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Abstract
Background: The dreadful prognosis of nonmuscle invasive bladder cancer mainly 
results from the delay in recognition of individuals with a high risk of progression. 
Thus, the emphasis of this work lies in developing valuable biomarkers that is con-
ducive to accurately predicting the progression of NMIBC.
Methods: Microarray data from GSE32894 including 209 NMIBC samples were 
performed by weighted gene coexpression network analysis (WGCNA), which could 
find modules of highly correlated genes and relate modules to external sample traits. 
Besides, we constructed a protein–protein interaction to facilitate screening the hub 
gene. At last, we used RNA‐seq and microarray data and clinical information from 
ArrayExpress (E‐MTAB‐4321) and GSE13507 to select and validate the candidate 
gene.
Results: In current paper, blue module of 13 gene coexpression clusters we identi-
fied was selected as the key modules. Seven genes namely: CDCA8, CENPF, MCM6, 
MELK, PRC1, STIL, and TPX2 have been identified as candidate genes. Notably, 
among them, only elevated CENPF in NIMBC tissue was closely associated with 
low progression‐free survival (PFS) and overall survival (OS) rate in three datasets 
and had a large area under receiver operating characteristic (ROC) curve. Finally, 
CENPF was identified as an effective biomarker in NMIBC.
Conclusion: Therefore, our findings submit a new progressive and prognostic mo-
lecular marker and therapeutic target for NMIBC. Moreover, these genes that de-
serve to be further researched may improve the comprehension about the occurrence 
and development of superficial bladder cancer.
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1 |  INTRODUCTION

Bladder cancer is the ninth most common cancer in the 
world, with the 13th most common cause of cancer‐asso-
ciated mortality (Ferlay et al., 2015). Depending on the 
guidelines of European Association of Urology (EAU) 
and American Urological Association (AUA), bladder 
cancer (BCa) can be divided into muscle invasive bladder 
cancer (MIBC) and nonmuscle invasive bladder cancer 
(NMIBC)—which are comprised of Ta (noninvasive papil-
lary carcinoma), Tis (carcinoma in situ: “flat tumor”), and 
T1 (tumor invades subepithelial connective tissue) and rep-
resented the majority of primary BCa with approximately 
85% (Babjuk et al., 2017; Chang et al., 2016). The prevail-
ing management strategy for NMIBC is complete transure-
thral resection of the bladder tumor (TURBT) and adjuvant 
intravesical treatment (Babjuk et al., 2017; Chang et al., 
2016). Despite this, it is reported that the progression rate of 
NIMBC can reach 10%–30%, especially those patients with 
T1G3 (Cambier et al., 2016). Van den Bosch and Alfred 
pointed out that two‐thirds of the secondary MIBC from 
progression died to BCa within 48 months even after radi-
cal treatment, and cancer‐specific survival is significantly 
dreadful (van den Bosch & Alfred, 2011). Fortunately, 
European Organization for Research and Treatment of 
Cancer (EORTC) risk tables were recommended for pre-
dicting the progression of NMIBC after TURBT (Babjuk 
et al., 2017; Chang et al., 2016). However, there are certain 
deficiencies in these risk tables. Numerous researches in 
recent years have established that remarkable the molecular 
heterogeneity has been shown in bladder cancer (Cancer 
Genome Atlas Research Network, 2014; Choi et al., 2014; 
Sanchez‐Carbayo, Socci, Lozano, Saint, & Cordon‐Cardo, 
2006; Sjodahl et al., 2012; van Kessel et al., 2018). NMIBC 
is a heterogeneous set of tumors with thoroughly different 
oncologic outcomes. Furthermore, variability in staging 
and grading assessment is a recognized problem (Bol et al., 
2003). Unfortunately, EORTC risk tables do not take these 
factors into account.

Due to rapid technological advancements in the next‐gen-
eration sequencing, whole‐genome and RNA sequencing 
have been used to research pathological mechanisms and 
related biomarkers of BCa (Cancer Genome Atlas Research 
Network, 2014; Choi et al., 2014; Sanchez‐Carbayo et al., 
2006; Sjodahl et al., 2012). According to the latest research, 
certain molecular markers can improve the accuracy of predic-
tive progression of EAU risk stratification (van Kessel et al., 
2018). Even though molecular profiles of NMIBC subtypes 
and considerable diagnostic indicators have been investigated 
as biomarkers of the risk of disease progression (Choi et al., 
2014; Ding et al., 2014; Kim et al., 2010; Sanchez‐Carbayo 
et al., 2006; Sjodahl et al., 2012) and play a role in clinical 
management, none are able to accurately predict the behavior 

of NMIBC. Hence, identifying molecular biomarkers or ther-
apeutic targets to address those problems is imminent. Unlike 
most other studies that focus on the screening of differentially 
expressed genes, this paper explores the affiliation between 
gene sets and clinical features by WGCNA—a systems bi-
ology method and enables the description of the correlation 
patterns between microarray samples and gene expression 
profiles (Langfelder & Horvath, 2008). Here, by this method, 
we find some candidate biomarkers associated with NMIBC 
progression and prognosis or therapeutic targets.

2 |  MATERIALS AND METHODS

2.1 | Ethical compliance and study design
We retrospectively analyzed the gene expression profiles of 
four public BCa cohorts, therefore ethical approval is not re-
quired. This study design was performed in a flow diagram 
(Figure 1).

2.2 | Data collection
For consistency in the microarray platform, we searched 
in GEO database (http://www.ncbi.nlm.nih.gov/geo/) for 
the BCa‐related gene expression datasets measured by the 
Illumina HumanHT‐12 V3.0 expression beadchip (Illumina, 
Inc.) and obtained two independent datasets. For one, non‐
normalized microarray gene expressing profiles and corre-
sponding clinical data were downloaded from GSE32894 
(n = 213) (Sjodahl et al., 2012) and used to screen probesets, 
construct of coexpression networks and identify hub genes in 
the present study. For another, the processed expression ma-
trix of GSE48075 (n = 54) (Choi et al., 2014) was obtained 
for module preservation analysis. Meanwhile, to verify the 
analysis results, expression data and related clinicopathologic 
information were acquired from GSE13507 (n = 103) (Kim 
et al., 2010) and ArrayExpress (https ://www.ebi.ac.uk/array 
expre ss/) (n = 460, E‐MTAB‐4321) (Hedegaard et al., 2016) 
which was performed on Illumina human‐6 v2.0 expression 
beadchip (48K) and paired‐end RNA‐Seq (101 + 7 + 101 bp) 
analysis on an Illumina HiSeq 2000 (Illumina, Inc.), respec-
tively. In addition, the ONCOMINE database (www.oncom 
ine.org) (Rhodes et al., 2004; Sanchez‐Carbayo et al., 2006) 
were used for further analysis to validating the result of 
mRNA levels compared with normal tissue. All NMIBC (Ta/
Tis/T1, 2009, 7th edition) patients were saved.

2.3 | Data preprocessing and 
genes screening
Non‐normalized data sets from GSE32894 and ArrayExpress 
(E‐MTAB‐4321) were performed log2 transforma-
tion and standardized by quantile normalization used 

http://www.ncbi.nlm.nih.gov/geo/
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http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48075
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“preprocessCore” package (Bolstad, 2018) in R. Then, the 
reference genome (GRCh38.86) was used to convert Gene ID 
in the later dataset. Processed gene expression profiles from 
other datasets were utilized directly in the further analysis. 
Furthermore, according to the variance of the probe sets in all 
samples, the genes relevant to the probes of ranking in the top 
20% were chosen for subsequent analysis. All the above op-
erations are conducted on the programming software R and 
could be found in Appendix Code S1.

2.4 | Weighted coexpression network 
construction
Following the instructions below, expression matrix of 
9,761 probes was used to build coexpression network by 
the “WGCNA” packages in R (Langfelder & Horvath, 
2008). Firstly, a gene coexpression resemblance measure 
(absolute value of the Pearson correlation) was utilized to 
estimate for all pairwise gene–gene relationship. Next, a 
weighted adjacency matrix was constructed using a “soft” 
power adjacency function aij =  |cor (xi, xj)|

β. aij indicates 
the weighted Pearson's correlation coefficient that meas-
ures the connection strength between gene i and gene j. 
The soft threshold power β, is the lowest integer where 
the resulting gene coexpression networks satisfy approxi-
mate scale‐free topology (Zhang & Horvath, 2005). The 

adjacency matrix was converted to topological overlap ma-
trix (TOM) subsequently, which could evaluate the direct 
correlation of gene pairs and the degree of agreement in as-
sociation with other genes in the data set. (Yip & Horvath, 
2007). After that, average linkage hierarchical clustering 
was conducted in accordance with the TOM‐based dis-
similarity measure. An appropriate minimum gene module 
size for the gene dendrogram was set to classify similar 
genes into one module (Ravasz, Somera, Mongru, Oltvai, 
& Barabasi, 2002). Moreover, module eigengene (ME) that 
can be regarded as a representative of the gene expression 
profiles of a module, is defined as the first principal com-
ponent of an interesting module (Langfelder & Horvath, 
2008). Similar modules would be merged by the calcula-
tion of ME. More detailed WGCNA method processing can 
be found in these references (Langfelder & Horvath, 2008; 
Zhang & Horvath, 2005) and Appendix Code S1.

2.5 | Module preservation analyses
To evaluate whether a module is robust and reproducible 
across other datasets, a permutation test was carried out by 
applying the modulePreservation function from the WGCNA 
packages. According to WGCNA authors (Langfelder 
& Horvath, 2008; Langfelder, Luo, Oldham, & Horvath, 
2011), the module with a Z score below 10 indicates a low 

F I G U R E  1  Flowchart of data 
collection, preparation, processing, analysis, 
and validation in this report
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preservation, and is not recommended to use it for the fol-
lowing analysis.

2.6 | Identification of clinically 
significant modules
As cited previously, ME could summarize the expression 
patterns of all genes into a single characteristic expression 
profile within a given module. The researchers calculated 
the correlation between each ME and clinical traits includ-
ing age, gender, tumor grade, tumor stage and progression 
as one of the factors to identify the key module. Under de-
scription of the author of the WGCNA package, the equation 
GSi  =  |cor(xi, T)| was used to quantify the gene i of gene 
significance (GS) (Langfelder & Horvath, 2008). We refer to 
xi as gene i expression profile and T as one of sample trait. 
Afterwards, module significance (MS), as another factor 
identified in key modules, is defined as the average absolute 
GS measure for all genes in a specific module. In general, 
clinically significant modules were modules with higher cor-
relation between the ME and external traits and bigger MS.

2.7 | Functional annotation and hub 
genes and candidate genes identification
To further reveal the mechanism underlying of the con-
nection between genes in interesting modules and clinical 
features, “clusterProfiler” package (version “3.10.1”) (Yu, 
Wang, Han, & He, 2012) in R was implemented to perform 
GO function annotation and KEGG pathway enrichment 
analysis on these genes.

It is a robust approach that integration of protein–protein 
interactions and coexpression networks for gene selection 
may provide greater insight in disease‐related biological 
process (Dutta, Saha, & Gulati, 2019; Mahapatra, Mandal, 
& Swarnkar, 2018). Generally, the hub gene is a highly con-
nected central node that is the core of the network architec-
ture and has been proven have major biological functions. 
For each gene, module membership (MM) was determined 
by correlating a given gene expression profile with the ME 
of a specific module. Therefore, the key modules' subnet-
work with weighted edges above 0.15 was extracted from the 
weighted coexpression network to discern hub node which 
have the intramodular connectivity (also interpreted as a 
measure of module membership) above 15. Additionally, we 
constructed the protein–protein interaction (PPI) network 
of the key module genes based on the Search Tool for the 
Retrieval of Interacting Genes (STRING) database (http://
www.string-db.org/). The genes interaction with a combined 
score of ≥0.7 was analyzed and visualized by the Cytoscape 
software (https ://cytos cape.org/). Genes with a connectivity 
degree above 15 were treated as hub genes in PPI network. 
Usually, Hub genes in the designated module highly correlate 

with a particular trait tends to imply the genes' high GS and 
MM. Thus, in the PPI network and the weighted coexpression 
network, obtained hub genes with |GS| > 0.2 and |MM| > 0.8 
were determined to the candidate genes for further analysis.

2.8 | Candidate genes validation
Patients and clinical covariates for the NMIBC are summa-
rized in Appendix Table S1–S3. In present study, the pro-
gression‐free survival (PFS) was defined as the time from 
the date of resection to the date of progression, death or last 
follow‐up. OS was measured from the date of resection to 
the date of death or last follow‐up. To figure out the asso-
ciation of candidate genes expression with PFS time, these 
genes were performed with univariate and multivariate Cox 
regression analysis in the GSE32894 Cohort (Sjodahl et al., 
2012), ArrayExpress (E‐MTAB‐4321) Cohort (Hedegaard et 
al., 2016) and the GSE13507 Cohort (Kim et al., 2010). The 
analysis was done by packages “survival” (Goel, Khanna, 
& Kishore, 2010) in R. Among these candidate genes, the 
mRNA with p‐value <0.05 in three data sets’ univariate Cox 
regression analysis was chosen as key genes to subsequent 
analysis. Kaplan–Meier analysis and the receiver operat-
ing characteristics (ROC) analysis were performed by “sur-
vminer” package in R‐studio and SPSS (SPSS version 22.0, 
Inc.), respectively. ROC plot was visualized by R package 
“ggplot2” and all the tests above were done two‐sidedly. 
Notably, the area under the ROC curve (AUC) for each ROC 
curve represents the ability of the model to predict endpoint 
events. What is more, a higher AUC means better model per-
formance (with AUC  =  0.5 demonstrating random perfor-
mance). Afterwards, in SPSS, we calculated the Spearman 
correlation between CENPF and clinicopathological fea-
tures, MKI67 (OMIM *176741; as a control object), and 
FOXM1 (OMIM *602341), respectively, to further verify 
their association with these features. Only values of p < .05 
are considered statistically significant, using a two‐sided  t 
test. The package “ggcorrplot” in R was used to visualize. 
Then, the ONCOMINE database (www.oncom ine.org) was 
used to validate the differential expression of the genes. We 
also investigate the key gene relative expression among sub-
group of clinical traits in “ggpbur” package. The expression 
characteristics were compared between groups using a one‐
way analysis of variance (ANOVA). All R packages version 
information was displayed in Appendix Figure S1.

2.9 | Gene set enrichment analysis (GSEA)
In RNA‐seq expression profiles of ArrayExpression cohort, 
the top 30% and the last 30% of the samples, given the prob-
lem of noise, were classified into high‐ and low expression 
groups according to CENPF relative expression. Afterward, 
we executed the groups differential expression analysis with 

http://www.string-db.org/
http://www.string-db.org/
https://cytoscape.org/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32894
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13507
http://www.oncomine.org
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“limma” package in R and construct preranked whole gene 
list by log2 fold change (Mootha et al., 2003). Next, GSEA 
(Subramanian et al., 2005) was performed to determine 
Kyoto encyclopedia of genes and genomes (KEGG) path-
ways of dysregulated CENPF. In addition, preranked gene 
list was mapped into MSigDB C6 Oncogenic Signatures 
gene sets. “clusterProfiler” (Yu et al., 2012) and “ggplot2” 
package were utilized to analyze and visualize the above. 
The parameters were adapted to default and the results of 
p adjust < .05 and minimal gene set above 30 considered 
significantly enriched. The p‐value was adjusted using the 
Benjamini–Hochberg Procedure.

3 |  RESULTS

3.1 | Genes screening, weighted 
coexpression network construction, and 
module preservation analysis
WGCNA were performed in a total of 9,761 probes 
(Appendix Table S6) selected by their variance. GSM81 
4108, GSM81 4148, GSM81 4236, and GSM81 4239 were 
excluded for incomplete clinicopathologic information. 
GSM81 4116 and GSM81 4242 were outlier samples which 
were distant from other samples in the clustering via the av-
erage linkage method. Those samples were removed when 
constructing a scale‐free coexpression network to guarantee 
the accuracy of the analysis results. A total of 207 samples 
with related clinical data were incorporated into the weighted 
coexpression analysis (Appendix Figure S2). The genes 
with similar expression patterns were placed together with 
some modules via the average linkage hierarchical cluster-
ing. In our research, considering the fitness of the scaleless 
topology model and the mean connectivity of the network, 
the power of β = 4 (scale free R2 = 0.91) was selected as 
the soft‐thresholding (Figure 2a–c). The other parameters as 
needed were set with minimum module size 30, the module 
detection sensitivity deepSplit 2, and cut height for merg-
ing of modules 0.25 which means that the modules whose 
eigengenes are correlated above 0.75 will be merged. In the 
end we got 13 modules (Figure 2d). Furthermore, the result 
of module preservation analysis on an independent datasets 
GSE48075 indicate that blue and greenyellow modules pres-
ervation statistics Zsummary is far exceeding 10 (Figure 3a). 
Consequently, there is no evidence showing that the detected 
modules are not stable in this dataset.

3.2 | Identification of key modules
According to the two approaches described in the method 
section, the blue and greenyellow module should be iden-
tified as clinically significant modules. As it is shown 
in Figure 3b, tumor grade has the highest correlation 

coefficient with the ME of blue module which showed the 
highest MS (Figure 3c), and was also crucially associated 
with tumor T stage as well as progression. In addition, we 
also observed that the ME of greenyellow modules demon-
strated the secondly high MS (Figure 3c) and the robust cor-
relations with multiple features, such as histological grade, 
tumor stage, and progression (Figure 3b). Remarkably, al-
though the greenyellow module has a high MS value and 
a significant correlation between clinical features and ME, 
their weight values in the coexpression network are too low 
(weight values of all edge below 0.15). This means that the 
correlation between gene pairs in the network is not robust, 
thus, we abandoned the greenyellow module considering 
the identification of hub genes and only blue module was 
selected as key ones.

3.3 | Functional enrichment analysis and 
hub genes and candidate genes identification
Initially, 1934 probe genes in the blue module were mapped 
into the GO terminology and the KEGG pathway to bring 
their implied functions and mechanisms to the surface. Genes 
of blue module were mainly enriched in mitotic processes 
(Figure 4a), and mapped into the pathways of "Cell cycle,” 
"DNA replication,” "Cellular senescence,” "p53 signaling 
pathway,” which has been proved to be related to the onset 
of cancer (Figure 4b). The detailed analysis results are pre-
sented in Appendix Table S7 and S8. Later, the blue modules 
genes were upload to the STRING database (http://www.
string-db.org/) to build a PPI network, which could calculate 
and visualize the intramodular connectivity. In the blue mod-
ule, centromere protein F (CENPF, OMIM *600236), cell 
division cycle associated 8 (CDCA8, OMIM *609917), mini-
chromosome maintenance complex component 6 (MCM6, 
OMIM *601806), protein regulator of cytokinesis 1 (PRC1, 
OMIM *603483), the parental embryonic leucine zipper ki-
nase (MELK, OMIM *607025), centriolar assembly protein 
(STIL, OMIM *181590), and targeting protein for xenopus 
kinesin‐like protein 2 (TPX2, OMIM *605917) were taken 
as candidate genes after filtering by three formerly described 
methods (Figure 4c). The detailed information of these genes 
was summarized in Table 1. However, no genes met the cri-
teria of weighted edges above 0.15 in greenyellow modules’ 
coexpression network (Figure 4d). Lastly, we showed PPI 
subnetwork composed of first neighbors of seven candidate 
genes and the correlation between MM and GS of each gene 
in blue module (Appendix Figure S3 and S4).

3.4 | Candidate genes validation
The validation of CENPF was performed on three independ-
ent BCa cohorts. At first, considering the accuracy of the 
analysis, six cases with missing follow‐up information were 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM814108
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM814108
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM814148
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM814236
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM814239
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM814116
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM814242
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48075
http://www.string-db.org/
http://www.string-db.org/
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removed from the ArrayExpress cohort (E‐MTAB‐4321) 
(Hedegaard et al., 2016). The rest of 454 cases were reserved 
for following analysis. These seven genes in the univariate 
Cox regression analysis of three data sets, only CENPF has 
been proven to be the most significant factors affecting PFS 

(Table 2). Therefore, CENPF was chosen as a unique candi-
date for subsequent analysis. On the base of spearman cor-
relation analysis (two‐sided test), it is evident that the results 
obtained here are in pleasurable agreement with the found 
by the WGCNA analysis, which is a reliable connection 

F I G U R E  2  (a, b) Determination of soft‐thresholding power in WGCNA. According to analysis of the scale‐free fit index and the mean 
connectivity for various soft‐thresholding powers (β), β is finally determined to be 4. (c) Checking the scale‐free topology when β = 4. (d) 
Hierarchical cluster analysis dendrogram used to detect coexpression clusters along with corresponding color assignments. In total, 12 modules 
ranging from 51 to 3,007 probes in size were identified. The 12 probes that were not coexpressed in the data set were assigned to the gray group
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between CENPF and tumor grade, stage and progression 
(Figure 5a). Soon, we tried to elucidate the expression sta-
tus of CENPF in NMIBC utilizing the ONCOMINE data-
base. In this work, CENPF in superficial bladder cancer was 
significantly higher at mRNA levels compared to normal 
tissues (Figure 5b‐c). As presented in Appendix Figure S5, 
CENPF is not only highly expressed in bladder cancer but 
also in many other tumors. Data set filters were set as p‐value 
<0.001 (independent sample t test), and fold changes ≥2, and 
other parameters are default values. On the other hand, in 
ArrayExpress cohort, we observed that CENPF expression 
was significantly increased, compared with NMIBC with 
low grade (PUNLMP and low‐grade papillary urothelial car-
cinoma), low stage (Ta), no progression, and no carcinoma 
in situ (Figure 6a–d). In the GEO13507 and GEO32894 da-
tabase (Kim et al., 2010; Sjodahl et al., 2012), the CENPF 

expression of high histological grade or tumor stage BCa are 
more than that of low grade or tumor stage, which is parallel 
to the previous experimental data (Figure 6e–h).

Subsequently, a two‐sided log‐rank test for Kaplan–Meier 
curve was used to assess the significance of the difference 
in overall and progression‐free survival profiles between dif-
ferent CENPF expression levels (the median expression as 
the cutoff value). Compared with downregulated CENPF 
expression, upregulated expression of CENPF is accompa-
nied by poorer progression‐free survival (PFS) among these 
cohorts (p‐value range 0–.038; Figure 7a–c) and poorer over-
all survival (OS) in GSE13507 cohort (p < .038; Figure 7d). 
What is more, on the basis of data from the ArrayExpress 
cohort (E‐MTAB‐4321), classifier cut by CENPF median ex-
pression also enables us to distinguish the progression‐free 
survival time between different subgroups of patients sorted 

F I G U R E  3  (a) The medianRank 
and Zsummary statistics of the module 
preservation of the genes modules. The 
left panel shows the medianRank of the 
modules, which close to zero indicates a 
high degree of module preservation. On the 
right panel, the blue module is above the 
dashed green lines (Z = 10). (b) Heatmap of 
the Pearson correlation coefficient between 
MEs and clinicopathological variables. Each 
cell contains the corresponding correlation 
and p‐value. (c) Bar plots of eigengenes’ 
module significance associated with 
histological grade of NMIBC across all 
modules

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13507
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F I G U R E  4  (a)The bubble chart of the gene ontology enrichment analysis based on the genes of blue module, showing only the representative 
results. (b) A bubble chart showing the results of the KEGG pathway enrichment analysis. The size of the bubbles shows the count of the enriched 
genes, while the color indicates the enrichment significance (p‐value). In blue (c) and greenyellow (d) modules, number of hub genes identified 
with PPI network (orange circle), coexpression network (sky blue circle) as well as gene significance and module membership (grey circle); and the 
overlapping part of the three indicates the number of candidate genes

T A B L E  1  The detailed information of candidate genes

Gene symbol Probe ID
GS T‐stage 
(p‐value)

GS grade 
(p‐value)

GS progression 
(p‐value) MM (p‐value)

PPI 
networka

Coexpression 
networkb

CDCA8 ILMN_1709294 0.40 (2.20E‐09) 0.54 (8.80E‐17) 0.23 (8.71E‐04) 0.81 (6.66E‐50) 90 146

CENPF ILMN_1664516 0.45 (1.42E‐11) 0.56 (7.46E‐19) 0.20 (3.26E‐03) 0.80 (7.43E‐48) 85 134

MCM6 ILMN_1798654 0.39 (4.53E‐09) 0.56 (7.74E‐19) 0.21 (2.49E‐03) 0.85 (7.89E‐60) 52 121

MELK ILMN_2212909 0.44 (2.24E‐11) 0.57 (2.87E‐19) 0.22 (1.17E‐03) 0.87 (1.86E‐66) 85 201

PRC1 ILMN_1728934 0.40 (1.63E‐09) 0.55 (2.87E‐19) 0.22 (1.21E‐03) 0.82 (1.31E‐51) 85 193

STIL ILMN_2413650 0.48 (4.29E‐13) 0.58 (2.87E‐20) 0.21 (2.73E‐03) 0.89 (1.33E‐70) 19 187

TPX2 ILMN_1796949 0.48 (1.73E‐13) 0.61 (1.88E‐22) 0.20 (3.32E‐03) 0.89 (1.47E‐70) 84 208
aConnectivity degree in protein–protein interaction network, 
bConnectivity degree in coexpression network 
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through the four common molecular taxonomy including 
CLASS assignment, BASE47 signature, CIS signature, and 
12 gene signatures (All of them p < .001, Appendix Figure 
S6). Meanwhile, the individual ability of CENPF and clini-
cal covariates (age, gender, T stage, grade) to predict PFS is 
shown in Appendix Table S4–S5, which give hazard ratios 
(HRs) and 95% confidence intervals (CIs) calculated by the 
univariate and multivariate Cox regression analyses. Because 
the GSE32894 cohort uses the different WHO classification 
of bladder tumors (1973 version) than the other two datasets, 
we analyzed GSE32894 cohort alone by the approaches men-
tioned above, and combined the data from two other data-
sets which used the same 2004 World Health Organization 
(WHO) classification of bladder tumors. In addition, the 
other two data sets were combined and analyzed in view of 
the fewer endpoint events in the GSE13507 cohort, which 
enhanced the confidence of cox regression analysis. In our 
study, the covariates of p < .2 in univariate Cox regression 
analysis were adopted by Cox proportional‐hazard models. 
The univariate analysis result of GEO32894 cohort indicates 
elevated CENPF expression (HR  =  4.42, 95% CI  =  1.95–
20.53, p = .048) instead of high grade (p = .972) or T stage 
(p  =  .182) was predictive of unfavorable PFS. However, 
interestingly, high CENPF expression (HR  =  7.53, 95% 
CI = 1.58–35.96, p =  .011) and T stage (HR = 5.53, 95% 
CI  =  1.16–26.36, p  =  .032) perfectly predicted an adverse 
outcome when they are evaluated by multivariate analysis 
(Appendix Table S4), which illustrate that CENPF remained 
an independent risk factor for PFS. In two other cohorts 
combined analysis, as we expected, high CENPF expression 
(HR = 8.38, 95% CI = 3.28–21.41, p <  .001) and T stage 
(HR = 2.11, 95% CI = 2.11–6.74, p < .001) are risk factors 
for PFS in univariate analysis and a similar trend was seen for 
in multivariate analysis (Appendix Table S5).

Eventually, the AUC of CENPF was as high as 0.682 
(p < .05), 0. 819 (p < .05), 0.622 (p = .187) respectively in 
GEO32894 cohort, ArrayExpress cohort, and GEO13507 co-
hort (Hedegaard et al., 2016; Kim et al., 2010; Sjodahl et al., 

2012) (Figure 7e). Random error caused by fewer endpoint 
events may allow for a relatively low AUC in both GEO data 
sets. In short, CENPF can be used as an independent predic-
tor of PFS and has an excellent predictive performance.

3.5 | Gene set enrichment analysis (GSEA)
To obtain the potential function of CENPF, GSEA was 
conducted to search KEGG pathways which is enriched 
with highly expressed samples. A total of 14 functional 
genomes (Appendix Table S9) meet the above criteria—
most of which was strongly related with cancer. Three 
representative pathways including "cell cycle,” "Cellular 
senescence,” "MicroRNAs in cancer" were shown in 
Figure 7f. In addition, we performed GSEA to explore 
which pathways in oncogenic signatures gene sets was 
activated or repressed due to the deregulation of CENPF. 
Twenty‐one and three pathways (Appendix Table S10) 
were activated and suppressed respectively in high CENPF 
expression group. A host of them are playing an essen-
tial role in cell cycle and the onset and development of 
BCa, including “E2F1_UP.V1_UP,” “RB_P107_DN.V1_
UP,” “RB_P130_DN.V1_UP,” “E2F3_UP.V1_UP,” and 
“CYCLIN_D1_KE_.V1_DN” (Figure 7g).

4 |  DISCUSSION

There has long been a major clinical challenge in the predic-
tion in term of disease progression for patients with super-
ficial BCa. In our study, the researchers used some public 
data sets to identify a pleasing biomarker, CENPF, to predict 
NMIBC progression.

The WGCNA algorithm has been proven in applica-
tions ranging from oncology (Chen et al., 2018), neurology 
(Voineagu et al., 2011) etc. In this report, we applied this 
classic and reliable algorithm to microarray gene expres-
sion data obtained from NMIBC patients, to present a global 

T A B L E  2  Univariate analysis of seven candidate genes in three cohorts

Variables

GSE32894 Cohort ArrayExpress Cohort (E‐MTAB‐4321) GSE13507 Cohort

HR 95% CI p‐Value HR 95% CI p ‐Value HR 95% CI p ‐Value

CDCA8 4.25 0.91–19.74 .065 5.7 2.19–14.86 <.001 1.66 0.87–3.18 .125

CENPF 4.42 1.95–20.53 .048 10.03 3.05–32.99 <.001 2.46 1.24–4.86 .01

MCM6 2.41 0.64–9.16 .195 5.72 2.19–14.89 <.001 1.13 0.6–2.13 .712

MELK 4.04 0.86–18.9 .076 4.51 1.85–11 .001 2.15 1.1–4.22 .025

PRC1 2.44 0.64–9.3 .19 5.53 2.12–14.41 <.001 1.97 1.02–3.81 .043

STIL 1.47 0.42–5.09 .544 5.58 2.14–14.54 <.001 0.92 0.49–1.75 .805

TPX2 5.03 1.08–23.34 .039 7.31 2.56–20.89 <.001 1.55 0.81–2.96 .188

Notes: A value of p <.05 is bolded and indicates statistical significance.
Abbreviation: 95% CI, 95% confidence intervals; HR, hazard ratio.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32894
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32894
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13507
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F I G U R E  5  (a) The heatmap of the 
spearman correlation between CENPF 
expression and clinical features and two 
genes (MKI67 and FOXM1) in three 
data sets. Using a two‐sided test, only 
p < .05 was shown. (b, c) The box plot 
of differential CENPF mRNA expression 
compared normal tissues with superficial 
bladder cancer in two independent datasets 
based on Oncomine database
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interpretation of clinicopathologic characteristics and mRNA 
expression profiles. As recommended by the WGCNA author, 
we screened some probesets by variance rather than differen-
tial expression (Langfelder & Horvath, 2008). From 9,761 of 
the inconsistent probesets across the NMIBC sample set, we 
identified 13 distinct coexpression modules (ranging in size 
from 51 to 3,077 probesets) and only blue gene clusters as 
key ones. A total of seven candidate genes was selected as 
biomarkers which are able to significantly distinguish distinct 
NMIBC conditions considering the connectivity degrees of 
each genes in PPI network and coexpression network and 
their MM (the Pearson's correlation between gene and ME) 
and GS ( the Pearson's correlation between gene and clinical 

traits). Then, functional annotation analysis of blue mod-
ule genes indicated that they are inextricably linked to cell 
cycle and mitosis while the KEGG analysis results showed 
that they are characterized in some classical tumor pathways, 
including the p53 signaling pathway and TGF‐beta signal-
ing pathway, etc. Commonly, the escape from G1 checkpoint 
control, loss of DNA damage checkpoints (G2/M), and loss 
of normal DNA repair mechanisms are important ways for 
tumor cells to achieve immortalization. In human BCa, there 
are frequent events of mutations and dysregulation of cell 
cycle regulators (Cancer Genome Atlas Research Network, 
2014; Sjodahl et al., 2012). Previous investigation also cor-
related cell cycle regulators (TP53, OMIM *191170; RB1, 

F I G U R E  6  Validation of CENPF. The box plot of differential CENPF mRNA expression across distinctive subgroup of bladder cancer in 
three independent datasets including the ArrayExpress cohort (a–d), GEO32894 (e–f), and GEO13507 (g–h) database
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OMIM *614041; CCND1, OMIM *168461; MDM2, OMIM 
*164785; MKI67, etc.) alterations to higher grade and stage 
of tumor factors which are known to associated with human 
urothelial carcinomas progression (Ding et al., 2014; Yurakh 
et al., 2006). Obviously, these studies strongly confirm our 

results. Overall, these blue module genes play a complex role 
in the development and progression of BCa undoubtedly.

As already indicated, we finally got seven candidate 
genes, which are CENPF, CDCA8, MCM6, PRC1, MELK, 
STIL, and TPX2. Among the seven candidate genes, only 

F I G U R E  7  (a, b) The progression‐
free survival plot of GEO32894 and 
ArrayExpress cohort. (c–d) The progression‐
free survival and overall survival plot of 
GEO13507 cohort. (e) Receiving operating 
characteristic (ROC) curve of the CENPF 
with prediction of NMIBC progression. 
Summary graphs of representative gene set 
enrichment analysis (GSEA) plots of high‐ 
versus low CENPF expression analysis 
from gene sets derived from the MSigDB 
C2 KEGG (f) and MSigDB C6 Oncogenic 
Signatures (g), on basis of ArrayExpress 
cohort
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CENPF shows a significant correlation with PFS (progres-
sion‐free survival) in univariate cox regression analysis of 
three BCa data sets (Hedegaard et al., 2016; Kim et al., 
2010; Sjodahl et al., 2012). As a fundamental member of 
the centromere protein family including centromere protein 
A (CENPA, OMIM *117139), CENPB (OMIM *117140), 
CENPC (OMIM *117141), CENPH (OMIM *605607) etc., 
CENPF with 400‐kDa which localizes to the outer surface 
of the outer kinetochore plate (a part of centromere), was 
identified in the serum of patients with systemic diseases 
in 1993 (Rattner, Rao, Fritzler, Valencia, & Yen, 1993). 
Related studies (Lin et al., 2016; O'Brien et al., 2007) have 
confirmed that CENPF acted as a common cancer‐driver 
gene in a variety of tumors such as breast cancer, prostate 
cancer, and hepatocellular carcinoma. Interestingly, consis-
tent with Appendix Figure S5, CENPF expression is up-
regulated in these tumors. Moreover, patients with elevated 
CENPF expression often tend to have higher histological 
grades, tumor stage, nonpapillary tumor, and the presence 
of CIS during the disease course. Aside from a favorable 
positive correlation with these factors, it also showed a 
strong correlation with the expression of FOXM1 and 
MKI67 (Figure 5a). Tsai MJ, et al elucidated dysregula-
tion of miRNAs‐COUP‐TFII‐FOXM1‐CENPF axis which 
plays a crucial part in drug resistance and the metastasis 
of prostate cancer (Lin et al., 2016). Also, MKI‐67 is an 
established indicator for cell proliferation of BCa (Ding 
et al., 2014). Usually, abnormal isolation of the chromo-
some will cause the generation of chromosomal diseases 
and even cause genomic instability, including activation 
of oncogenes or inactivation of tumor suppressor genes, 
which can lead to tumorigenesis. These may explain those 
results. Our results of the subsequent Kaplan–Meier anal-
ysis and univariate and multivariate analysis with clinical 
pathological factors are consistent with previous ones, that 
is, high expression of CENPF means poor PFS and OS. 
Strikingly, CENPF has a more excellent performance than 
tumor grade and T stage in term of prediction disease pro-
gression. These results highlight the usefulness of CENPF 
as biomarker of predicting for NMIBC progression and ad-
verse outcome. This marker may be beneficial to reduce 
variability in the staging and grading assessment and im-
prove the accuracy of EORTC risk tables predictions for 
progression. In addition, GSEA were performed in an in-
dependent RNA‐seq data set and their result showed that 
cell cycle‐related pathways are activated or inhibited when 
CENPF is aberrantly expressed. Therefore, we could be in-
ferred that elevated CENPF leads to the development of 
bladder cancer through genes such as TP53, RB1, CCND1, 
and E2F gene family in the cell cycle signaling pathway.

Meanwhile, CENPF is a large multiprotein complex with 
a CAAX (C = cysteine, A = aliphatic, and X = any amino 
acid) domain, and proteins containing such domains are 

substrates for protein farnesylation which is a lipid posttrans-
lational modification required for the cancer‐causing activity 
of proteins and critical for progression but not initiation of 
tumorigenesis (Sebti, 2005). It seems that the modification 
can account for the impact of high expression CENPF to 
unfavorable PFS. Farnesyltransferase inhibitors (FTIs) were 
first studied for targeting the RAS oncogenes, which can also 
target CENPF resulting in its inactivation. FTIs show potent 
cytotoxicity as a single agent in preclinical studies and have 
shown clinical promise in combination with other therapeutic 
strategies. (Schafer‐Hales et al., 2007) Although there is re-
stricted understanding of the specific antitumor mechanisms 
of FTIs, it provides a new perspective for our treatment of 
BCa. Therefore, CENPF may be a significantly clinical target 
in BCa and CENPF farnesylation a useful marker of tumor 
response. Notably, in recent data, CENPF has been shown to 
be an independent predictor for OS survival in bladder cancer 
(Li et al., 2017). However, our study aims to predict disease 
progression in heterogeneous NMIBC patients, which pro-
vides a prospect for management and comprehensive under-
standing of bladder cancer.

Additionally, among other seven candidate mRNAs, 
some have turned out to be related to the onset and de-
velopment of BCa. CDCA8 is an indispensable regulator 
of mitosis and cell division. It is reported that its aberrant 
expression is linked to a poor prognosis for BCa (Bi et al., 
2018) and lung carcinogenesis (Hayama et al., 2007). As 
one of the minichromosome maintenance proteins, MCM6 
are plays a significant role in the initiation of eukaryotic ge-
nome replication and associated with histological grades in 
various neoplastic processes (Gauchotte et al., 2012). Prior 
studies have evaluated MCM6 could be the most efficient 
marker to detect preclinical early recurrence in meningio-
mas (Gauchotte et al., 2012) and hepatocellular carcinoma 
(Liu et al., 2018) and so on. PRC1 is involved in multiple 
processes of cytokinesis, and its expression varies with the 
cell cycle. Nakamura, et al. study suggested that the knock-
down of its expression induced a significant enrichment of 
multinuclear cells and succeeding cell death of BCa cells, 
which provides a new insight of therapeutic targets for BCa 
(Kanehira et al., 2007). Some papers (Chen et al., 2016; 
Zhang et al., 2017) have implied that PRC1 caused hepa-
tocellular and gastric carcinoma exerts oncogenic function 
via the Wnt/β‐catenin signaling pathway and p53‐depen-
dent manner, respectively. MELK is a highly conserved 
serine/threonine kinase expressed in several human can-
cer and stem cell populations, and associated with cell 
cycle control, cell proliferation, apoptosis, migration, cell 
renewal, embryogenesis, tumorigenesis and cancer treat-
ment resistance and relapse (Ganguly et al., 2015). There 
are data indicating that it plays a prominent role in breast, 
gastric, and lung cancer. (Gray et al., 2005) Like CENPF, 
STIL belongs to centromeric proteins and is required for 
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mitotic entry and cancer cell survival. It increased expres-
sion in multiple types of cancers and correlates with meta-
static spread. (Erez et al., 2007) TPX2 is a critical factor for 
mitosis and spindle assembly. Overexpressed in cancers, 
it is being established as biomarker for the diagnosis and 
prognosis of carcinomas. Knockdown of TPX2 inhibits the 
proliferative capacity of hepatocellular carcinoma cells and 
pancreatic cancer cell lines, and can also induce caspase‐3 
mediated apoptosis in various cancer cell lines including 
HeLa, H1299 (lung cancer), DLD‐1 (Colon cancer), and 
MDA‐468 (breast cancer) (Neumayer, Belzil, Gruss, & 
Nguyen, 2014). Overall, these candidate genes are germane 
to the cell cycle, mitosis, and protein translation processes, 
and their abnormal expression contributes to the tumori-
genesis and progression of certain types of cancers.

However, some limitations of the present study cannot 
be ignored. First, limited by the dataset we used, our anal-
ysis failed to incorporate all the known risk factors in BCa. 
Second, the follow‐up time for the ArrayExpress cohort 
ranged from 0.9 to 74.9 months (the median follow‐up time 
was 33.1 months) and GSE32894 cohort ranging from 0.2 to 
104.4 months (the median follow‐up time was 38.1 months), 
some patients in those cohort were too short to observe end-
point events of progression. Third, a total of 739 NMIBC 
patients in the three datasets were included in the study, yet 
substantial clinical cases were needed to assess the biological 
relevance of the findings. Fourth, some of the differences in 
our analysis can be explained by their different quantitative 
platforms (macroarray and RNA‐seq). And before perform-
ing multi‐platform data analysis, we converted continuous 
variables of expressions into ordinal categorical variables to 
reduce the discrepancies in multi‐platform. Lastly, further re-
search was required to illuminate the specific carcinogenic 
mechanisms of these genes.

In summary, we have identified 13 gene coexpression 
clusters from a large‐scale NMIBC data set using WGCNA, 
which is a reliable method to screen and investigate candi-
date biomarkers or therapeutic targets. Then, we associated 
these clusters with clinical pathology variables and identify 
and validate candidate genes, which correlated with tumor 
stage, histological grade and progression of NMIBC. At 
last, CENPF was identified as a highly prognostic marker 
for NMIBC disease progression. It is worth mentioning that 
the biomarker was targeted by FTIs, further study of which 
may contribute to personalized therapy of NMIBC or MIBC.
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