix vesicles from intralesional 
cells (e.g., macrophages/foam cells and VSMCs) can act as nucleating agents to promote 
calcification. Various environmental cues such as inflammatory cytokines (including 
tumor necrosis factor alpha and interleukin 6), oxidative stress, bone morphogenetic 
proteins (BMPs) 2 and 4, changes in pyrophosphate levels, and osteocalcin can accelerate 
atherosclerotic calcification.12 Conversely, various cytokines and molecules such as 
osteopontin, matrix Gla protein, osteoprotegerin, sclerostin, fibroblast growth factor 23, 
fetuin, and BMP7 can inhibit atherosclerotic calcification. Systemic factors, including CKD, 
parathyroid hormone, vitamin D, glucocorticoids, diabetes, menopause, and osteoporosis, 
are also known to affect vascular calcification.11,12

In the past, vascular calcification was regarded as a passive, degenerative, and unregulated 
process. However, calcifications of both the intima (atherosclerotic calcification) and the 
media (medial calcification) are now considered to be tightly regulated active processes that 
recapitulate bone morphogenesis.11 Studies have indicated the existence of osteoblast- and 
chondrocyte-like cells that express bone- and cartilage-related transcription factors such as 
MSX2, RUNX2, and SP7 during vascular calcification. Studies have suggested that various 
cell types, such as VSMCs, nascent resident pericytes, circulating stem cells, or adventitial 
cells, can differentiate into osteoblastic cells in vascular calcification.12 Among these cell 
types, VSMCs are considered the major contributor of the osteochondrogenic cells in the 
atherosclerotic milieu that produce calcification.11 VSMCs integrate various atherogenic 
signals and differentiate into osteochondrogenic cells primarily through the BMP signaling 
pathway (Fig. 1), a process that we will discuss in further detail below.

VSMCs IN ATHEROSCLEROSIS

VSMCs occupy the largest cellular portion of the aorta, constituting the tightly woven medial 
layer along with elastic fibers. Under steady-state conditions, VSMCs are densely packed, exhibit 
spindle-shaped morphology, and express typical contractile markers, such as ACTA2, TAGLN, 
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and MYH11; thus, they can exert contractile properties to fulfill their role of controlling vascular 
tone and blood pressure. During vascular injury or atherosclerosis, VSMCs undergo phenotypic 
switching, which is initially characterized by the downregulation of contractile genes.13 In early 
VSMC research, the loss of such typical contractile markers hampered the accurate assessment 
of VSMC-derived cells in atherosclerotic lesions. However, the development of a lineage tracing 
reporter system method (a mouse model harboring the Myh11-CreERT2 transgene along with the 
Cre-inducible fluorescent reporter transgene) has enabled accurate tracking of VSMC-derived 
cells, even when VSMC-specific contractile marker expression is lost. Lineage tracing studies 
have provided solid evidence that VSMC-derived cells constitute a substantial proportion 
(30%–70%) of all plaque cells; they have also shown that VSMCs can yield multiple phenotypes, 
such as macrophage-like, myofibroblast-like, or osteochondrogenic cells.14-17 In addition, 
mouse studies involving lineage tracing with a multicolor reporter system, such as a confetti or 
rainbow system, have revealed an interesting phenomenon: only a few VSMCs from the medial 
layer give rise to the VSMC-derived cells of the entire lesion through clonal expansion.15,18 The 
underlying mechanisms of this phenomenon are under investigation.

Various in vivo and in vitro studies have indicated that VSMCs can adopt multiple phenotypes, 
including synthetic, foam cell, macrophage-like, adipocyte-like, myofibroblast-like, 
mesenchymal stem cell (MSC)-like, endothelial cell-like, and osteochondrogenic cells.13 
Recently, mouse studies using a combination of single-cell RNA sequencing (scRNA-seq) 
and a VSMC-specific lineage tracing system unbiasedly characterized several atherosclerotic 
VSMC-derived cell types at the transcriptomic level. Based on the scRNA-seq data, VSMCs 
produce transcriptomically distinct clusters, namely modulated VSMCs, osteochondrogenic 
cells, and foam cells/macrophage-like cells.16,19-21
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Fig. 1. Graphical abstract summarizing the osteochondrogenic switch of VSMCs and underlying mechanism of atherosclerotic calcification. BMP signaling is 
known to play a pivotal role in vascular calcification. During atherogenesis, VSMCs can undergo various phenotypic switches, including to synthetic, foam 
cell, macrophage-like, adipocyte-like, myofibroblast-like, MSC-like, endothelial cell-like, and osteochondrogenic cells. The osteochondrogenic switch of 
VSMCs appears to be a key step in atherosclerotic calcification and is mediated by canonical and non-canonical BMP signaling. TXNIP can suppress the 
osteochondrogenic switch of VSMCs during atherosclerosis by inhibiting BMP signaling. 
VSMCs, vascular smooth muscle cells; BMP, bone morphogenetic protein; MSC, mesenchymal stem cell; TXNIP, thioredoxin-interacting protein; ROS, reactive 
oxygen species.



Modulated VSMCs, or named differently depending on the groups albeit showing similar 
transcriptomic profiles (such as the intermediate cell state,16 fibromyocytes,21 and Lgals3+ 
VSMCs19) despite showing similar transcriptomic profiles, express the stem cell markers 
Ly6a and Lgals3 with decreased contractile gene expression. The modulated VSMC cluster 
appears to act as a pioneer cell population that eventually transdifferentiates into the 
osteochondrogenic cluster. Through reference-based integration of mouse and human 
scRNA-seq data, Pan et al.16 showed that modulated VSMC and osteochondrogenic clusters 
also exist in human atheromas.

The regulation of dedifferentiation and phenotypic switching of VSMCs is primarily achieved 
at the transcriptional level.13 The contractile properties of VSMCs are transcriptionally 
controlled by serum response factor (SRF) and its coactivator myocardin (MYOCD).22,23 
SRF binds to the DNA consensus sequence CC(A/T)6GG, termed the CArG box, within the 
promoters of contractile genes. SRF is ubiquitously expressed, whereas MYOCD is specifically 
expressed in smooth muscle cells (SMCs) and cardiomyocytes. Because SRF must be bound to 
MYOCD for contractile genes to be expressed, the combination of SRF and MYOCD enables 
the SMC-specific expression of contractile genes. MYOCD serves as a primary regulator of 
VSMC differentiation, as many factors related to the phenotypic change of VSMCs directly or 
indirectly alter the expression or activity of MYOCD.13 Other relatively well-studied factors that 
regulate the phenotypic transition of VSMCs include stem cell pluripotency factor Krüppel-like 
factor 4 (KLF4), octamer-binding transcription factor 4 (OCT4), and transcription factor 21 
(TCF21). Using SMC-specific deletion of KLF4 in an atherosclerotic mice model, the research 
group led by Gary K. Owens has shown that KLF4 promotes transdifferentiation of VSMCs 
into macrophage-like and Ly6a+ MSC-like phenotypes17 as well as Lagls3+ osteogenic cells.19 
Several mechanisms by which KLF4 suppresses the contractile VSMC phenotype have been 
proposed.24 Specifically, KLF4 binds the G/C repressor element of contractile gene promoters 
or recruits histone deacetylase (HDAC) 2/5 to suppress contractile gene expression. In addition, 
KLF4 antagonizes the binding of SRF to the CArG box through direct interaction with SRF; 
alternatively, it forms a complex with p-ELK1 and SRF to hinder the binding of MYOCD to 
SRF. In addition, research indicates that KLF4 can bind to RUNX2 to enhance its activity.25 
Another stem cell pluripotency factor, OCT4, also regulates VSMC phenotypic modulation, 
but has an effect opposite to that of KLF4. The atherosclerotic phenotypes of VSMC-specific 
KLF4 and OCT4 deletions are inverses.17,26 The activation of OCT4 in VSMCs is related to 
the hydroxymethylation of the OCT4 promoter and is KLF4- and hypoxia-inducible factor-
1α–dependent.26 TCF21, which is known to be a causal gene of the coronary artery disease-
associated locus at 6q23.2, also promotes VSMC differentiation by decreasing both SRF and 
MYOCD gene expression and interfering with SRF-MYOCD complex formation.27

MicroRNAs (miRNAs), epigenetic modifications, and various environmental stimuli 
can post-transcriptionally regulate the VSMC phenotype.13 Among miRNAs, miRNA143 
and miRNA145 are known to be involved in the regulation of the VSMC contractile 
phenotype. SRF and MYOCD induce the expression of miRNA 143/145, which supports 
the VSMC contractile phenotype and suppresses proliferation. miRNA 143/145 expression 
has been reported to be reduced in injured or atherosclerotic aortas, while cholesterol 
loading promotes VSMC transdifferentiation via the miRNA 143/145-MYOCD axis, 
collectively suggesting that the downregulation of miRNA 143/145 may promote VSMC 
dedifferentiation.28,29 Other miRNAs involved in the phenotypic switching of VSMCs are 
miRNA221, miRNA222, and miRNA124.13 Of note, miRNA 221/222 has been reported to 
promote the osteochondrogenic transition of VSMCs, leading to calcification.30
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Epigenetic regulation is another important mechanism governing the contractile phenotype 
of VSMCs. Histone modifications (such as acetylation or methylation) modify chromatin 
structure, thereby regulating its accessibility for transcription factors.31 Studies have 
indicated that during VSMC differentiation, histone acetylation of ACTA2 and MYH11 
enables their activation by allowing the binding of the SRF/MYOCD complex.32 The 
transcriptional activity of MYOCD can be enhanced by histone acetylation through P300 
histone acetyltransferase (HAT) or inhibited by HDACs.33 In addition, HATs and HDACs have 
been reported to regulate VSMC characteristics, such as matrix production, proliferation, 
and migration.13 Lastly, histone methylation is also involved in the binding of MYOCD/SRF to 
the CArG box loci.34 During VSMC differentiation, the H3K4me2 histone modification at the 
contractile gene promotor is enriched, facilitating MYOCD binding. Interestingly, H3K4me2 
methylation persists even when VSMCs lose contractile marker expression during phenotypic 
modulation. Researchers have exploited this phenomenon to track VSMC-derived cells in 
human atherosclerotic lesions for which lineage-tracing techniques are unavailable.35

Within the atherosclerotic milieu, VSMCs are acted upon by various cytokines in response 
to environmental cues that can promote or inhibit the phenotypic modulation of VSMCs. 
Platelet-derived growth factor (PDGF)-BB promotes the differentiation and proliferation 
of VSMCs.36 PDGF-BB can stimulate the phosphorylation of ELK1 through the PDGFRβ 
receptor, which in turn competitively inhibits the interaction between MYOCD and 
SRF.37 KLF4 and miRNA221 can partially mediate the effect of PDGF-BB on phenotypic 
modulation.38,39 Wnt/β-catenin signaling has been reported to promote the proliferation of 
VSMCs, leading to intimal hyperplasia,40 and it is also involved in the osteodifferentiation 
of VSMCs through the activation of RUNX2.41 Transforming growth factor beta (TGF-β) 
is involved in various VSMC properties, such as the contractile phenotype, proliferation, 
hypertrophy, matrix synthesis, and proteolytic activities.13 TGF-β is one of the few growth 
factors to promote the VSMC contractile phenotype. This is achieved via binding of the 
TGF-β signaling molecule SMAD2/3 to the contractile gene promoter or through CArG-
dependent interaction with SRF.42 In addition, TGF-β can downregulate KLF4 via miRNA 
143/145 to suppress VSMC phenotypic switching.43 Integrin beta 3 has been reported to 
be involved in the transdifferentiation, proliferation, and migration of VSMCs in the 
atherosclerotic milieu through cell-autonomous and paracrine effects.44

ROLE OF VSMCs IN ATHEROSCLEROTIC CALCIFICATION

Numerous studies have shown that VSMCs are the major cell type responsible for vascular 
calcification through their phenotypic transition to osteogenic cells. VSMC-specific 
deletion of the osteogenic transcription factors Msx1 and Msx2 has been shown to attenuate 
arteriosclerotic calcification in LDLR−/− mice with a diabetogenic background.45 Transgenic 
mice that are forced to express the pro-osteogenic factors BMP2 or S100A12 in VSMCs display 
increased osteoblastic differentiation, leading to atherosclerotic calcification.46,47 VSMC-
specific deletion of the osteogenic inhibitors peroxisome proliferator-activated receptor γ 
or lipoprotein-receptor-related protein 6 increases the osteochondrogenic differentiation 
of VSMCs by augmenting Wnt signaling.48,49 However, the most convincing evidence comes 
from a lineage tracing study using VSMC-specific reporter mice, which demonstrated that 
approximately 98% of osteochondrogenic cells expressing Runx2 in atherosclerotic plaques 
were derived from VSMCs.50 Notably, Kramann et al.51 showed that Gli1+ adventitial MSC-like 
progenitor cells can substantially contribute to the osteoblast-like cells of atherosclerotic 
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lesions under CKD conditions. In contrast, Wang et al.52 demonstrated that Ly6a+ adventitial 
stem cells contribute little to the VSMC population of atherosclerotic lesions in the absence of 
other systemic diseases (e.g., CKD). Although the Gli1+ and Ly6a+ cells of the adventitia may 
not be completely identical, multiple lineage-tracing studies collectively suggest that VSMCs 
are the principal cell type responsible for the osteochondrogenic cells in atherosclerosis.

The development of the scRNA-seq technique has enabled unbiased characterization 
of multiple heterogeneous cell populations in tissues or organs of interest. In addition, 
combining scRNA-seq with a lineage tracing system enables unambiguous tracking of the 
transition of specific cells, even when the typical marker expression of the cells has been 
lost. Recent scRNA-seq studies of mouse atherosclerotic lesions using a combination of 
fluorescence reporters (e.g., ZsGreen1 or tdTomato) with the inducible Cre recombinase on 
SMC-specific contractile gene promoter (Myh-CreERT2) have revealed generally consistent 
findings regarding the process of VSMC transition toward osteochondrogenic clusters.16,19,20 
VSMCs first give rise to the pioneer cell population (cells with similar transcriptomic 
profiles but categorized into separate subgroups, such as the intermediate cell state, 
fibromyocytes, or Lgals3+ VSMCs) and then transform into the osteochondrogenic population 
(fibrochondrocytes, chondromyocytes, or osteogenic cells). The osteochondrogenic 
population is enriched with multiple collagen-producing and osteochondrogenic genes, 
representing the cell population responsible for calcification and chondroid metaplasia 
in atherosclerotic lesions. Two of these studies, published by the research groups led by 
Thomas Quertermous and Gary K. Owens, additionally showed that the VSMC-derived 
osteochondrogenic population can be manipulated via SMC-specific ablation of a specific 
gene, Ahr or Klf4.19,20 Notably, SMC-specific ablation of Ahr or Klf4 also altered the lesion size, 
fibrous cap, and intermediate VSMC clusters, suggesting that the regulatory function of these 
genes in the SMC transition is not confined to the osteochondrogenic phenotype. To date, 
the key regulatory factors and underlying mechanisms that govern the osteochondrogenic 
transition of VSMCs have yet to be elucidated.

ROLES OF THE BMP SIGNALING PATHWAY IN 
OSTEOBLAST DIFFERENTIATION AND THIOREDOXIN-
INTERACTING PROTEIN AS A CRITICAL REGULATOR OF 
BMP SIGNALING IN ATHEROSCLEROSIS

The TGF-β superfamily comprises TGF-β, BMPs, activin, and other related proteins.53 BMP 
signaling plays a central role in skeletal system development and homeostasis. BMP signaling is 
initiated by type I and type II BMP receptors. The binding of BMP ligands produces a tetrameric 
complex composed of homomeric dimers of type I and type II receptors, which then affects 
the transphosphorylation of type I receptors. This phosphorylation results in the transduction 
of signals through either canonical Smad-related or noncanonical p38 mitogen-activated 
protein kinase (MAPK)-related pathways, which consequently stimulates the osteogenic 
transcription factors that lead to osteoblast differentiation.53 Among the types of BMPs (14 in 
total), BMP2, BMP4, BMP5, BMP6, BMP7, and BMP9 are known to have osteogenic activity.54,55 
BMP2 and BMP7 have been widely studied, and recombinant proteins are currently being tested 
in human clinical trials for various bone-related defects.56,57 Short-term expression of BMP2 
is necessary and sufficient to induce bone formation,58 and BMP7 induces the expression of 
osteoblastic markers, such as alkaline phosphatase, and accelerates mineralization.59-61 BMP3 is 
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a noncanonical BMP ligand that transduces its signaling through the type IIB activin receptor 
and Smad2/3-related pathway to oppose the osteogenic function of other BMPs.62

Smad molecules constitute the canonical arm of TGF-β/BMP signaling. Vertebrates have 
eight Smad proteins, which can be divided into three subtypes: the receptor-regulated Smads 
(R-Smads; Smad1, Smad2, Smad3, Smad5, and Smad8), the co-mediator Smad (Smad4), 
and the inhibitory Smads (I-Smads; Smad6 and Smad7).63 Upon BMP ligand binding, 
the heteromeric BMP receptor complex phosphorylates Smad1/5/8. The phosphorylated 
Smad1/5/8 forms heteromeric complexes with Smad4 and eventually translocates to 
the nucleus, where it acts as a transcription factor or repressor.53 During osteoblast 
differentiation, the Smad1/5/8-Smad4 complex forms a transcription complex with RUNX2 
and other molecules to initiate the expression of multiple osteoblast-related genes.53

p38 MAPKs constitute noncanonical arms of the TGF-β/BMP signaling pathway. MAPKs 
are a family of enzymes that respond to various extracellular stimuli such as environmental 
stress, growth factors, and cytokines. Conventional MAPKs consist of the extracellular 
signal-regulated kinase (ERK) 1/2 and ERK 5, c-Jun amino (N)-terminal kinase 1/2/3, 
and p38 isoforms (p38α, p38β, p38γ, and p38δ). MAPK signaling constitutes a series of 
phosphorylation events. Once stimuli reach the cell, MAPK kinase kinase (MAP3K) is 
activated and phosphorylates MAPK kinase (MAP2K), which in turn phosphorylates and 
activates MAPKs. In the TGF-β/BMP signaling pathway, p38α/β exerts its osteogenic potential 
by inducing expression or increasing activity through the phosphorylation of key osteogenic 
transcription factors such as DLX5, RUNX2, and OSX.64

TGF-β/BMP signaling can be fine-tuned through multiple mechanisms. Various ECM 
proteins, such as noggin, chordin, gremlin, and follistatin, can competitively bind BMPs 
to prevent receptor activation.65-67 I-Smads inhibit TGF-β/BMP signaling in multiple steps. 
Of the 2 I-Smads, Smad6 preferentially inhibits BMP signaling, whereas Smad7 inhibits 
both BMP and TGF-β signaling. I-Smads can prevent the phosphorylation and nuclear 
translocation of R-Smads, promote R-Smad degradation, and promote receptor degradation 
via the ubiquitin-proteasome degradation pathway.63 The latter is achieved by the E3 
ubiquitin ligase Smuf1/2. Smuf1 can widely target components of BMP signaling machinery, 
such as BMP type I receptors, Smad1/5, RUNX2, and MAPK kinase 2, leading to ubiquitin-
proteasome degradation.53 Another E3 ubiquitin ligase, Arkadia, can degrade the suppressors 
of TGF-β/BMP signaling, such as Smad6/7 and c-Ski/SnoN, which in turn promotes the 
osteoblastic phenotype (Arkadia). Small ubiquitin-related modifier proteins and ubiquitin-
conjugating enzyme 9 target Smad4 for degradation and counteract BMP2-induced osteoblast 
differentiation.68,69 Other factors and mechanisms, such as transcriptional repressors (Ski/
SnoN, Tob), miRNAs (mi133, mi30, mi141, mi542-3p, mi20a, mi140, mi199a), and epigenetic 
regulation, are also involved in the regulation of TGF-β/BMP signaling.53

Within the atherosclerotic milieu, BMPs are expressed in various cells, including endothelial 
cells, foam cells, and VSMCs. Several causes of endothelial dysfunction, such as oxidative 
stress, turbulent blood flow, and hypoxia, have been reported to increase BMP expression 
in endothelial cells.12 Among BMPs, BMP2 and BMP4 have been reported to accelerate 
the osteogenic differentiation of VSMCs, whereas BMP7 inhibits the induction of p21 and 
the upregulation of Smad6/7.11 Recently, we defined the osteochondrogenic populations 
derived from VSMCs, consistent with previous reports, and newly reported that thioredoxin-
interacting protein (TXNIP) is a critical regulator of osteochondrogenic switch of VSMCs 
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in atherosclerotic plaque.70 In our study, using three mouse models (whole-body, smooth 
muscle cell-specific, and hematopoietic TXNIP ablation) combined with scRNA-seq 
analysis and primary VSMC culture experiments, we demonstrated that TXNIP deficiency 
in hyperlipidemic mice enhances the phenotypic transition of modulated VSMCs toward 
the osteochondrogenic population by upregulating canonical and non-canonical BMP 
signaling, leading to plaque calcification (Fig. 1). In a human transcriptome database, TXNIP 
was also downregulated in modulated VSMC and osteochondrogenic clusters of calcified 
atherosclerotic lesions. Together, these data indicate that TXNIP is a critical checkpoint 
for the osteochondrogenic switch of VSMCs in the atherosclerotic milieu and highlight its 
importance in plaque calcification.

CONCLUSION

Calcification, a characteristic feature of advanced atherosclerotic plaques, is highly correlated 
with total plaque burden and may lead to clinical complications through thrombosis or 
compromise anti-atherosclerotic treatment. Once thought to just contribute to plaque 
stabilization through fibrous cap formation, VSMCs are now highlighted as a crucial 
contributor to plaque formation, including the intimal lipid-rich areas. Studies combining 
single-cell transcriptomics and fate mapping have clearly shown that VSMCs have a highly 
plastic nature and can differentiate into various cell types, including the macrophage-
like, MSC-like, fibroblastic, and osteochondrogenic cells responsible for atherosclerotic 
calcification. Previous studies have revealed that pathological cues such as inflammation, cell 
death, and reactive oxygen species, as well as osteogenic pathways such as BMP signaling, 
are involved in the osteochondrogenic transition of VSMCs. However, the exact molecular 
and cellular mechanisms responsible for the phenotypic switch of VSMCs into each cell type, 
including osteochondrogenic cells, remain to be elucidated. Importantly, the identification 
of key regulators of VSMC phenotypic change is a precondition for the development of novel 
therapeutic modalities for atherosclerosis.
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