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Abstract

Background: Ovarian (OV) cancer is considered as one of the most deadly malignan-

cies in women, since it is unfortunately diagnosed in advanced stages. Nowadays, the

importance of bioinformatics tools and their frequent usage in tracking dysregulated

cancer-related genes and pathways have been highlighted in researches.

Aim: The aim of this study is to investigate dysregulated miRNAs-genes network and

its function in OV tumors based on the integration of microarray data through a sys-

tem biology approach.

Methods: Two microarray data (GSE119056 and GSE4122) were analyzed to explore

the differentially expressed miRNAs (DEmiRs) and genes among OV tumors and nor-

mal tissues. Then, through the help of TargetScan, miRmap, and miRTarBase data-

bases, the dysregulated miRNA-gene network in OV tumors was constructed by

Cytoscape. In the next step, co-expression and protein-protein interaction networks

were made using GEPIA and STRING databases. Moreover, the functional analysis of

the hub genes was done by DAVID, KEGG, and Enrichr databases. Eventually, the

regulatory network of TF-miRNA-gene was constructed.

Results: The potential dysregulated miRNAs-genes network in OV tumors has been

constructed, including 109 differentially expressed genes (DEGs), 25 DEmiRs, and

213 interactions. Two down-regulated microRNAs, miR-660-3p and hsa-miR-4510,

have the most interactions with up-expressed oncogenic DEGs. CDK1, PLK1,

CCNB1, CCNA2, and EZH2 are involved in protein module, which show significant

overexpression in OV tumors according to The Cancer Genome Atlas (TCGA) data.

EZH2 shows amplification in OV tumors with remarkable percentage. The transcrip-

tion factors TFAP2C and GATA4 have the pivotal regulatory functions in

oncotranscriptomic profile of OV tumors.

Conclusion: In current study, we have collected and integrated different data to

uncover the complex molecular interactions and oncomechanisms in OV tumors. The

DEmiRs-DEGs and TF-miRNA-gene networks reveal the potential interactions that

could be a significant piece of the OV onco-puzzle.

Received: 29 February 2020 Revised: 5 August 2020 Accepted: 6 August 2020

DOI: 10.1002/cnr2.1286

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2020 The Authors. Cancer Reports published by Wiley Periodicals LLC.

Cancer Reports. 2020;3:e1286. wileyonlinelibrary.com/journal/cnr2 1 of 13

https://doi.org/10.1002/cnr2.1286

https://orcid.org/0000-0001-5951-1049
mailto:tavakkolybazzazj@tums.ac.ir
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/cnr2
https://doi.org/10.1002/cnr2.1286


K E YWORD S

bioinformatics, microarray data, miRNA, ovarian cancer, systems biology

1 | INTRODUCTION

Ovarian (OV) cancer shows the seventh most frequency among the

malignancies in women.1 In 2018, around the world, 295 414 new

cases of this disease and 184 799 OV cancer-related death approxi-

mately registered.2 Unfortunately, this cancer is diagnosed very late,

and this factor strongly decreases the lifetime of patients. However,

early diagnosis and effective treatment strategies could notably

improve the patient's lifetime.3

Increasing evidence indicates that miRNAs, as a category of short

noncoding RNAs, alongside coding RNAs play pivotal roles in cancer

initiation and progression. It is well established that microRNAs are

involved in complex posttranscriptional gene regulatory network in

both roles of tumor suppressor or oncogenic miRNAs (oncomiRs).4

The incredible improvements in high-throughput technologies

such as microarray and RNA-seq as well as bioinformatics tools gener-

ate huge data concerning coding and noncoding transcripts in the field

of cancer research. Although, interpretation and intersection of avail-

able data are main challenges in this context.5 Despite the extensive

studies about molecular mechanisms in pathogenesis of OV cancer,

the molecular interactions of coding and noncoding transcripts in the

complex gene regulatory network have not completely figured out.

The purpose of this study is the combination of microarray data

and bioinformatics analyses for a better understanding of dys-

regulated key genes and miRNAs in OV cancer compared with normal

tissues. In this study, we constructed dysregulated miRNAs-genes, co-

expression, and protein-protein interactions (PPIs) networks. The

identified hub genes and their interactions could clarify underlying

factors in OV cancer development and present efficient therapeutic

targets.

2 | METHODS

2.1 | Differentially expressed genes and miRNAs
(DEmiRs) identification

Two Gene Expression Omnibus (GEO) datasets including GSE119056

(GPL19615 platform) with six tumor and three normal samples as well

as GSE4122 with 32 tumor and 14 normal specimens were selected

and analyzed. The Benjamini and Hochberg false discovery rate (FDR)

method was used to adjust the P-value to obtain the multiple testing

adjusted q-value. All the data are normalized and cross-comparable

(Figure S1). For selecting differentially expressed genes (DEGs) in OV

tumors compared with normal tissues, adj. P-value < .05 and log

FC ≥ j2j were set. Then the common genes between both GSEs that

show the same expression direction (up- or down-expression) were

chosen for the next step.

GSE119056 (GPL21572 platform) for investigation of DEmiRs

between OV cancer and nontumor OV tissues was analyzed. Similar

to the prior step, adj. P-value < .05 and log FC ≥ j2j criteria were

considered.

2.2 | DEG-DEmiR interactions

In the next step, the bioinformatically predicted and experimentally

validated DEG-DEmiR interactions were obtained using TargetScan,6

miRmap,7 and miRTarBase8 databases. It should be noted that the

predicted interactions that exist in both TargetScan and miRmap were

selected. Finally, the dysregulated miRNAs-genes network was con-

structed including experimentally validated DEG-DEmiR interactions

based on miRTarBase database and predicted interactions by Cyto-

scape v3.6.1.9

2.3 | Co-expression and protein-protein
interaction networks

The co-expression network was visualized based on the top 20 genes

that are co-expressed with each of DEGs according to TCGA data;

GEPIA web server was used to retrieve the co-expressed genes of

DEGs.10 The PPI network including DEGs and their co-expressed genes

was constructed using String database.11 The genes with the higher

betweenness centrality and degree were determined as the most impor-

tant genes in these networks (hub genes). Eventually, the functions of

the hub genes were identified by DAVID12 and Enrichr13 databases.

To detect the main protein module in PPI network, MCODE

app,14 the Cytoscape plugin, was run and the pathway in which this

protein complex is involved was detected by KEGG mapper.15

2.4 | Oncogenomic and oncotranscriptomic
analysis

The genetic alterations of the PPI network hub genes in the 606 OV

tumors were retrieved from cBioPortal database (TCGA provi-

sional).16 To compare expression of hub genes between OV tumors

and adjacent normal tissues based on TCGA data as well as ovarian

normal tissues based on the Genotype-Tissue Expression (GTEx)

data, GEPIA web server was used. The method for differential analy-

sis is one-way ANOVA; genes with jlog2FCj >1 and q-value <0.01

are considered DEGs.

2.5 | Drug-protein network

To investigate the potential of hub genes to becoming therapeutic tar-

gets, the drugs-protein interactions were detected by Cytarget

linker.17
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2.6 | Identification of TF-miRNA-gene axes

We used HOCOMOCO v11 database (comprehensive collection

of human transcription factor [TF]) to identify our DE genes that

act as TF.18 Then TransmiR v2.0 (an experimentally supported

TF-miRNA regulatory relationship database) was used to identify

TF-miRNA interactions.19 TRRUST v2 (transcriptional regulatory rela-

tionships unraveled by sentence-based text mining)20 and

RegNetwork (an integrated database of transcriptional and posttran-

scriptional regulatory networks in human and mouse)21 databases

were applied to assess the TF-TF and TF-gene interactions.

3 | RESULTS

3.1 | DEG-DEmiR network

As it was mentioned before, DEGs in OV cancer samples compared

with normal tissues were identified through analyzing two GSE

119056 and GSE4122. The number of common DEGs with adj.

P-value < .05 and log FC ≥ j2j is 109 which shows same direction of

expression in two datasets (Table S1). Also, after analyzing of

GSE119056, 25 DEmiRs with adj. P-value < .05 and log FC ≥ j2j in OV

cancer tissues were screened (Table S2).

To obtain dysregulated miRNA-mRNA axes in OV tumors, three

databases (TargetScan and miRmap for predicted interactions and

miRTarBase for experimentally validated interactions) were applied. A

total of 176 common predicted interactions in two mentioned data-

bases and 46 validated interactions were identified. Taken together,

213 interactions have been detected (Table S3). Finally, DEG-DEmiR

network in OV tumors has been visualized by Cytoscape (Figure 1).

3.2 | Co-expression network

The 20 top co-expressed genes of each DEGs were retrieved from

GEPIA web server. Co-expression network consists of DEGs along

with their co-expressed genes. ABCA8, ECM2, KIFC1, MAGI1, and

F IGURE 1 Dysregulated miRNA-gene network. The cyan triangles and purple ellipses present miRNAs and genes, respectively. The potential
molecular interactions between miRNAs and mRNAs are shown by lines
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NAV3 genes with the highest degree and betweenness centrality are

selected as hub genes (Figure 2). The expression of these hubs in OV

cancer based on TCGA and GTEx data shows that all of them are sig-

nificantly dysregulated in tumors compared with normal tissues

(Figure 3).

3.3 | Protein-protein interaction network

In the next step, for preparing of PPI network, the STRING database

was run. CDK1, PLK1, CCNB1, CCNA2, EZH2, and AURKA show the

ability to be hub genes because of having a higher degree and

betweenness centrality (Figure 4A). Then the box plots related to

expression difference of these six hub genes between OV tumors and

normal samples were analyzed by GEPIA database based on TCGA

and GTEx data (Figure 5). All the hub genes show the significant

expression differences between two sample groups. The genetic alter-

ations of hub genes in 606 OV cancer samples were investigated by

cBioPortal database. EZH2 and AURKA have a considerable mutation

rate (9% and 11% of ovarian tumors, respectively), which most of

them are gene amplification. Functional annotation according to

Enrichr revealed the role of hub genes in cyclin-dependent protein

F IGURE 2 The co-expression network including DEGs and their top 20 co-expressed genes in OV cancer. The color and size of nodes
indicate betweenness centrality and degree, respectively. Degree has a range from 1 to 26 for GSTM5 gene. The width of the edges has been
adjusted according to PCC. The nodes with a higher size and stronger color are considered as hub genes. DEG, differently expressed gene;
OV, ovarian; PCC, Pearson correlation coefficient
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F IGURE 3 The boxplots of the expression changes of co-expression network hub genes (ABCA8, ECM2, NAV3, CDK1, KIFC1, and MAGI1) in

the OV tumor tissues compared with normal samples based on TCGA and GTEx data. The pink and yellow boxes show the tumor and nontumor
tissues, respectively. These data have been obtained from GEPIA web server. Genes with jlog2FCj > 1 and q-values < 0.01 are considered
differentially expressed genes. The red star shows a significant difference between the tumors and nontumor tissues. GTEx, Genotype-Tissue
Expression; OV, ovarian; TCGA, The Cancer Genome Atlas

F IGURE 4 A, Protein-protein interaction network based on DEGs and their co-expressed genes in OV tumors. The color and size of nodes
refer to betweenness centrality and degree, respectively. Degree has a range from 1 to 114 for CDK1 gene. The width of edges was adjusted
based on the combined scores. B, The main protein module of PPI according to MCODE app. DEG, differently expressed gene; OV, ovarian; PPI,
protein-protein interaction
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F IGURE 5 The boxplots of expression of PPI network hub genes (AURKA, CCNA2, CCNB1, CDK1, PLK1, and EZH2) in OV tumors compared
with normal samples. The pink and yellow boxes represent the tumor and normal tissues, respectively. These data obtained from GEPIA database
based on TCGA and GTEx data. Genes with jlog2FCj > 1 and q-values < 0.01 are considered differentially expressed genes. The red star shows a
significant difference between tumors and matched nontumor tissues (P-value ≤ .05). GTEx, Genotype-Tissue Expression; OV, ovarian; PPI,
protein-protein interaction; TCGA, The Cancer Genome Atlas
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kinase activity and transition of the cell cycle from G2 to M phase

(Figure 6).

For assessing the highly interconnected area in PPI network,

MCODE, a Cytoscape app, was used, and the main protein module

was created (Figure 4B). In addition, KEGG mapper shows the role of

this module in the cell cycle (Figure 7).

3.4 | Drug-protein network

The drug-protein network has been constructed based on DrugBank

by CyTargetLinker app. The genes as CDK1, PLK1, CCNA2, and

AURKA in this network are influenced by different kinase inhibitors

(Figure 8).

F IGURE 6 The bar graphs related to, A, GO-biological processes and B, GO-molecular functions of CDK1, PLK1, CCNB1, CCNA2, EZH2, and
AURKA according to combined score. The graphs were obtained from Enrichr database. The longer and brighter bars show a more significant
level. GO, gene ontology

F IGURE 7 The role of 15 genes of MCODE module in different steps of the cell cycle obtained from KEGG mapper
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3.5 | Dysregulated TF-miRNA-gene network

Among 74 DE genes in miRNA-gene network, 11 genes (VDR,

HOXB2, GATA4, FOSB, GATA6, KLF4, HLF, FOXA2, SOX9, HMGA1,

and TFAP2C) were identified as TFs by HOCOMOCO database.

Twenty-one validated interactions between TFs and miRNAs have

been uncovered by running TransmiR database (Table S6). Also,

21 interactions between TF-TF and TF-gene have been detected by

TRUST and RegNetwork databases (Table S6). Eventually, dys-

regulated TF-miRNA-gene network in OV tumors has been visualized

by Cytoscape (Figure 9).

4 | DISCUSSION

Among the cancer-related deaths in women, OV cancer is ranked fifth.

The contribution of genetic factors and family history to this cancer is

well known.22 Nowadays, the importance of noncoding RNAs in vari-

ous malignancies is becoming more and more defined. The role of

miRNAs as a tumor suppressors or oncogenes has been ascertained in

tumor initiation and progression.23 Despite their short length (up to

24 nucleotides), they are involved in the regulation of many genes

expression.24 In this study, through analyzing two microarray data

(GSE119056 and GSE4122), 109 common DEGs in OV tumors com-

pared with normal tissues were obtained with adj. P-value < .05 and

log FC ≥ j2j. Moreover, according to GSE119056, 25 DEmiRs with

adj. P-value < .05 and log FC ≥ j2j were detected in OV cancer. The

DEGs-DEmiRs network in OV tumors has been constructed through

an integrative approach. This network consists of 213 mRNA-

miRNA axes.

The DEGs-DEmiRs network uncovers the potential tumor sup-

pressor miRNAs that have not been reported in OV cancer so far.

Two down-regulated miRNAs named miR-660-3p and hsa-miR-4510

show the most interactions with DEGs. Both of them in our study

could target some studied oncogenes in other studies including

ADAM28,25 HMGA126 and SLC34A2.27

According to Shyian et al report, the relationship between expres-

sion of SLC34A2 and differentiation level of OV tumor cells was con-

firmed. So, it can be used as a possible marker in determination of cell

differentiation.28 Also, the direct link of HMGA1 expression with OV

tumor grade and proliferation rate in related cell lines was shown by

several techniques.29 Furthermore, miR-660-3p is probably involved

F IGURE 8 The drug-protein network. The gray and purple ellipses show the genes and drugs, respectively. Data have been visualized by
Cytarget linker app
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in miRNA/FOXA2 and SOX9 axes. Our analyses indicate the signifi-

cant up-expression of these two oncogenes30,31 in OV tumors. It is

suggested that down-expressed miR-660-3p in OV tumors results in

overexpression of FOXA2 and SOX9 in malignant cells. The role of

FOXA2 in loss of differentiation and regeneration of OV tumors is

well known.32 It has been indicated that SOX9 could act as a TF for

some aggressive markers in OV tumors such as TUBB3 through

EPAS1/Hif-2α/SOX9/TUBB3 axis.33

Another interesting axis, which has been detected by our explora-

tion, is miR-4510/BIRC5. BIRC5 (Survivin) is a member of the apopto-

sis inhibitory gene family and prevents apoptotic cell death. The

oncogenic role of BIRC5 has been well documented in different malig-

nancies.34 Our data indicate the significant up-expression of BIRC5 in

OV tumors and suggest that it is a target for miR-4510. Although, the-

ses interactions should be functionally proven in OV tumor cells. In

2018, it has been shown that BIRC5 down-regulation results in metas-

tasis inhibition of OV tumor cells. This investigation introduces the

regulatory miR-203/BIRC5 axis in OV cancer.35

The summary of previous studies concerning dysregulation of

DEmiRs that have been already reported in OV shows in Table 1.

Microarray data of DEmiRs expression are almost consistent with pre-

vious reports except miRNA-328-3p.

The co-expression network, including 109 DEGs and their top

20 co-expressed genes in OV tumors, indicates that ABCA8, KIFC1,

ECM2, NAV3, and MAGI1 genes are most important genes in

oncotranscriptomic profile. The role of these genes in pathogenesis of

different cancers has been proven. ATP-binding cassette subfamily A

member 8 (ABCA8) in accordance to DAVID database is a component

of plasma and mitochondrial inner membranes and participates in drug

transmembrane, lipid, and xenobiotic transports (Table S4). Our in sil-

ico analysis revealed that ABCA8 is down-regulated in OV cancer

(Figure 3). Previous studies revealed ATP-binding cassette (ABC)

transporters have pivotal roles in different cancers and drug resis-

tance. Dysregulation of ABCA8 has been documented in OV,46,47

breast, and prostate cancer48 as well as esophageal squamous cell car-

cinoma49 and breast cancer.50 Januchowski et al demonstrated that

F IGURE 9 A, The dysregulated TF-miRNA-gene network in ovarian cancer. The nodes in green, yellow, and pink are TF, miRNAs, and genes,
respectively. The blue edges show validated interactions between TFs and their targets, and the black dash lines represent predicted ones. The
red edges show validated interactions between miRNAs and their targets. The sign represents activating interaction. The and
demonstrate repressing and unknown interactions, respectively. The size of the nodes is adjusted according to the degree. The black borders of
nodes represent up-expression, but nodes without border demonstrate down-expression. B, General overview of the regulatory relationships
between TF, miRNA, and gene. C, Some extracted feedback and feedforward loops from TF-miRNA-gene network. TF, transcription factor
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ABCA8 is down-regulated in several drug-resistant OV cancer cell

lines.51

Kinesin family member C1 (KIFC1) plays an indispensable

performance in mitotic spindle assembly, mitotic sister chromatid seg-

regation, and cell division (Table S4). According to previous reports,

KIFC1 in people with OV cancer is overexpressed and significantly

related to advanced stage and grade of tumors and patient's poor sur-

vival.52,53 Also, the oncogenic role of KIFC1 in breast cancer was clari-

fied. The suppression of this gene by poly ADP-ribose polymerase in

breast cancer cell lines and decreasing of their livability is the evi-

dence of this claim.54 These findings and our analyses indicate the

remarkable roles of KIFC1 in oncotranscriptomic profile of ovarian

cancer and its value to becoming therapeutic target. Interestingly,

Zhang et al introduced an inhibitor of KIFC1 for the interdicting of its

role in centrosome clustering in malignant cells that this finding accel-

erates the targeted cancer cell death without normal cell affection.55

According to DAVID, the extracellular matrix protein 2 (ECM2)

participates in positive regulation of cell-matrix adhesion,

axonogenesis, and extracellular matrix organization (Table S4). The

high expression of ECM2 in normal OV epithelium and its down-

expression in OV tumors have been identified through gene expres-

sion profiling.56 Result of our analysis according to TCGA and GTEx

data is consistent with previous reports.

Another hub gene in the co-expression network is neuron naviga-

tor 3 (NAV3). Its suppression in the OV cancer cell lines by miRNA-

21-3p results in cisplatin resistance.57 Moreover, in another study,

NAV3 was identified as a target of miRNA-429. In OV cell lines, which

are transfected by miRNA-429, NAV3 showed down-expression and

the metastatic ability of tumors reversed.58 Our results show that this

gene is significantly down-regulated in OV cancers. Furthermore, in

colon and squamous cell cancers, NAV3 copy number variations (dele-

tion and amplification) are a common phenomenon and affects cell

invasion.59,60

Membrane-associated guanylate kinase (MAGI1) plays important

roles in protein complex assembly, cell adhesion, and cell surface

receptor signaling pathway (Table S4). This gene shows the significant

overexpression in OV tumors according to TCGA data. However, Kori

et al identified MAGI1 as one of down-expressed DEGs in their micro-

array findings in OV cancer samples.61

Taken together, in oncotranscriptomic profile of OV tumors, two

down-expressed hub genes including ABCA8 and NAV3 have the key

role in drug-resistant tumors and should be monitored as long as can-

cer therapy is concerned.

In current study, the PPI network has been constructed which

consists of DEGs in two GEO datasets and their co-expressed genes.

In this network, CDK1, PLK1, CCNB1, CCNA2, EZH2, and AURKA are

considered as hub genes. All of these genes have a higher expression

in OV tumors relative to normal tissues according to TCGA and GTEx

data. The common targets that are present in both DEG PPI and

miRNA networks were collected in Table S5. In 2017, Zhang et al

TABLE 1 Summary of dysregulated miRNAs in different studies related to OV cancer

Transcript Study Dysregulation Methods

miRNA-328-3p Wang et al36 Up qRT-PCR

Srivastava et al37 Up qPCR, microarray analysis, luciferase reporter assay,

immunoblotting, ALDH analyses, sphere-forming

assay, xenograft tumor study

miRNA-21-3p Báez-Vega et al38 Up qPCR, colony formation assays, in vitro invasion assay,

cell viability assay, western blot analysis, luciferase

assays, immunohistochemistry

miRNA-133p Liu et al39 Down RT-PCR, cell viability assay, cell proliferation assay,

transwell invasion assay, western blot analysis,

luciferase reporter assay

Yang et al40 Down RT-PCR, western blot assay, invasive and migration

assays

miRNA-1294 Guo et al41 Down qRT-PCR, cell counting kit-8 assay, cell cycle analysis

Zhang et al42 Down qRT-PCR, MTT assays, wound healing, tumor invasion

assays, western blot

miRNA-383-5p Jiang et al43 Down qRT-PCR, western blot assay, IHC, dual-luciferase

reporter assay, cell proliferation assay, Edu

incorporation assay, animal models

miRNA-532-3p Huang et al44 Down RT-qPCR, cell proliferation assay, colony formation

assay, EdU incorporation assay, transwell assay,

scratch wound assay, luciferase reporter gene assay,

RIP assay

miRNA-500b-3p Pandey et al45 Down qRT-PCR

Abbreviations: ALDH, aldehyde dehydrogenase; IHC, immunohistochemistry; OV, ovarian; qPCR, quantitative PCR; RIP, RNA immunoprecipitation; RT-

PCR, real-time polymerase chain reaction.

10 of 13 KADKHODA ET AL.



showed CDK1 inhibition results in repression of cell proliferation of

OV cancer cell lines.62 Moreover, it was demonstrated that CDK1 is a

target of miRNA-490-3p. This miRNA plays a tumor suppressive role

in OV cancer cell line through inhibiting CDK1.63 Another hub gene in

the PPI network is PLK1 protein. When PLK1 is suppressed, OV cell

propagation and proliferation are decreased.64 In addition, the roles of

PLK1 in the elevation of autophagy and drug resistance were eluci-

dated in ovarian clear cell carcinoma.65 According to Jiang et al study,

the attenuation of FOXM1 and PLK1 results in reinforcing P21

amount and finally OV cell apoptosis.66 PLK1 and CCNB1 have been

introduced as downstream targets of FOXM1 TF, and all of them are

overexpressed in OV tumors.67 Both of the CCNB1 and CCNA2 are

members of cyclin family genes and promote transition through G1/S

and G2/M in the cell cycle. CCNA2 shows high expression in OV

tumors and association with insensitivity to chemotherapy.68 AURKA

gene product is a protein kinase that shows to be involved in microtu-

bule formation during chromosome segregation. The role of AURKA

gene in the migration of OV cancer cells has been uncovered.69 The

EZH2 gene codes a histone methyltransferase which participates in

histone methylation and consequently in transcriptional activity. Gain-

of-function mutations and overexpression of EZH2 have been linked

to many forms of cancer.70,71

It is shown that one reason of resistance to cisplatin in OV cancer

patients is activation of the cMyc/miRNA-137/EZH2 axis. In normal

cells, miR-137 suppresses EZH2, but cMyc by trying to neutralize this

inhibition reinforces the ability of resistance in malignant cells.72 Inter-

estingly, our investigation concerning EZH2 genetic alterations in OV

tumors reveals an amplification in remarkable percentage of patients

(11%). These data could justify EZH2 overexpression in a portion of

OV cancer patients. Moreover, the detected protein module contains

CDK1, PLK1, CCNB1, CCNA2, and EZH2. We show that this module

is involved in the progression of different phases of the cell cycle. All

the evidence considered, we demonstrated that CDK1, PLK1, CCNB1,

CCNA2, AURKA, and EZH2 not only are hub nodes in PPI network

but also are significantly overexpressed in OV tumors and could func-

tion as oncogenes. These proteins might become the efficient thera-

peutic targets in treatment-resistant OV tumors.

Alisertib (MLN8237), AT9283, and CYC116 in our protein-drug

network classified in kinase inhibitors category. These anticancer

compounds are able to inhibit AURKA protein. On the other hand,

cyclin-dependent kinases (CDK1) could be inhibited by Flavopiridol,

Alsterpaullone, SU9516, AT7519, Olomoucine, Hymenialdisine, and

indirubine-30-monoxime.

In this study, we conducted a novel regulatory network of TF-

miRNA-gene interactions in OV tumors. It reveals the role of regula-

tory feedback and feedforward loops in great complexity of OV

tumors. This network indicates that TFs TFAP2C and GATA4 have

the most interactions and are involved in feedback loops with miR-

26b. According to Cai et al report, GATA4 has lost its expression in

ovarian tissues during cellular transformation and progression to

malignancy.73 In our study, for the first time, TFAP2C has been identi-

fied to be an important TF in ovarian cancer and might become both

biomarker and therapeutic target. Interestingly, the expression level of

miR-26b in patients with ovarian cancer shows a significant reduction

and correlates with the stage of tumors and patient's life

expectancy.74

In conclusion, in current study, we have collected and integrated

different data to uncover the complex molecular interactions and

oncomechanisms in OV tumors. The DEmiRs-DEGs and dysregulated

TF-miRNA-gene network reveal the potential interactions that could

be significant pieces of OV tumors onco-puzzle.
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