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Abstract: A bis-triarylborane tetracation (4-Ar2B-3,5-
Me2C6H2)-C/C@C/C-(3,5-Me2C6H2-4-BAr2 [Ar = (2,6-Me2-4-
NMe3-C6H2)+] (24 ++) shows distinctly different behaviour in its

fluorimetric response than that of our recently published
bis-triarylborane 5-(4-Ar2B-3,5-Me2C6H2)-2,2’-(C4H2S)2–5’-(3,5-

Me2C6H2-4-BAr2) (34++). Single-crystal X-ray diffraction data on
the neutral bis-triarylborane precursor 2 N confirm its rod-
like dumbbell structure, which is shown to be important for
DNA/RNA targeting and also for BSA protein binding. Fluori-
metric titrations with DNA/RNA/BSA revealed the very

strong affinity of 24++ and indicated the importance of the
properties of the linker connecting the two triarylboranes.

Using the butadiyne rather than a bithiophene linker result-

ed in an opposite emission effect (quenching vs. enhance-
ment), and 24 ++ bound to BSA 100 times stronger than 34 ++ .

Moreover, 24++ interacted strongly with ss-RNA, and circular

dichroism (CD) results suggest ss-RNA chain-wrapping
around the rod-like bis-triarylborane dumbbell structure like

a thread around a spindle, a very unusual mode of binding
of ss-RNA with small molecules. Furthermore, 24 ++ yielded
strong Raman/SERS signals, allowing DNA or protein detec-
tion at ca. 10 nm concentrations. The above observations,

combined with low cytotoxicity, efficient human cell uptake
and organelle-selective accumulation make such compounds
intriguing novel lead structures for bio-oriented, dual fluo-
rescence/Raman-based applications.

Introduction

The use of fluorescent labels to image specific small molecules

in live cells is an essential tool in biology, medicinal chemistry,
and many other related fields of research. However, common

fluorescent dyes also have many drawbacks. Due to the con-

siderable size and aromatic nature, and also often being
H-bond donors/acceptors, they may alter the biological activi-

ty, cellular localization, and dynamics of the targeted bio-mole-
cules.[1] Moreover, even the most advanced fluorescence mi-
croscopy techniques are limited to a maximum simultaneous

resolution of six different colors.[2] This is additionally compli-
cated[3] by unavoidable cross-talk in organic dyes, energy trans-

fer between quantum dots[4] and the limited number of suita-
ble features for straightforward decoding in rare-earth nano-

crystals and metal nanoparticles.[5]

Therefore, further development in the increasingly complex

bioimaging field essentially requires new fluorophore struc-
tures for better bio-target diversification. Even more useful
would be new optical probes based on intrinsically different

methods at least approaching similar sensitivities of common
fluorophores. Such an aim recently led to the development of

vibrational spectroscopy methods, particularly Raman bioimag-
ing microscopy, due to its compatibility with aqueous biologi-

cal samples.[2d]

Phenyl end-capped polyynes have been employed as alkyne
tags for Raman visualization of mobile, small molecules in

cells[6] as well as for surface-enhanced Raman spectroscopy
(SERS) multiplex cellular imaging,[7] showing very promising ap-

plications in supermultiplexed optical imaging and barco-
ding.[2d] However, these polyyne-probes relied exclusively on
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their Raman response, and thus were not combined with other
sensing techniques.

Although fluorescence, under certain experimental condi-
tions, interferes with Raman measurements, by causing signifi-

cant background signal,[8] for some chromophores it is possible
to obtain a satisfying compromise. In recent years, the combi-

nation of Raman and fluorescence spectroscopy has emerged
as a way to circumvent some of the intrinsic problems of
Raman spectroscopy (i.e. low signal strength, long acquisition

times) or to gain additional information on a given system.[9]

Thus, in the first multimodal approaches, fluorescence was
used as a fast macroscopic scanning method, prior to a de-
tailed Raman analysis, or to confirm conclusions made via

Raman-based imaging.[10] Raman spectroscopy, in combination
with the use of fluorescently labelled molecules or quantum

dots, also proved to be an interesting approach in some cell

imaging applications.[11] In disease diagnostics, dual Raman and
fluorescence spectroscopy was used by several groups in a

complementary fashion to improve the accuracy and sensitivity
of the diagnosis.[12] Dual fluorescence and Raman spectroscopy

was successfully employed to investigate and visualize intracel-
lular drug delivery.[13] The design of small molecules with inher-

ently strong Raman and fluorescence responses is a rather

novel approach,[14] which has already produced much informa-
tion on the location, environment[14b] or concentration[14a] of

the small molecule inside a cell.
Recently, triarylboranes have emerged as a structurally novel

class of compounds suitable for biological imaging applica-
tions.[15] Over the last decades, triarylboranes have also found

applications in many other fields, such as anion sensors, OLEDs

and non-linear optical materials.[16] Due to its vacant pz-orbital,
the three-coordinate boron in a triarylborane is a strong p-ac-

ceptor. However, it is also Lewis-acidic and sensitive to hydroly-
sis. Bulky substituents can stabilize three-coordinate boron

against decomposition by air and moisture, while maintaining
its p-acceptor strength.[17] Using Gabbaı̈’s approach[18] we de-

veloped the water-soluble, water-stable and non-cytotoxic

tetracationic chromophore 34++ (Scheme 1) which was success-
fully utilized in live cell imaging.[19] Further studies revealed 34 ++

to be a structurally novel DNA/RNA/protein probe of high af-
finity and selective fluorimetric and chirooptic response.[20]

The question arose to which extent the chromophoric linker
(bithiophene) is responsible for the observed spectroscopic re-

sponses and affinity. In a search for linkers which could also be
non-conventional response probes, 1,3-butadiyne attracted our
attention for several reasons. It is a rigid, rod-like symmetrical
linker, excellent for precise orientation of terminal triarylborane
cations (Scheme 1, 24++), and it is completely inert, in terms of

covalent and non-covalent interactions, to DNA/RNA/protein.
Even more importantly, it exhibits an intense Raman band with

a narrow linewidth in the Raman-silent spectral region (2250–

2000 cm@1) convenient for Raman-based probing in aqueous
solutions. Additionally, the intensity of response can be strong-

ly increased by surface-enhanced Raman scattering (SERS)
spectroscopy and related techniques.

To address the above mentioned issues, we designed the
new molecule 24 ++ by replacing the phenyl end-capping of the

shortest polyyne[2d] (1,3-butadiyne) with two bis-triarylborane

cations, acting as a fluorescence probe (Scheme 1). For com-
parison, the dicationic monomer 12 ++ was also prepared

(Scheme 1) as well as their non-charged precursors 1 N and 2 N
(Scheme 2).

Thus, novel molecule 24 ++ , and studies of its interactions

with DNA/RNA/proteins, will address the potential for the de-
velopment of innovative combined fluorophore-Raman probes

for the general purpose of non-covalent probing of DNA/RNA/
proteins, and the impact of the nature of the linker connecting

two bis-triarylborane cations on the fluorescent and chirooptic

response upon binding to biomacromolecules.
Given the generally weak spontaneous Raman response of

molecules in solution, SERS spectroscopy was used to study
the binding to biomolecules in aqueous media mimicking the

biological environment. The enhancement of the Raman scat-
tering in the vicinity of nanostructured metal surfaces arises

from amplification of the electromagnetic field upon excitation

of the localized surface plasmon resonances (LSPR) of the mol-
ecules when physisorbed on a surface, and from the transfer

of electrons from the metal to the molecule and vice versa for
chemisorbed molecules.[21] Even though the charge transfer

mechanism is considered to contribute to the overall enhance-
ment to a lesser extent than the electromagnetic one, the total

SERS enhancement factor with respect to the normal Raman
signal, in most cases, is the product of both mechanisms,
reaching up to 10.[10] Owing to its high sensitivity and ability to

produce molecularly specific fingerprint spectra, SERS has been
successfully applied for the detection, quantification and bio-

physical characterization of a variety of biomolecules.[22]

Results and Discussion

Synthesis

The key precursor A, which was previously only accessible via

Sandmeyer type reactions in moderate yields,[23] was reproduci-
bly prepared in 91 % yield on a 73 mmol scale using a new ap-

Scheme 1. The ethynyl-triarylborane monomer (12 ++), bis-triarylborane 1,3-
butadiyne (24 ++) and previously studied bithiophene-linked bis-triarylborane
tetracation (34 ++).
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proach based on literature precedents.[24] This was achieved by

direct, regioselective, Ir-catalyzed borylation[25] of the C@H

bond of 2-bromo-1,3-dimethylbenzene at the 5-position. With-
out any purification, the borylated intermediate was converted

into A, using CuBr2 as a brominating agent. Compound A was
then cross-coupled with trimethylsilylacetylene, at the sterically

less hindered bromine, giving B. For the synthesis of triarylbor-
ane C, compound B was lithiated and bis[4-(N,N-dimethylami-
no)-2,6-dimethylphenyl]fluoroborane[18] was added. Triarylbor-

ane C was deprotected using KOH in MeOH/THF to give the
neutral terminal alkyne compound 1 N. The neutral 1,3-buta-
diyne compound 2 N was formed by oxidative homo-coupling
of 1 N in a Glaser type reaction, using I2 as an oxidant. The two
neutral compounds 1 N and 2 N were methylated at the amine
groups using methyltriflate in CH2Cl2. The two cationic species

12++ and 24 ++ were precipitated by addition of Et2O; 12++ was
washed with CH2Cl2/Et2O, and 24++ with acetone/Et2O.

Single crystals suitable for X-ray diffraction analysis were ob-

tained for compounds 1 N (Figure S17) and 2 N. The solid state
molecular structure of 2 N, along with selected bond lengths

and angles, are depicted in Figure 1, to illustrate the shape
and size of the diyne compound. The distance between the

two boron atoms B1 and B1’ is 15.457(7) a. The molecule has

an inversion center located between C1 and C1’ and is almost
linear, as the relevant C@C@C bond angles of the diyne bridge

are all close to 1808.

Physicochemical properties

Both positively charged compounds (12 ++ , 24 ++) are moderately

soluble in water (c = 1 V 10@3 m), their solutions being stable for

longer periods when stored in the dark. The neutral analogue
of 1 N was dissolved in DMSO to prepare a stock solution

(c = 5 V 10@3 m) which was further diluted with aqueous buffer
prior to every experiment, yielding stable solutions up to the

0.1 m range. The poor solubility of neutral analogue 2 N under
biorelevant conditions hampered further experiments.

Scheme 2. Synthesis of the compounds 1 N, 2 N, 12 ++ and 24 ++ . a) 1. B2pin2, [Ir(COD)(OMe)]2, dtbpy, hexane, 80 8C; 2. CuBr2, MeOH/H2O, 90 8C, yield: 91 % over
two steps; b) trimethylsilylacetylene, Pd(PPh3)2Cl2, CuI, NEt3, 80 8C, yield: 62 %; c) tBuLi, bis[4-(N,N-dimethylamino)-2,6-dimethylphenyl]fluoroborane, hexane,
@78 8C to r.t. , yield: 47 %; d) KOH, MeOH/THF, r.t. , yield: 97 %; e) Pd(PPh3)2Cl2, CuI, I2, NEt3/THF, r.t. , yield: 76 %; f) MeOTf, CH2Cl2, r.t. , yield: 64 % (12 ++), 23 %
(24 ++).

Figure 1. The solid state molecular structure of 2 N (50 % probability ellip-
soids). Hydrogen atoms and solvent molecules are omitted for clarity. Angles
[8] between the plane of the BC3-core (defined by B1, C6, C11 and C21) and
the planes of the adjacent aryl rings: 57.9(1) for C6; 49.6(1) for C11; 48.9(1)
for C21. Selected distances [a] and angles [8] for 2 N : B1@C6 1.596(2) ; B1@
C11 1.561(2) ; B1@C21 1.570(2); C1@C1’ 1.373(3); C1@C2 1.202(2) ; C2@C3
1.431(2) ; N1@C14 1.381(2) ; N2@C24 1.390(2); C6-B1-C11 116.577(30); C6-B1-
C21 117.639(28); C11-B1-C21 125.764(42) ; C1-C2-C3 177.35(17), C1’-C1-C2
179.6(2). Sum of the C-B-C angles around B: 359.98(14)8.[37]
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The absorbances of the studied compounds (Figure 2) were
proportional to their concentrations up to c = 2 V 10@5 m (Fig-

ures S21–S23), and changes in their UV/Vis absorption spectra
upon temperature increase up to 90 8C were minor (Fig-

ure S24). Reproducibility of the UV/Vis spectra upon cooling to
25 8C was excellent. These findings indicate that the com-

pounds do not aggregate by intermolecular stacking under
the experimental conditions used. Absorption maxima and cor-

responding molar extinction coefficients (e) are given in

Table 1.
Comparison of their UV/Vis absorption spectra reveals dis-

tinct differences between the neutral compound 1 N and its
charged analogue 12 ++ . The neutral molecule 1 N shows an ab-

sorption band at 408 nm while the charged analogue 12 ++

shows a hypsochromically shifted absorption with a maximum

at 315 nm and a shoulder at 335 nm. This absorption behavior

is well documented in previous publications from our group
for a series of analogous neutral and charged com-

pounds[17p, 19, 26] and can be attributed to a loss of the charge
transfer transition from the amine to the boron moiety upon

methylation of the amine. The approximate doubling of the
extinction coefficient and the bathochromic shift of >40 nm

(3300 cm@1) in absorption, when comparing the monomer 12 ++

and the dimer 24 ++ , is also consistent with our previous stud-
ies[17p, 19] and can be attributed to a larger p-system in the case

of 24++ . All photophysical data is summarized in Table 1.
Both the neutral and charged compounds are strongly fluo-

rescent, with significant apparent Stoke’s shifts in all tested sol-
vents (see Table 1 and Figure 3). However, neutral compound

1 N showed pronounced emission quenching upon heating to
90 8C, whereas the temperature-induced emission changes of

12++ and 24 ++ were negligible (Figures S25–S27).

Study of interactions with DNA, RNA, and BSA

To study the interactions of 1 with DNA/RNA, several typical
types of DNA and RNA were chosen (Table S2). Naturally occur-

ring calf thymus (ct)-DNA represents a typical B-helix structure
with a balanced ratio of GC-(48 %) and AT-(52 %) base pairs.

Synthetic alternating polynucleotides poly (dGdC)2 and poly
(dAdT)2 represent two extreme situations (only AT- or GC-base-
pairs, respectively), differing significantly in their secondary

structures as well as in the availability of the minor groove for
small molecule binding (the guanine amino group stericallyFigure 2. UV/Vis spectra of neutral 1 N, 12 ++ , and 24 ++ in water.

Table 1. Photophysical data for compounds 1 N, 2 N, 12 ++ and 24 ++ .

Solvent labs [nm][a] e [M@1 cm@1] lem [nm] Stoke’s shift [cm@1] Ff t [ns] t0 [ns] kr [108 s@1] knr [108 s@1]

1N

hexane 397 – 447[b] 2800 0.10[b] 1.5 15.0 0.67 6.0
toluene 405 25 000 496 4500 0.22 4.4 20.0 0.50 1.8
Et2O 400 – 514 5500 0.27 7.6 28.3 0.35 0.96
H2O[c] 408 11 000 502 4600 – – – – –

2N
hexane 386 – 464 4400 0.10 2.0 20.0 0.50 4.5
toluene 386 60 000 525[b] 6900 0.16 4.3 26.9 0.37 1.9
Et2O 386 – 546[b] 7600 0.15 6.2 41.3 0.24 1.4

12 ++ EtOH 344 26 000 418 5100 0.15 3.9 26.0 0.38 2.2
H2O 335 23 000 428 6700 0.18 6.4 35.5 0.28 1.3

24 ++ EtOH 384 45 000 414[b] 1900 0.26 0.94 3.6 2.8 7.8
H2O 377 49 000 431[b] 3100 0.25 1.3 5.2 1.9 5.8

[a] Lowest energy absorption band. [b] For compound 1 N in hexane, lex = 385 and 375 nm were used for measuring emission spectrum and quantum
yield, respectively. For compound 24 ++ , lex = 360 nm (in H2O) and lex = 365 nm (in EtOH) were used for emission and quantum yield measurements. For
compound 2 N in toluene and Et2O, a 395 nm cut-off filter was used for the emission measurement. [c] DMSO stock solution (c = 5 V 10@3 m) further diluted
with aqueous buffer.

Figure 3. Comparison of emission spectra of neutral 1 N (lex = 408 nm),
12 ++(lex = 335 nm), 24 ++(lex = 377 nm) and 34 ++ [19] (lex = 425 nm) in sodium
cacodylate buffer (pH 7.0, I = 0.05 m). c (1 N and 34 ++) = 5 V 10@7 m ; c (12 +

and 24 ++) = V 10@8 m.
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hinders deep molecule penetration). For comparison between
double stranded (ds) DNA and ds-RNA, poly rA - poly rU RNA

was chosen as an A-helix structure characterized by a major
groove available for the binding of bulky small molecules.

Furthermore, to explore the DNA/RNA binding of the novel
chromophore to a greater extent, we also studied the single

stranded synthetic ss-RNA polynucleotides poly G, poly A, poly
U and poly C, each of them characterized by different proper-

ties. Adenine ss-RNA mimics 50 to 250 adenine nucleotides at

the 3’ end of mRNA, poly G is related to guanine-rich sequen-
ces in both DNA and RNA, whereas poly C and poly U are sig-

nificantly more flexible than purine-RNAs, and with less organ-
ized secondary structures.

Due to the possibility that the compounds studied could in-
teract with proteins, we examined the most naturally abundant
protein, bovine serum albumin (BSA), taking into account its

versatility of binding sites.

Thermal denaturation experiments

It is well known that double stranded (ds)-helices of polynuc-

leotides dissociate into two single stranded polynucleotides
upon heating at well-defined temperatures (Tm value). Non-co-

valent binding of small molecules to ds-polynucleotides usually
increases the thermal stability of the ds-helices thus resulting

in increased Tm values, and the increase (DTm) can (corrobo-
rated by other methods) be related to the various binding

modes.[27]

Tetra-charged 24 ++ stabilized ds-DNA moderately
(r[compound]/[polynucleotide] = 0.1; DTm = + 4.0 8C), whereas monomer

12++ induced only minor stabilization (r[compound]/[polynucleotide] = 0.1;
DTm = + 1.1 8C) and the neutral analogue 1 N did not affect

the thermal stability of ds-DNA (Figures S29–S31). The results
show a direct proportionality of ds-DNA stabilization to the

number of positive charges. However, tetra-cation 34++ stabi-
lized ds-DNA much more strongly (r[compound]/[polynucleotide] = 0.1;

DTm = + 7.3 8C), pointing to the significant impact of the bi-
thiophene linker.[20]

Fluorimetric titrations with DNA, RNA, BSA

The strong intrinsic fluorescence of the compounds studied al-
lowed fluorimetric titrations with various ds-DNA/RNA, single-

stranded (ss)-RNA and BSA. Addition of ds-DNA or ds-RNA
caused strong, non-selective quenching of the emission of 12 ++

(Figures S34 & S35) or 24 ++ (Figure 4), but no fluorescence
change was observed for neutral 1 N (Figure S32). Intriguingly,

addition of ss-RNA or BSA caused negligible changes in the
emission from monomer 12 ++ (Figures S36 & S37), in contrast to
the behavior of dimer 24 ++ , which revealed a strong fluorimetric

response (Figures S38–S42).
Furthermore, 34 ++ showed an emission increase upon DNA/

RNA/BSA complexation, characterized by distinct differences in
fluorescence maxima between DNA/RNA and protein (BSA),
whereas 24++ showed only non-selective emission quenching.
Such a difference in fluorimetric response between 24 ++ and

34++ might be attributed to the fact that bithiophene is a weak

Figure 4. Top: Comparison of fluorimetric titrations of 24 ++ (c = 5 V 10@8 m, lex = 377 nm) at lem = 431 nm for all ds-DNA, ds-RNA and BSA (ss-RNA not shown,
see Supporting Information Figures S38–S42). Bottom: Comparison of the fluorescence spectrum of 24 ++ with spectra of 24 ++/biomacromolecule complexes at
the end of titrations. All measurements performed at pH 7.0, in sodium cacodylate buffer, I = 0.05 M.
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donor, whereas the diyne unit does not have an electron-do-
nating effect.

The non-linear fitting of the DNA or RNA titration data by
means of the Scatchard equation (McGhee, vonHippel formal-

ism)[28, 29] allowed the calculation of binding constants (Table 2).
The BSA titration data fitted excellently to a 1:1 (24++ :BSA) stoi-
chiometry model, pointing to only one dominant binding site
of 24++ at BSA.

The strong, submicromolar affinities of 24 ++ to ds-DNA and
ds-RNA were within the same order of magnitude, while its af-

finity to ss-RNA was approximately an order of magnitude
lower. The affinity of 24++ to BSA was an order of magnitude

higher than its affinity towards ds-DNA/RNA (Table 2). The ex-
cellent fit of the titration data (Figure S42) strongly supported
a single dominant binding site on BSA for 24++ , although other

binding sites with several orders of magnitude lower affinities
cannot be excluded. Comparison of the affinities between 24 ++

and bithiophene analogue 34++ revealed similar binding con-
stants for ds-DNA/RNA and ss-RNA, but a significant difference

in binding to BSA, with 24++ showing an affinity two orders of
magnitude higher than 34++ .

Monomer 12++ revealed somewhat lower affinity to ds-DNA/
RNA, but still in the micromolar range, albeit having only half
of the positive charge, suggesting that electrostatic interac-

tions with the negatively charged DNA backbone are not the
dominant binding interactions. Intriguingly, the emission of

12++ did not change with BSA or ss-RNA addition, indicating
that the long rod-like structure of dimer 24 ++ is essential for ef-

ficient binding to both targets.

CD experiments

Thus far, we had studied the non-covalent interactions at 25 8C

by monitoring the spectroscopic properties of the compounds
upon addition of the polynucleotides. In order to obtain in-

sight into the changes of polynucleotide properties induced
by small molecule binding, we chose CD spectroscopy as a

highly sensitive method for the examination of conformational
changes in the secondary structure of polynucleotides.[30] In ad-

dition, 12 ++ or 24 ++ as achiral small molecules could display in-
duced circular dichroism (ICD) within their absorption spectra

upon binding to polynucleotides, which could provide useful
information about modes of interaction.[31, 32]

Addition of 12 ++ did not significantly change the CD spectra
of ds-DNA or ds-RNA (Figures S44–S46), and no induced (I)CD
bands >300 nm were observed. In contrast, tetracation 24 ++ in-

duced a significant decrease in intensity in the CD spectra of
all ds-DNA/RNA (230–300 nm range; Figure 5), attributed to a

pronounced decrease in ds-polynucleotide chirality.[31, 32]

Only poly (dAdT)2 (Figure 5) revealed significant induced

(I)CD bands at l>300 nm, which could be attributed to the

uniformly oriented binding of 24 ++ within a well-defined DNA
binding site.[32] Taking into account the structure of the mole-

cule 24 ++ , the DNA minor groove is the most plausible binding
site. Closer inspection of the ICD bands and comparison with

the UV/Vis titration data (Figure 5, Inset : black line) revealed a
mixed binding mode of 24 ++ , dependent on a ratio r[compound]/[poly

(dAdT)2] ; whereby for r<0.2 ICD bands were negative and for r

+0.3 ICD bands were positive. Such a change of the ICD sign
is commonly attributed to single molecule binding at an

excess of DNA (r<0.2) and molecular aggregation within the
DNA grooves at an excess of the small molecule (r>0.3).[31, 32]

Further, dominant ICD bands at 300–330 nm could be par-
tially attributed to electronic transition vectors along the

boron-nitrogen axes (see Table S5), which seem to be well ori-

ented with respect to the DNA chiral axis. The maxima at
lmax = 360–380 nm), giving negligible ICD band, were attribut-

ed to the electronic transition along the long axis of 24 ++ , paral-
lel to the diyne-linker (see Table S5).

The almost negligible intensity of ICD bands for the ana-
logue 24 ++/GC-DNA complex could be attributed to the sterical-
ly crowded minor groove with the amino groups of guanine,

not allowing deep insertion of 24 ++ and, thus, diminishing the
induced CD effect.[32] The broad and shallow minor groove of

AU-RNA is a poor binding site for small molecules, in contrast
to the major groove of RNA, which has a width similar to that

of the minor groove of DNA (Table S2) and could be an effi-
cient binding site for 24 ++ . However, the large depth of the

major groove allows heterogeneous orientation of 24 ++ mole-
cules with respect to the ds-RNA chiral axis, thus resulting in
negligible ICD bands.

Particularly intriguing results were obtained for the 24++/ss-
RNA complexes (Figure 6). Addition of 24++ completely disor-

dered the CD spectrum of poly A and also that of poly U,
while the CD spectra of poly G and poly C were less affected.

For the poly A titration, the isoelliptic point at l= 253 nm

strongly supported only one type of 24++/poly A complex. The
poly U titration showed a systematic shift of the spectral cross-

ing points during titration, which is typical for mixed binding
modes.

Complete loss of the helical chirality of A or U ss-RNA upon
binding to 24++ , accompanied with a rather high affinity of 24 ++

Table 2. Binding constants (log Ks)[a] of 12 ++ and 24 ++ with polynucleotides
or BSA calculated by processing fluorimetric titrations;[a] at pH = 7.0,
sodium cacodylate buffer, I = 0.05 M.

Polynucleotide 24 ++ 12 ++

ct-DNA 6.9 6.0
poly dAdT- poly dAdT 7.7 –
poly dGdC -poly dGdC 7.8 –
poly A - poly U 7.6 6.0
poly G 7.5 –
poly A 7.2 [c]

poly C 7.4 –
poly U 6.7 –
BSA[b] 8.2[b] [c]

[a] Analyses of titration data by means of the Scatchard equation[28, 29]

gave values of the ratio n [bound 24 ++]/[polynucleotide] = 0.2@0.5; for
easier comparison, all log Ks values were re-calculated for fixed n = 0.25
(ds-polynucleotides) and n = 0.5 (ss-RNA). Correlation coefficients were
>0.99 for all calculated Ks values. [b] Fitted for Langmuir isotherm for
24 ++ :BSA 1:1 stoichiometry. [c] Negligible emission change did not allow
analysis of titration data.
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Figure 5. CD titration of ct-DNA, poly (dAdT)2, poly (dGdC)2, poly A-poly U (all DNA/RNA c = 2 V 10@5 m) with 24 ++ at molar ratios r = [24 ++]/[polynucleotide]
(pH 7.0, buffer sodium cacodylate, I = 0.05 m).

Figure 6. CD titration of poly U, poly A, poly C and poly G (all RNA c = 2 V 10@5 m) with 24 ++ at molar ratios r = [24 ++]/[polynucleotide] (pH 7.0, buffer sodium
cacodylate, I = 0.05 m).

Chem. Eur. J. 2020, 26, 6017 – 6028 www.chemeurj.org T 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim6023

Chemistry—A European Journal
Full Paper
doi.org/10.1002/chem.201905328

http://www.chemeurj.org


(Table 2) suggested wrapping of the ss-polynucleotide chain
around the cylindrically shaped compound 24++ . Such a binding

mode would maximize the efficiency of electrostatic interac-
tions between four positive charges of 24++ and the negative

polynucleotide backbone. This binding mode would be addi-
tionally supported by an energetically favorable exclusion of

the hydrophobic diyne linker from hydrophilic solvent mole-
cules. Such a complex of achiral 24 ++ serving as a spindle for ss-

RNA would not give any chiral response, which is in accord-

ance with the CD titration experiments (Figure 6).
Another proof of the proposed binding mode is that mono-

mer 12++ did not change the CD spectrum of ss-RNA, which
could be attributed to the globular shape of 12++ with its cen-

tered positive charge, not supporting ss-polynucleotide wrap-
around.

Raman spectroscopy

Raman spectra of 24++ were measured in water (1 V 10@4 m) and
Na-cacodylate buffer, (pH 7.0, 1 V 10@4 m and 5 V 10@5 m)

(Figure 7 and Table S4). In the Raman spectra of all solutions, a

broad band around 3220 cm@1 and a medium band around
1640 cm@1 were observed and assigned to the water stretching

and bending modes, respectively. In addition, in the Raman
spectra of the buffered solutions, bands originating from caco-

dylate ions were obtained: a medium methyl asymmetric
stretching band at 2935 cm@1, a weak methyl deformation

band at 1414 cm@1 and an intense As=O stretching band at
605 cm@1. Nevertheless, bands distinctive of 24++ were observed

in all Raman spectra, even at a concentration as low as
5 V 10@5 m (Table S4). Hence, the band around 2220 cm@1 was

assigned to the stretching of the C/C triple bonds in bisaryl-
substituted diynes,[6] while the band around 1600 cm@1, over-
lapped by the water band, was attributed to a phenyl ring
stretching mode (Table S4).[33] Based on the calculated Raman
spectrum of 24 ++ (Figure S49), the band around 1355 cm@1 was
associated with mixed stretching vibrations of the triple bonds
and phenyl rings, whereas stretching of the bonds between
the boron atom and three aromatic substituents contributed
to the band around 1070 cm@1. The strong Raman scattering

of 24 ++ was attributed to the diyne moiety conjugated to the
aromatic rings,[34] allowing detection of the molecules in solu-

tion at a micromolar concentration range.

SERS experiments

The SERS spectra of 24++ were measured in the 5 V 10@8 -
5 V 10@6 m concentration range (Figure 8). The characteristic

SERS bands of 24++ were obtained at a concentration as low as
5 V 10@8 m, whereas the Raman scattering enhancement was

the highest for the 1 V 10@6 m sample. Referring to the Raman

bands assignment, the strong band at 2215 cm@1 was assigned
to the stretching of the C/C triple bonds, while the intense

band at 1596 cm@1 was attributed to the stretching of the
phenyl moieties. The medium band at 1354 cm@1 was assigned

to the stretching modes of the central conjugated part of the
molecule, including phenyl rings and triple bonds, whereas the

moderate band at 1070 cm@1 was associated with the stretch-

ing of the bonds between the boron atom and aromatic sub-
stituents. Aside from the few 24 ++ bands observed in the

Raman spectra, some additional bands were obtained in the
SERS spectra, corresponding mainly to phenyl ring vibrations

(Table S4). The bands at 1286 cm@1 and 1155 cm@1 which ap-
peared at low 24 ++ concentrations (1 V 10@7 m and 5 V 10@7 m)

were attributed to the symmetric stretchings of -CF3 and -SO3

Figure 7. a) Raman spectra of 24 ++ (c = 1 V 10@4 m) in water (blue line) and
Na-cacodylate buffer, pH 7.0 (red line). b) SERS spectra of 24 ++ (c =

1 V 10@6 m), in the silver colloid not containing Na-cacodylate buffer (blue
line) and containing Na-cacodylate buffer, pH 7.0 (red line). lex = 758 nm.
The bands labelled with asterisks originate from the buffer. The spectra are
displaced for visual clarity.

Figure 8. The concentration-dependent SERS spectra of 24 ++ in the silver col-
loid not containing Na-cacodylate buffer, c = 5 V 10@8@5 V 10@6 M lex =

758 nm. The spectra are displaced for visual clarity.
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groups, respectively, of trifluoromethanesulfonate anions.[35] At
low concentrations of 24++ , the counterions came close to the

enhancing silver surface and, consequently, their vibrational
modes were enhanced.

Considering the surface selection rules according to which
polarizability changes perpendicular to the metal surface con-

tribute the most to scattered radiation, the prominent C/C

(2215 cm@1) and phenyl (1596 cm@1) stretching bands implied
that, at a concentration of 1 V 10@6 m, the molecules adopted

an optimal position with the triple bonds and phenyl rings ori-
ented perpendicular to the silver surface (Scheme 3 a).

Moreover, the positive charge on each side of the molecule
facilitated its positioning in hot spots between two nanoparti-

cles. It can be assumed that adsorption of the 24 ++ molecules

was electrostatically driven by the positively charged trimethy-
lamino groups attracted to the citrate anions on the silver

nanoparticles, followed by direct interactions with the silver
surface. A band observed in the low wavenumber region

(216 cm@1) was assigned to Ag@N stretching, indicating interac-
tion between the nitrogen atom and the silver surface (Fig-
ure 7 b). By decreasing the concentration, the intensity of the

characteristic vibrational bands diminished, most likely due to
first tilted and then in-plane positioning of the molecules on
the enhancing surface (Scheme 3 b).

In order to investigate the effect of the buffer on the SERS

response, the spectrum of 24 ++ (1 V 10@6 m) in Na-cacodylate
buffer (pH 7.0) was acquired (Figure 7 b). In general, the spec-

trum was slightly more intense and the bands more defined,
when compared to the spectrum of 24 ++ in water, though posi-
tively charged 24++ molecules most likely acted as aggregating

agents of the silver colloid. Salts in the buffer composition ad-
ditionally induced aggregation of the silver nanoparticles re-

sulting in stronger enhancement of the Raman scattering. A
strong band observed at 231 cm@1 was assigned to the stretch-

ing of the Ag@Cl bond formed between the chloride ions from

the buffer and the silver surface (Figure 7 b).
To study the binding of 24 ++ to ds-DNA, the SERS spectra of

the 24 ++/ct-DNA complexes in r[24++]/[ct-DNA] molar ratios of 1,
0.2 and 0.1 were measured at two different 24++ concentra-

tions: a) c(24 ++) = 1 V 10@6 m, which produced the strongest
SERS response, and b) at the lowest concentration at which

24++ was detected (5 V 10@8 m) (Figure 9 a,b). In both cases, the
SERS spectra obtained correspond to the SERS spectrum of the

small molecule.
The SERS bands were more intense for the 24++/ct-DNA com-

plex than for 24++ alone. For example, at c(24 ++) = 5 V 10@8 m, the
intensity of the triple C/C stretching band at 2214 cm@1 for

the complexes of r[24 ++]/[ct-DNA] = 1 and 0.2 was enhanced 1.4

and 1.3 times, respectively, relative to that of the free 24 ++ mol-
ecules. The increase in intensity obtained indicated interactions

of 24++ with the nucleic acid, owing to which the small mole-
cules adopted a more optimal orientation with respect to the

enhancing silver surface and/or were placed closer to the silver
nanoparticles (Scheme 3 c). On the other hand, the excess of

highly negatively charged DNA in the 24 ++/ct-DNA sample of

the r = 0.1 most likely caused less efficient adsorption of the
complex on the silver surface, reducing the SERS intensity.

Furthermore, the SERS response of 24++ (c = 1 V 10@6 m) upon
binding to BSA was studied for the 24 ++/BSA complexes pre-

pared in r[24 ++]/[BSA] molar ratios of 1, 0.2 and 0.1 (Figure 9 c).
Unlike the complexes of 24++ with the nucleic acids, the SERS
intensity significantly diminished regardless of the complex

molar composition. The characteristic band of the triple bond
stretching at 2215 cm@1 almost completely vanished from the

spectrum of the 24 ++/BSA complex of the molar ratio 0.1. Due
to strong interactions of the small molecules with the protein,

and likely deep insertion of the molecule within the BSA bind-
ing site, compound 24 ++ was removed from the silver nanopar-

ticles responsible for the SERS effect.
It is interesting to note that the characteristic SERS response

of 24++ was observed upon NIR excitation (785 nm) in the

simply prepared and widely used silver colloid, even at a nano-
molar concentration range. Thereby the distinctive band of the

C/C triple bond at 2215 cm@1, which does not interfere either
with the bands of its own, or with the bands of the other spe-

cies, in the measured system, allowed easy detection of the

small molecules. The intense SERS response obtained for 24 ++

interacting with DNA, and its loss upon binding with BSA, is

characteristic of binding with the nucleic acid and the protein,
respectively. Owing to the sensitivity obtained and minimal

spectral interference, the molecules studied could potentially
be used as alkyne-coded SERS tags for live cell imaging.[2d]

Scheme 3. SERS experiments: Depiction of the molecular orientation of compound 24 ++ with respect to the silver surface at high concentrations of 24 ++ (a),
low concentrations of 24 ++ (b), and in the complex with ds-DNA (c). The 24 ++/BSA complex (not shown) is detached from the Ag-surface and, thus, gives no
SERS signal.
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Preliminary biological screening

The biological experiments aimed to verify the actual capabili-
ty of the DNA/RNA/protein binder studied to penetrate the
cells, to visualize its intracellular location and subcellular tar-

gets. Evaluation of the anti-proliferative effect was conducted
in order to identify further potential applications, either as a
cytotoxic lead compound toward theranostic[36] applications
(combining dual fluorescent/Raman monitoring with an anti-

proliferative action), or as a non-cytotoxic dye suitable for in-
tracellular applications or in biochemical studies.

To examine toxicity, i.e. , the effect of 24 ++ on the proliferation
of human cell lines, we used the MTT test. The compound was
tested on two human cell lines (HeLa and HEK 293). As an indi-

cator of anti-proliferation activity we used the IC50 value, which
corresponds to the concentration of the compound that inhib-

its proliferation to 50 % compared to the control cells (prolifer-
ating without the compound in the medium). The results we

obtained showed negligible anti-proliferative activity of 24 ++

even at the highest concentration used in the test (1 V 10@4 m,
results not shown).

We also checked the ability of the compound to cross the
cellular membrane and penetrate the HeLa cells, by using the

intrinsic fluorescence of 24++ in fluorescent confocal microscopy
experiments. Confocal microscopy also allows us to propose

the possible intracellular localization of the compound. The
compound 24++ entered cells very efficiently within 2 hours of

cell immersion in c(24 ++) = 1 V 10@6 m. The observed fluores-
cence of the compound coincided with the area of the cell

where the endoplasmic reticulum is located, and the grainy
dispersion of the fluorescence signal indicates possible endo-

somal accumulation (Figure 10).

As titration experiments of 24 ++ with DNA/RNA and BSA re-

vealed strong quenching of the emission of 24 ++ upon binding,
the strong fluorescence in the cell suggests that emission from

the compound is not significantly affected by its proposed in-
tracellular localization. This would be consistent with the hy-

drophobic endosomal environment, which is devoid of any

DNA/RNA or albumin-like binding sites. This could spur intrigu-
ing future studies of 24++ and its analogues in dual fluores-

cence/Raman-based SRS microscopy,[2d] whereby the intracellu-
lar location with quenched fluorescence and active SRS signal

could be easily differentiated from the intracellular location
with strong fluorescence.

The cell nucleus is completely void of any emission which, in

combination with its negligible anti-proliferative activity,
strongly suggests that 24 ++ does not bind to or interfere with

genomic DNA or RNA processes, which are essential for cell vi-
ability. However, for a more accurate determination of its cellu-

lar localization, further, more detailed biological experiments
are planned.

Conclusions

As a follow-up to our work on novel applications of bis-triaryl-
boranes as DNA/RNA/protein binders and bright intra-cellular

probes,[17p, 19, 20, 26] we designed and studied new derivatives to
investigate the influence of the linker type on DNA/RNA/pro-

tein interactions and to compare (4-Ar2B-3,5-Me2C6H2)-C/C@C/
C-(3,5-Me2C6H2-4-BAr2 (24 ++) with its corresponding monomeric
(4-Ar2B-3,5-Me2C6H2)-C/CH (14++) analogue.

It can be safely assumed that the positively charged ana-
logue 24 ++ retains structural features very similar to those of its

neutral analogue 2 N (see Figure 1); thus, both compounds
could be considered as rod-like dumbbell structures. Com-

Figure 9. a) SERS spectra of 24 ++ and 24 ++/ct-DNA complexes of ratio r[24 ++]/
[ct-DNA] = 1, 0.2 and 0.1, in the silver colloid containing Na-cacodylate
buffer, pH 7.0; c(24 ++) = 5 V 10@8 m b) SERS spectra of 24 ++ and 24 ++/ct-DNA
complexes of ratio r = 1, 0.2 and 0.1, in the silver colloid containing Na-ca-
codylate buffer, pH 7.0; c(24 ++) = 1 V 10@6 m c) SERS spectra of 24 ++ and 24 ++/
BSA complexes of ratio r = 1, 0.2 and 0.1, in the silver colloid containing Na-
cacodylate buffer, pH 7.0; c(24 ++) = 1 V 10@6 m lex = 758 nm. The spectra are
displaced for visual clarity.

Figure 10. Confocal microscopy of live HeLa cells (c = 50 000 cells mL@1)
taken on a Leica SP8 X confocal microscope, cells stained for 2 h in the
c(24 ++) = 1 V 10@6 m, lexc = 360–400 nm; lem = 415–471 nm.
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pound 24++ is also characterized by four terminal positive
charges. Only 24++ was soluble in water and, therefore, further

studied for biorelevant applications using, as a reference, the
corresponding monomer 12++ .

One of the main aims of the 24 ++ design was to study the
impact of the linker connecting two triarylborane units upon

the binding to DNA/RNA or protein, in comparison to previ-
ously studied bithiophene-linker analogue 34 ++ .[20] Addition of

any type of DNA/RNA/protein induced quenching of both 24 ++

and 12++ fluorescence, in contrast to the strong emission en-
hancement of 34 ++ . Such an opposite effect demonstrates the

pronounced impact of the linker on the triarylborane fluores-
cence emission. Furthermore, globular-shaped monomer 12 ++

showed only negligible interaction with protein BSA, stressing
that the highly hydrophobic linker in “dimers” (24 ++ or 34 ++) is

essential for efficient binding to the hydrophobic pocket of

BSA. Moreover, the linker structure (24 ++ diyne vs. 34++ bithio-
phene) strongly influenced the BSA affinity (24 ++ logKs = 8.2 vs.

34++ logKs = 5.9), suggesting that a linear, aliphatic low-volume
linker (24++ diyne) is highly preferred for insertion into BSA

binding site.
Both cationic compounds (24++ , 12 ++) showed remarkably

high affinity toward various types of DNA/RNA

(logKs = 6–7.5 range) and, intriguingly, dicationic monomer 12 ++

showed only an order of magnitude lower affinity than tetra-

cationic 24 ++ . This implies only a minor contribution of electro-
static interactions with the negatively charged DNA/RNA back-

bone and suggested binding within ds-DNA/RNA grooves,
within which the highly hydrophobic linker and extensive in-

teractions of aromatic units surrounding the boron atoms

strongly contribute to overall DNA/RNA affinity.
However, tetracationic 24 ++ also strongly interacted with

ss-RNA, which does not possess any groove as a binding site.
The CD results strongly supported ss-RNA chain wrapping

around tetracationic 24 ++ as a thread around the spindle, which
is a very unusual mode of binding of ss-RNA with small mole-
cules. The absence of interaction of ss-RNA with globular-

shaped structure of 12 ++ additionally stressed the nature of the
rod-like dumbbell structure of 24 ++ being crucial for strong in-

teraction with ss-RNA.
Another major design feature of 24++ was the ability to use

the diyne-linker as a Raman-probe, complementing the 24 ++

fluorescence response. Thus, in aqueous solution 24++ gave rise

to several remarkably strong Raman bands in the 2220–
1355 cm@1 range, allowing accurate monitoring at as low as
10 micromolar concentration. Even more interesting was the

response of 24 ++ in the SERS spectra, leading to a detection
limit below 10-nanomolar concentrations. Most intriguingly,

addition of DNA actually increased the SERS signal intensity
slightly, whereas BSA completely quenched it. This specific re-

sponse is very useful and complementary to that of the 24 ++

fluorescence response in which DNA/RNA and BSA cause simi-
lar emission quenching.

Finally, preliminary biological activity screening showed that
24++ entered human cells very efficiently while not interfering

with cell viability up to 10@4 m concentrations. Its bright fluo-
rescence is proposed to originate from localization along the

endoplasmic reticulum, possibly via intra-ribosomal or endoso-
mal accumulation.

Our results strongly support further development of bis-triar-
ylborane Raman/fluorescence chromophores as dual probes
for simultaneous confocal fluorescence microscopy and SRS
microscopy of cell lines, whereby careful choice of a linker can

finely tune DNA-protein selectivity (note the difference be-
tween 24 ++ diyne vs. 34 ++ bithiophene) and consequently the in-

tracellular accumulation of a probe. The Raman-response of
24++-analogues in SRS microscopy could, thus, efficiently com-
plement the fluorescence response when the studied system is
turbid/non-suitable for fluorescence imaging (e.g. cell-organoid
agglomerates), some other fluorescence probe is used simulta-

neously, or one of the cellular targets quenches the fluores-
cence emission. Moreover, the unique binding mode of

ss-RNAs with very high affinity makes bis-triarylborane tetraca-

tions very promising ss-RNA delivery systems, particularly as
some of them have already shown very efficient cellular

uptake and negligible toxicity.[17p, 19, 26]
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