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Abstract

Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Early detection of 

CRC can significantly reduce this mortality rate. Unfortunately, recommended screening 

modalities, including colonoscopy, are hampered by poor patient acceptance, low sensitivity and 

high cost. Recent studies have demonstrated that colorectal oncogenesis is a multistep event 

resulting from the accumulation of a variety of genetic and epigenetic changes in colon epithelial 

cells, which can be reflected by epigenetic alterations in blood. DNA methylation is the most 

extensively studied dysregulated epigenetic mechanism in CRC. In this review, we focus on 

current knowledge on DNA methylation as potential blood-based biomarkers for early detection of 

CRC.
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Introduction

Colorectal cancer (CRC) is a leading cause of death worldwide, accounting for around 754, 

000 deaths in 2015 [1], The World Health Organization estimates a substantial increase in 

the number of newly diagnosed CRC cases worldwide and an 80% rise in deaths from CRC 

by 2030 [2]. The early detection of CRC significantly improves the prognosis of patients and 

is a key factor in reducing the mortality of CRC. The cancer can be cured by surgical 

procedures if it is diagnosed early, specifically before metastasis is established. The 5-year 

relative survival rate for early-stage CRC is 90%; for advanced stage IV CRC, the rate drops 

to about 14% [3]. However, only about 4 out of 10 CRC patients are diagnosed at the early 

stage [4], partially due to poor patient acceptance and/or sensitivity of available screening 

modalities.
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Four types of tests are currently available for CRC detection or screening, including fecal-

based occult blood test (FOBT or FIT), tumor marker blood test, combined fecal DNA and 

FOBT test, and colonoscopy. Colonoscopy screening is currently the standard method for 

the detection of CRC [5]. However, colonoscopy screening requires bowel preparation and 

sedation, and is associated with high cost, possible complications and low compliance. The 

specificity or sensitivity of FOBT is not sufficient [6], and compliance is low due to the 

inconvenience of sampling and the interference of the test results by many factors [7,8]. 

Although lab tests such as stool occult blood and recently introduced stool DNA test offer 

indications for possible CRC, there is a high false positive rate when using those tests. 

Therefore, robust diagnostic non-invasive biomarkers are urgently needed to detect early 

stage of CRC.

Both genetic and epigenetic alterations have been found to be involved in the carcinogenesis 

of CRC [9–11]. The prevailing consensus suggests that epigenetic alterations occur early and 

more frequently than genetic alterations in CRC [12]. The epigenetic alterations include 

aberrant DNA methylation, histone modifications and expression of microRNAs (miRNAs) 

and long non-coding RNAs (IncRNAs) [13]. Post-translational modifications of histones 

regulate the packaging structure of DNA (called chromatin). Active DNA regions are 

marked with H3K4me2- or me3 and/or H3, H4 acetylation, while H3K9me3 or H3K27me3 

represses genomic regions [14]. Gezer et al. observed reduced plasma levels H3K9me3 and 

H4K20me3 as potential diagnostic biomarkers for CRC [15]. The miRNA post 

transcriptionally downregulates gene expression through binding to a complementary site 

that resides on the 3’-untranslated region of target mRNAs [14]. Many miRNAs associated 

with CRC diagnosis and prognosis have been identified in patient blood. For example, 

miR-21 is overexpressed in the plasma or serum of patients with CRC [16], suggesting that 

it is a promising noninvasive biomarker for the early detection of CRC. Among the 

epigenetic mechanisms, DNA methylation is the most widely studied and a crucial 

epigenetic marker in cancer. In this review, we provide an overview of the role of DNA 

methylation alterations in CRC and discuss the clinical application of these changes as 

biomarkers for early detection of CRC.

DNA methylation in CRC

CRC results from the accumulation of both genetic and epigenetic changes that transform 

normal glandular epithelium into invasive adenocarcinoma [17]. Most CRCs develop 

through two different morphological multistep pathways, including the classical adenoma- 

carcinoma sequence and the serrated neoplasia pathway [18]. Over the past 25 years, the 

molecular basis of this process has been progressively clarified. There are at least three 

distinct molecular pathways in CRC pathogenesis: the chromosomal instability (CIN), 

microsatellite instability (MSI) and CpG island methylator phenotype (CIMP) pathways 

(Figure 1) [19]. About 65% of CRC arise through the CIN pathway, which is characterized 

by widespread imbalances in chromosome number (aneuploidy) and loss of heterozygosity 

(LOH) [20]. Mutations have been reported in oncogenes and tumor suppressor genes, 

including adenomatous polyposis coli (APC), β-catenin, K-Ras (KRAS), B-Raf (BRAF), F-

box and WD repeat domain containing 7 (FBXW7), transcription factor 7-like 2 (TCF7L2), 

G protein subunit alpha S (GNAS), chromobox 4 (CBX4), SMAD family member 4 
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(SMAD4), p53, ADAM metallopeptidase with thrombospondin type 1 motif 18 protein 

(ADAMTS18), TATA-box binding protein associated factor 1 like (TAF1L), APC membrane 

recruitment protein 1 (AMER1/ FAM123B), CUB and sushi multiple domains 3 (CSMD3), 

integrin subunit beta 4 (ITGB4), LDL receptor related protein IB (LRP1B), and spectrin 

repeat containing nuclear envelope protein 1 (SYNE1) [21]. MSI occurs in around 15% of 

all CRC tumors and in 90% of CRC occurring in Lynch syndrome patients [22,23]. 

Mutations in DNA mismatch repair genes (such as MSH2, MLH1, MSH6, and PMS2) result 

in a failure to repair errors in repetitive sequences, leading to MSI of tumors [24]. 

Approximately 20% of CRC is associated with CIMP tumors [25–28]. A commonly used 

panel for defining CIMP is one suggested by Weisenberger et al. which includes neurogenin 

1 (NEUROG1), suppressor of cytokine signaling 1 (SOCS1), runt related transcription factor 

3 (RUNX3), insulin-like growth factor 2 (IGF2), and calcium voltage-gated channel subunit 

alphal G (CACNA1G) [29,30]. CIMP-positive tumors exhibit unique clinical, pathological, 

and molecular features, including a predilection for proximal location in the colon, female 

gender, poor and mucinous histology, and the presence of frequent KRAS and BRAF 

mutations [31]. Patterns of mutated genes vary according to the class of CRC. BRAF 

mutations seem prevalent in MSI [32–34], whereas p53 gene mutations are found in CIN 

[35]. Despite the differences, these three pathways are not mutually exclusive. A tumor can 

occasionally exhibit features of multiple pathways. For example, up to 25% of MSI cancers 

exhibit chromosomal abnormalities [36]; CIMP accounts for most of the MSI- positive 

CRCs [37]; up to 33% of CIMP-positive tumors exhibit a high degree of chromosomal 

aberrations and as many as 12% ofCIN-positive tumors exhibit high levels of MSI [38,39]. 

The most common signaling pathways that carry mutant genes in CRC include the RAS/

RAF/ MAPKpathway, the PI3K pathway, the WNT/APC/CTNNB1 pathway and the TGFβl/

SMAD pathway [40]. Inactivation of APC leads to upregulation of the Wingless/Wnt 

pathway, a common mechanism for initiating colorectal adenoma formation [41]. Mutations 

in KRAS or BRAF aberrantly activate the MAPK signaling pathway, thus inducing 

proliferation and suppressing apoptosis [42,43].

It is now accepted that DNA methylation alterations are as significant as genetic mutations 

in driving CRC development. In fact, many more genes are affected by aberrant methylation 

than by mutations in the average colon cancer genome [12,44,45]. DNA methylation refers 

to the enzymatic addition of a methyl group to the 5’-position of cytosine by DNA 

methyltransferases (DNMTs) to produce 5-methylcytosine [46]. The majority of CpG 

dinucleotides in the human genome are methylated [47,48]. CpG islands indicate regions 

with at least 200 bp, a GC percentage greater than 50%, and an observed-to-expected CpG 

ratio > 0.6 [49]. In contrast to CpG dinucleotides, CpG islands typically located in the 

promoter of proteincoding genes are normally unmethylated in normal healthy cells [50–52]. 

It has long been established that cancer is characterized by global hypomethylation and 

hypermethylation at selected CpG islands, which contributes to tumorigenesis by aberrant 

silencing of tumor suppressor genes [53].

The global DNA hypomethylation is believed to influence CRC development by inducing 

chromosomal instability and leading to loss of imprinting [54]. The global loss of DNA 

methylation occurs predominantly within repetitive transposable DNA elements, such as 

long interspersed nuclear element-1 (LINE-1) and short interspersed transposable element 

Dong and Ren Page 3

J Proteomics Bioinform. Author manuscript; available in PMC 2018 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(SINE or Alu elements) sequences [55–61]. DNA hypomethylation can be found in the 

colon in an age-dependent fashion [62,63] as well as early events in CRC development [64].

Multiple blood-based DNA methylation biomarkers

Many cells and tissues release some of their constituents to the bloodstream, including 

fragmented, cell-free DNA (cfDNA) which can also arise from tumor cells, i.e., circulating 

tumor DNA (ctDNA). Tumor-specific genetic and epigenetic alterations found in cfDNA are 

likely to represent a mixture of alterations in primary tumor and/or metastatic sites [65]. 

Cell-free DNA (cfDNA) in the blood circulation of cancer patients (as liquid biopsy) have 

emerged as key biomarkers for cancer monitoring and treatment decision making [66]. DNA 

methylation has been used as a diagnostic CRC marker because specific methylation events 

occurring early in multistep carcinogenesis have been identified and epigenetic gene 

silencing plays a causative role in CRC development [67–72]. Aberrant DNA methylation 

occurs in the blood of adenoma patients, making DNA methylation biomarkers feasible to 

detect CRC early [73,74]. Blood-based DNA methylation is mainly derived from cell-free 

nucleic acid released from circulating cells in serum or plasma or DNA extracted from 

peripheral blood leukocytes or whole blood cells.

Septin-9 (SEPT9)

SEPT9 is one of the most extensively studied genes as a blood- based biomarker for CRC 

patients [75–80]. It belongs to the gene family that encodes a group of GTP-binding and 

filament-forming proteins involved in cytoskeletal formation and cell cycle control [81]. It 

has promoter hypermethylation reaching sensitivities ranging from 51% to 90.0%, and the 

specificity from 73% to 96% in serum or plasma samples of CRC patients [75–80]. 

However, the sensitivity of the methylated SEPT9 assay in detecting advanced adenomas is 

low (9.6%) [79], suggesting that this gene alone might be of limited value in detecting 

precancerous lesions.

Human MutL homolog 1 (MLH1)

As described earlier, MLH1 is linked to MSI in CRC [22]. Grady et al. found aberrant 

hypermethylation of the MLH1 promoter in the sera of 9 out of 19 (47%) cases of CRC [82]. 

Leung et al. monitored promoter hypermethylation in three genes, APC, MLH1, and 

helicase-like transcription factor (HLTF), and found at least one of the three genes with 

methylated promoter DNA in the sera of 28 out of 49 CRC patients, which gave a sensitivity 

of 57% and specificity of 90% [83].

APC

APC gene promoter hypermethylation has been described to explain the sustained activation 

of the Wnt signaling pathway [84]. PARK et al. [85] examined the methylation status of the 

APC gene along with other 4 genes including mothers against decapentaplegic homolog 4 

(SMAD4), fragile histidine triad protein (FHIT), death-associated protein kinase 1 

(DAPK1), and E-cadherin in the peripheral blood plasma of 60 CRC patients, 40 patients 

with adenomatous and 60 healthy controls using methylation-specific PCR single-strand 
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conformation polymorphism (MSP-SSCP) analysis. The APC marker displayed a sensitivity 

of 57% for the detection of CRC at a specificity of 86%, and a sensitivity of 57% and 

specificity of 89% in stage I of CRC.

Cyclin dependent kinase inhibitor 2A (CDKN2A)/p16

CDKN2A is an inhibitor of cyclin-dependent kinase 4 (CDK4) and CDK6, and it functions 

as a tumor suppressor [86]. Furthermore, it is among the panel of surrogate markers used to 

evaluate CIMP phenotype [87]. The studies of Zou et al. [88], Nakayama et al. [89] and 

Lecomte et al. [90] examined the aberrant promoter hypermethylation of CDKN2A (p16) in 

serum of CRC patients and yielded 70% (23 out of 34 patients), 69% (31 out of 45 patients) 

and 68% (31 out of 45 patients) sensitivity, respectively. Nakayama et al. [91] further 

analyzed CDKN2A/p16 hypermethylation as a marker for CRC recurrence; 8 out of 21 CRC 

detected p16 hypermethylation in preoperative serum samples and 13 out of 21 CRC 

detected p16 hypermethylation in primary tumor biopsies suggesting its potential role in 

recurrence of CRC.

LINE-1

In addition to hypermethylated genes, DNA hypomethylation status of genes is associated 

with prognosis of CRC patients. LINE-1 repeat elements were progressively hypomethylated 

in the normal-adenoma- cancer sequence [92]. Nagai et al. [93] examined 114 plasma 

samples of CRC patients, and quantified LINE-1 hypomethylation status in plasma cfDNA 

by absolute quantitative analysis of methylated alleles (AQAMA) real-time PCR. Detection 

of early stage I/II CRC through cfDNA LINE-1 hypomethylation index (LHI) was 

accomplished with 63.2% sensitivity and 90.0% specificity, suggesting the potential utility 

of cfDNA LHI as a blood biomarker for early CRC detection [93]. The efficacy of this assay 

has been validated in several previous studies [60,61,94,95].

DNA methylation is involved in the process of CRC initiation, progression and metastasis. 

DNA methylation biomarkers discriminate among clinical stages and predict disease 

progression. For example, in early stages of the serrated pathway, mutation of BRAF 

elevates the expression of tumor suppressor genes p16 and insulin-like growth factor-binding 

protein 7 (IGFBP7) holding the microvesicular hyperplastic polyp (MVHP) to a small and 

nonprogressive lesion [96]. Aberrant CpG island methylation of the promoter region of p16 

and IGFBP7 bypasses this dormant state and drives MVHPs further to sessile serrated 

adenomas (SSAs) [97]. In blood samples, hypermethylated ALX4 [80,98], NEUROG1 [99], 

APC [100], 6-O-Methylguanine-DNA Methyltransferase (MGMT) [101], MLH1 [82], 

HLTF [102], Ras association domain family member 2 (RASSF2A) [101], Syndecan 2 

(SDC2) [103], SEPT9, Preprotachykinin-1 (TAC1) [104] and WIF1 [101] were detected in 

early stage CRC; hypermethylated HPP1, HLTF, secreted Frizzled Related Protein 2 

(SFRP2) [105], VIM [106], tissue factor pathway inhibitor 2 (TFPI2) [107,108] and p16 [89] 

were found positively correlated with distant tumor metastasis; hypermethylated ALX4, 

fibrillin-2 (FBN2), HPP1 (Alias TMEFF2) [102], HLTF [83], p16 [91], TMEFF1 [102] and 

VIM [99] were associated with poor prognosis; and hypermethylated HLTF [109], HPP1 

[109], runt- related transcription factor 3 (RUNX3) [110], p16 [91] and TFPI2 [107,108] 
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were associated with CRC recurrence. It is conceivable that a robust biomarker panel of 

methylated genes will be developed into a clinically accurate CRC screening method in the 

future, and the development of blood-based biomarkers should improve patient compliance 

and the detection of CRC at early stage.

Until now, only one blood-based assay that detects methylated SEPT9 was approved by the 

U.S. Food and Drug Administration for CRC screening under the name Epi proColon® 

(Epigenomics, Berlin, Germany). In a screening-like cohort study, the assay was compared 

to the reference standard FIT test (100 ng/mL cutoff) in 97 CRC cases (stage I-IV) and 193 

non-CRC controls [111]. Epi proColon 2.0 had a sensitivity of 72.2% with a specificity of 

80.8%. Conversely, the FIT test had a sensitivity of 68% at a specificity of 97.4% [111]. 

SEPT9 combined with ALX4 and HPP1 was tested in plasma from 182 CRC cases (stage I-

III) and 170 healthy controls and yielded a sensitivity of 80.7% at a specificity of 90% [112]. 

Various DNA methylation biomarkers reported in clinical studies have been listed in Table 1. 

Larger clinical trials are needed to further validate these gene biomarkers.

Using ctDNA for early cancer diagnosis is challenging due to the low amount of tumor DNA 

released in the circulation. The recent development of new technologies such as droplet-

based digital PCR (ddPCR) or next generation sequencing (NGS) has greatly improved the 

sensitivity and specificity for the detection of tumor-specific alterations [113]. The bisulfite 

sequencing provides single base resolution for broad profiling of DNA methylation, whereas 

ddPCR allows absolute quantification of target DNA methylation and may be suited for 

clinical decision-making.

Discussion and Conclusion

CRC continues to be a significant public health burden and the 5-year prognosis for 

metastatic CRC is still less than 15% [3]. Aberrant methylation of specific genes measured 

in blood samples could be used as a CRC biomarker and provide prognostic information. 

CRC is a heterogeneous disease and DNA methylation biomarkers based on single gene 

have limited sensitivity and specificity. Further studies are therefore needed to perform a 

genome-wide search to produce a panel of sensitive and specific DNA methylation markers 

for the early detection of CRC.
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Figure 1: 
Multiple genetic pathways in colorectal cancer pathogenesis.
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Table 1:

Overview of blood-based biomarker in clinical studies of CRC.

Gene Name Pathway Sample size (CRC/Control) Sensitivity Specificity Reference

SEPT9 Septin9

Cell cycle control, 
ERK signaling and 
bacterial invasion of 

epithelial cells

53/1457 48.2 91.5 Church [79]

1031 76.6 95.9 Wu [114]

252/102 48 90 Grutzmann [115]

85/324 38.7 81 Song [116]

44/1500 68 - Potter [117]

135/185 69 86 Lofton-Day [77]

IKZF1/BCAT1
Ikaros family zinc finger protein 
1/ Branched-chain amino acid 

transaminase 1

Viral mRNA 
translation and 

metabolism

129/1976 66 95 Pedersen [118]

66/1315 62 92 Symonds [119]

WIF-1/NPY WNT inhibitory factor 1/
Neuropeptide Y

Notch and Wnt 
signaling 243/276 86.5 92.1 Lee [101]

ALX4 Aristaless-like homeobox 4

DNA binding 
transcription factor 
activity and protein 
heterodimerization 

activity

30/30 83.3 70 Ebert [120]

135/185 69 86 Lofton-Day [77]

193/102 90.7 72.5 Rasmussen [121]

182/170 48 87 He [112]

NEUROG1 Neurogenin 1

Neural crest 
differentiation and 
signaling pathways 

regulating 
pluripotency of stem 

cells

252/93 61 91 Herbst [99]

VIM Vimentin Wnt signaling pathway

81/110 59 93 Li [122]

239/25 32.6 - Shirahata [123]

193/102 90.7 72.5 Rasmussen [121]

NGFR Nerve growth factor receptor

Apoptotic pathways in 
synovial fibroblasts 

and p75 (NTR) - 
mediated signaling

133/179 51 84 Lofton-Day [77]

HPP1 (TMEFF2) Hyperpigmentation, progressive, 1
Validated targets of C-
MYC transcriptional 

repression

133/179 65 65 Lofton-Day [77]

95/32 20 93.7 Herbst [99]

182/170 81 90 He [112]

38/20 18 100 Wallner [124]

MLH1 mutL homolog 1 DNA mismatch repair 
pathway

38/20 21 100 Wallner [124]

49/41 43 98 Leung [83]

CDKN2A (p16) Cyclin dependent kinase inhibitor 
2A

Cell cycle regulatory 
pathway 44/50 68 - Nakayama [125]
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