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Clonal structure, stability and dynamics of human
memory B cells and circulating plasmablasts

Ganesh E. Phad ©'%, Dora Pinto"¢, Mathilde Foglierini®"¢, Murodzhon Akhmedov'?¢,
Riccardo L. Rossi®3, Emilia Malvicini®3, Antonino Cassotta®?, Chiara Silacci Fregni,
Ludovica Bruno?, Federica Sallusto®'* and Antonio Lanzavecchia® 3524

Memory B cells persist for a lifetime and rapidly differentiate into antibody-producing plasmablasts and plasma cells upon anti-
gen re-encounter. The clonal relationship and evolution of memory B cells and circulating plasmablasts is not well understood.
Using single-cell sequencing combined with isolation of specific antibodies, we found that in two healthy donors, the memory
B cell repertoire was dominated by large IgM, IgA and IgG2 clonal families, whereas IgG1 families, including those specific for
recall antigens, were of small size. Analysis of multiyear samples demonstrated stability of memory B cell clonal families and
revealed that a large fraction of recently generated plasmablasts was derived from long-term memory B cell families and was
found recurrently. Collectively, this study provides a systematic description of the structure, stability and dynamics of the
human memory B cell pool and suggests that memory B cells may be active at any time point in the generation of plasmablasts.

coordinated series of recombination events and somatic

mutations generate an extraordinarily large repertoire of
antibody molecules that are selected for their capacity to bind to self
and foreign antigens and for different effector functions'. In recent
years, high-throughput DNA-sequencing technologies and new
bioinformatics approaches have been used to dissect the diversity
of antibody repertoires to an unprecedented level”. Two recent stud-
ies used deep sequencing of unpaired H and L chains to estimate
the size and diversity of the human B cell receptor (BCR) reper-
toire and to identify shared VH sequences among different indi-
viduals**. In addition, bulk VH sequencing was used to characterize
antigen-specific memory B cells and plasmablasts in response to
infectious agents and self antigens®”. Single-cell sequencing meth-
ods, although limited by the number of cells that can be processed,
can deliver paired VH/VL sequences together with information
on the transcriptome and have been used to dissect the antibody
response to infection or vaccination®’.

In this study, we took a systematic approach and used a single-cell
sequencing platform combined with the isolation of specific anti-
bodies from memory B cells and circulating plasmablasts to inves-
tigate, in multiyear serial blood samples from two healthy adult
donors, the clonal structure, stability and dynamics of the entire
human memory B cell repertoire and the relationship between
memory B cells and circulating plasmablasts.

D uring B cell development and antigen-driven selection, a

Results

Clonal structure, isotype distribution and convergent clonotypes
in memory B cells. To gain insight into the clonal composition
of the human memory B cell pool, we used the high-throughput
single-cell 10X Genomics platform to obtain >2.2x 10° paired VH/
VL sequences from circulating memory B cells and plasmablasts
collected from two healthy adult individuals (D1 and D2) over a

period of 10 and 6 years, respectively (Extended Data Fig. 1a,b).
Using established bioinformatics methods, we determined the indi-
vidual’s germline VH and VL genes, used paired VH/VL sequences
to define clonal families and reconstructed genealogical trees'*-'".
Clonal families showed a characteristic wide range of size distri-
bution and isotype usage, as visualized in the honeycomb plots
(Fig. 1a,b). Overall, the clonal structure of the memory B cell pool
was comparable in the two donors, apart from a prevalence of IgA
in D1 and IgG in D2. Notably, the largest families of more than six
cells accounted for 18.2% (D1) and 20.8% (D2) of total memory B
cells and were primarily or exclusively IgM, followed by IgA and
IgG2, whereas IgGl, IgG3 and IgG4 families were mostly of small
size (Fig. 1c,d). Rare IgD families were present in both individu-
als, whereas IgE memory B cells were undetectable. Clonal families
comprising multiple isotypes were prominent, with a clear trend
for IgM+1gG2 or IgM+IgA and IgAl+IgA2 (Extended Data
Fig. 1c-f and RepSeq Playground). By searching the 10X database
of D1 for VH/VL sequences of 328 virus- or vaccine-specific IgG
antibodies (belonging to 286 clonal families) isolated from immor-
talized memory B cells of the same donor (Extended Data Fig. 2a),
we determined that the corresponding IgG families were mostly of
small size (Fig. 1e and Extended Data Fig. 2b). The VH, Vk and
VA gene usage was comparable between the two donors, with no
evidence for preferential pairing between VH and VL, whereas the
load of somatic mutations was variable, being lowest in IgM and
highest in IgD and IgG4 memory B cells (Extended Data Fig. 3a—c).
Notably, 138 clonal families (0.2% and 0.4% in D1 and D2, respec-
tively) showed highly similar sequences in the two donors based on
the strict criteria of identical V and J usage in both heavy and light
chains, CDR3s of the same length and >85% nucleotide identity
(Fig. 1f and Extended Data Fig. 3d). Several of these families were
IgM, IgG2 and IgA, had short HCDR3, were of large size and carried
variable levels of somatic mutations (Fig. 1g,h).

'Institute for Research in Biomedicine, Universita della Svizzera italiana, Bellinzona, Switzerland. 2Bigomics Analytics SA, Bellinzona, Switzerland.
3National Institute of Molecular Genetics, Milano, Italy. “Institute of Microbiology, ETH Zirich, Zurich, Switzerland. "Humabs BioMed, a subsidiary
of Vir Biotechnology, Bellinzona, Switzerland. ¢These authors contributed equally: Dora Pinto, Mathilde Foglierini, Murodzhon Akhmedov.

®e-mail: ganesh.phad@irb.usi.ch; lanzavecchia@ingm.org

1076

NATURE IMMUNOLOGY | VOL 23 | JULY 2022 | 1076-1085 | www.nature.com/natureimmunology


mailto:ganesh.phad@irb.usi.ch
mailto:lanzavecchia@ingm.org
https://repseq.bigomics.ch
http://orcid.org/0000-0002-0047-6899
http://orcid.org/0000-0001-7538-4262
http://orcid.org/0000-0002-4964-3264
http://orcid.org/0000-0003-2286-8954
http://orcid.org/0000-0001-8674-4294
http://orcid.org/0000-0003-3750-2752
http://orcid.org/0000-0002-3041-7240
http://crossmark.crossref.org/dialog/?doi=10.1038/s41590-022-01230-1&domain=pdf
http://www.nature.com/natureimmunology

NATURE IMMUNOLOGY ARTICLES

a D1 (n = 53,977 MBCs) b D2 (n = 112,227 MBCs)
Clonal family siz,e -
(no. of clonal cells)

7 Singlet "~

47 cells

49 cells

e ® @ O @ @ @
M

D G3 G1 A1 G2 G4 A2 X

c | 103 No. of clonal families f d 5 108 No. of clonal families for
1 - - 3 0. Of clonal Tamilies Tor 10 . E| i i 3
%3 Total families, n = 33,725 dominant isotype: Total families, n = 67,344 dominant isotype
Families (size >6 cells) © M-16216 @ A1-5,766 Families (size >6 cells), ©M27947 @ A15,025
n=755 (18.2% of MBdS) ® D-169 ® G2-2,262 n=1,649 (20.8% of MBCs) © D-1,382 ® G2-6,740
’ ° - 4-4
i 47 ® G3-369 Ga415 | 02 ooy ® G3-1,190 G4-498
107 3 1077 10 1 @ G1-19,207  A2:2,419
% @ G1-3,560 A2-2,685 ,
®e
o
£ o £ :
e
§ 10 104 3%- 5 104 < 101 o2
- — -‘ °
] . = K] it e - o
5 e - s ‘Q} © camd e ©
© {1 o e e © «© D D @
k] T eE— e 5 -« T ———
8 8
@ 10° 10° f : g ; 1 » 10° T T T 0 ¢l 10° T ——— !
o 10" 10> 10° 10* 10° 10° 10" 10%> 10®° 10* 10° 10° 10" 102 10° 10* 10° 10° 10" 102 10°  10*  10°
Rank by family size —— Rank by family size — 5
e f h Size of shared clonal Percentage
108 O Total families (n = 33,725) 108 - X = 67,207 families (no. of members) V mutations (nt)
’ Y = 33,318
@ MV-specific (n = 196) _ D=138 0 5 10 15 20
@ RSV-specific (n = 28) 5
@ TT-specific (n = 44) _% 102 4
=
£
8
T
» 5 10" 4
o S
£ 8 H
3 ] e |0
£ =
? 5 ° ° ()
% 100 ¢ o 00®
5 - o commumRy |
10° 10' 102 103
0 1 2 3 4 5
10° 100 10 10°  10° 10 D2 MBC clonal family size (log)
Rank by family size ———— >
g 20
[
E Isotype
a 15 . M
Q === D1 HCDR3s = 33,318
2 10 === D2 HCDR3s = 67,207 ®o
s ==== Shared HCDR3s = 138 ' G3
£ ]
8 s
5 : L Je)
o H
0 : O At
0 5 10 15 20 25 30 35 ®ac
HCDRS3 length (aa) G4
A2

NATURE IMMUNOLOGY | VOL 23 | JULY 2022 | 1076-1085 | www.nature.com/natureimmunology 1077


http://www.nature.com/natureimmunology

ARTICLES

NATURE IMMUNOLOGY

‘

Fig. 1| Clonal structure of the memory B cell pool and convergent antibodies. a,b, Honeycomb plots compile all memory B cells (MBCs) from D1and D2
samples analyzed using a donor-specific database into clonal families; each cell is color-coded according to the isotype expressed and families are ranked
according to size from center to periphery. Two representative clonal families comprising multiple or unique isotypes are highlighted. ¢,d, Waterfall plots
represent the size distribution of all clonal families (left) and of families grouped according to the dominant (>80% of cells) isotype (right) in D1 (¢) and
D2 (d). Dotted red lines separate families with more than six and six or fewer cells. Isotypes are color coded (x indicates isotype not determined).

e, Size distribution of MBC families from D1 specific for the recall antigens measles virus (MV), respiratory syncytial virus (RSV), tetanus toxoid (TT) and
influenza virus (FLU) determined by searching 328 antigen-specific antibody sequences (belonging to 286 clonal families) in the 10X Genomics database
from D1. Size distribution of total MBC clonal families is included for comparison. f, Scatter-plot shows convergent clonotypes determined by jointly
analyzing MBC sequences from D1and D2 using publicly available reference sequences from the IMGT database, clonotypes shared between D1and D2
(diagonal) and non-shared clonotypes (x and y axes) are ranked according to clonal family size. g, HCDR3 length distribution in shared and non-shared
MBC clonotypes. h, Isotype usage and percent VH mutations in the shared clonotypes.

Collectively, this analysis shows that the memory B cell reper-
toire is dominated by large IgM, IgA and IgG2 families that include
convergent clonotypes, whereas typical T cell-dependent IgGl
responses have a smaller footprint.

Stability of memory B cell clonal families. The availability of longi-
tudinal samples collected with an interval of several years was instru-
mental to investigate the stability of the memory B cell repertoire as
defined by the sharing of B cell clonal families in two temporally
distant samples. As shown in Fig. 2a,b, most families of medium/
large size (more than six members) found in the 2020 samples from
D1 and D2 were already present in samples collected 10 and 6 years
before (84.7% and 85.2% in D1 and D2, respectively). This figure
dropped to 40.6% and 33.6% for families of two members and 15.8%
and 11.2% for families of one member only. Of note, the decrease in
the percentage of shared families as a function of their size was also
evident when comparing two biological replicates taken at the same
time and processed in parallel (Extended Data Fig. 4a,b).

To account for the differences in family size, we calculated the
Morisita-Horn similarity index for samples taken at the same time
(intra-sample similarity) or at different times (inter-sample similar-
ity) (Fig. 2c). As expected, the index was proportional to the num-
ber of cells analyzed, but the intra-sample and inter-sample indexes
were comparable, supporting, with a statistical method, the sub-
stantial stability of clonal families in the memory B cell pool.

We also compared the two time points considering for each fam-
ily the load of mutations and the size and presence of multiple iso-
types. According to these criteria, the extent of sharing was most
prominent for large families and for those with higher load of muta-
tions and multiple isotypes (Fig. 2d,e). Stability was also particularly
evident for large IgM and IgG2 families (Extended Data Fig. 4c,d).
Collectively, the extent of sharing of clonal families supports the
notion of an overall stability of memory B cell clonal families over
several years.

Clonal composition of circulating plasmablasts and relationship
to memory B cells. A widely held view is that circulating plasma-
blasts derive from ongoing immune responses to antigens and are

short-lived unless they reach survival niches in the bone marrow".
It was therefore interesting to analyze, in the blood samples col-
lected from the two donors, the clonal composition of plasmablasts
and their relationship to memory B cells.

CD19+*CD27"CD38*HLA-DR* and DR~ cells were isolated
and subjected to 10X single-cell VD] and transcriptomic analysis.
Plasmablasts could be readily identified by the high levels of Ig
transcripts, exceeding by 100-fold those found in memory B cells
(Fig. 3a). Uniform Manifold Approximation and Projection
(UMAP) analysis identified nine clusters all expressing high lev-
els of plasmablast lineage markers (such as XBP1, PRDMI and
JCHAIN) to a similar extent, and low levels of PAX5 and CIITA, with
clusters 8 and 9 additionally expressing the proliferation-associated
gene MKI67 encoding Ki67 (Fig. 3b,c). Notably, both HLA-DR* and
HLA-DR subsets were comparable in terms of the transcriptome
and overlapped in their clonotypes.

VH/VL gene sequencing showed that circulating plasma-
blasts comprised in both donors a core of highly expanded clonal
families made up of several hundred cells, each with identical or
related sequences (Fig. 3d,e). Notably, the most prominent clonal
families were IgM, IgA or IgG2, and several contained mixed iso-
types (Extended Data Fig. 5). Smaller clonal families (2-5 cells)
and large numbers of singlets were also detected, possibly reflect-
ing differences in kinetics, or burst size. The overall clonal family
size distribution and CDRH3 lengths were comparable in the two
donors (Extended Data Fig. 6a—c). IgA plasmablasts were more
abundant in D1 and IgG plasmablasts in D2, consistent with the
higher frequency of these isotypes in the memory B cell pool of
the same donor. By matching VH/VL sequencing with transcrip-
tomic data, we found that individual plasmablasts within each
clonal family were distributed in different UMAP clusters, includ-
ing clusters 8 and 9 expressing MKI67 (Fig. 3f). Together with the
homogeneous expression of signature genes these findings point to
a microheterogeneity of circulating plasmablasts whose significance
remains undefined.

The notion that circulating plasmablasts are generated from
synchronous antigen-driven responses predicts that at any time
point only a small fraction of plasmablasts should derive from

>
>

Fig. 2 | Stability of memory B cell repertoires. a,b, Scatter-plots show the projection of MBC clonal families identified in the 2020 samples (x axis) from
D1or D2 on MBC clonal families identified in samples collected in 2010 (D1) or 2014 (D2) (y axis). Shared (diagonal) and non-shared (x and y axes)
MBC families ranked according to size. The size of the bubbles represents the number of members in each family. Shade of color reflects the proportion
of families shared between the two time points. The tables below show the total number of 2020 MBC clonal families binned according to family size
and the number and percentage of families shared with samples isolated 10 (D1) or 6 (D2) years before. ¢, Morisita-Horn similarity index calculated
between small and large samples of MBCs (as indicated on the table, left) taken at the same time (intra-sample similarity) or at a different time point
(inter-sample similarity) from D1and D2. Box whisker plots with all points show the median (horizontal line), 25th-75th percentile (box), with whiskers
indicating minimum and maximum range. d,e, Scatter-plots with 1:1 dashed line show shared (diagonal) and non-shared (x and y axes) MBC clonal families
ranked according to average percentage V region nucleotide mutations. Clonal families are shown with circles proportional to their size and are grouped
in different scatter-plots according to the expression of single isotypes (color-coded) or multiple isotypes. The number of shared and non-shared families
and the number of sequences (in parenthesis) are indicated in each plot. Note that the percentage of clonal reads (B cell clones) shared between the two

time points exceeds the percent of clonal families shared.
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memory B cells. Of note, however, 17.2% and 20.5% of all plasma-  (Fig. 4a,b). Furthermore, genealogical analysis of individual families
blast clonal families isolated from D1 or D2 in 2020 belonged to  comprising memory B cells and plasmablasts revealed that the lat-
memory B cell clonal families identified in 2010 (D1) or 2014 (D2)  ter can derive from multiple branches of the tree and can express
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Fig. 3 | Characterization of circulating steady state plasmablasts according to transcriptome and clonotype. a, Level of BCR transcripts in MBCs and in
circulating steady state plasmablasts (PBs) of different isotypes from D1. Comparable transcriptomic data were obtained from D2. Box whisker plots show
the median (horizontal line), 25th-75th percentile (box), with whiskers indicating minimum and maximum range. b, Two-dimensional UMAP projection of
single-cell gene expression data of circulating plasmablasts from D1. ¢, Expression of typical marker genes of plasmablasts in the different UMAP clusters.
d,e, Honeycomb plots compile steady state PBs from D1and D2 into clonal families; each cell is color-coded according to the isotype expressed. Families

are ranked according to size from center to periphery. Two representative multi-isotype clonal families are highlighted. f, Distribution of individual cells
belonging to a given clonal family in different UMAP clusters. Each column represents a PB clonal family. Shown are all families (top) and the top 100

families (bottom).

differentisotypesassociated withidenticalmutated VH/VLsequences
(Fig. 4c,d, Extended Data Fig. 7 and RepSeq Playground), a find-
ing that indicates continuous switching after somatic mutation.
Collectively, the finding that at any given time point ~20% of plas-
mablast families derive from long-term memory B cell families
indicates a continuous and substantial differentiation of memory B
cells into plasmablasts and suggests that recurrent clonotypes may
be found among recently generated plasmablasts.

Recurrent clonotypes in circulating plasmablasts. To search for
recurrent clonotypes, we used the 10X platform to sequence four
samples of plasmablasts from D1 and four from D2 obtained at
different time points. In both donors several clonal families were
detected at two or more time points and some even at all time points
analyzed (Fig. 5a,b and examples in Extended Data Fig. 8a). A few
recurrent families were overrepresented at a given time point but
found at low frequencies also at distant time points (Fig. 5c,d).
In each donor, the isotype composition of recurrent families was
comparable to the isotype composition of total plasmablast families
(Fig. 5¢,d) and comprised mainly IgA and IgM, followed by IgG1
and IgG2. These findings reveal a sustained production of clonal
plasmablasts that may reflect the continuous stimulation of mem-
ory B cells by environmental or persisting antigens.

To investigate whether plasmablast production from memory B
cells may proceed long-term even in the absence of recent antigenic
stimulation, we interrogated the 10X data from D1 and identified
several plasmablasts in the 2020-2021 samples that matched the
sequences of monoclonal antibodies specific for tetanus toxoid,
measles virus, influenza virus or respiratory syncytial virus that
were previously isolated from immortalized memory B cells from
the same donor (Extended Data Fig. 8b). Notably, D1 was infected
by measles virus as a child, was boosted with tetanus toxoid vac-
cine in 1999 and 2015 and received the last influenza vaccination
in 2017. Thus, these findings suggest that plasmablasts specific for
recall antigens are continually produced at low-rate months and
years after antigenic stimulation.

In another experimental setting, we cultured single plasmablasts
on mesenchymal stromal cells and analyzed the secreted antibod-
ies'®. Following a booster influenza vaccination in 2011, a large frac-
tion of total plasmablasts (20% and 43% in D1 and D2) secreted
IgG antibodies to the vaccine as expected (Fig. 5¢). Of note, how-
ever, rare plasmablasts secreting IgG antibodies that did not bind
to the vaccine but bound to unrelated recall antigens (tetanus tox-
oid, measles virus, varicella zoster virus and Toxoplasma gondii)

were also detected in both donors at very low frequencies (Fig. 5¢).
Plasmablasts specific for recall antigens were also detected in both
donors in the steady state, a finding that was corroborated by the
isolation from positive cultures of monoclonal antibodies specific
for measles virus and tetanus toxoid (Fig. 5f,g).

Collectively, the identification of recurrent plasmablasts of
diverse isotypes and specificities including IgG1 antibodies to recall
antigens suggest that a large fraction and possibly most memory B
cell families continuously produce plasmablasts in response to per-
sisting antigens or polyclonal stimuli.

Discussion

This study provides a high-level kinetic assessment of the entire
human memory B cell and circulating plasmablast repertoires and
reveals three aspects: (1) the large expansion and multi-isotype dif-
ferentiation of IgM and IgA clonal families; (2) the overall stability
of memory B cell and circulating plasmablast families; and (3) the
sustained and recurrent production of plasmablasts derived from
memory B cell families.

IgM memory B cells have been known for a long time to repre-
sent a large and distinct fraction of the human memory pool"’-*.
Our analysis demonstrates that IgM comprises very large and stable
clonal families that reach up to 0.3% of total memory B cells and
show a frequent intra-clonal switch to IgA and IgG2. The relatively
small size of IgG1 B cell families specific for recall antigens suggest
that the large IgM IgA and IgG2 clonal families may recognize a dif-
ferent class of antigens such as microbial pathogens or commensals
that are persistent or widely accessible”’.

Several studies showed convergent V gene usage in response to
vaccines and infections”**~** and two recent reports using ultradeep
sequencing of VH genes from healthy donors showed that 0.2-1.5%
of sequences are shared among any two individuals*’. Despite the
lower depth and more stringent criteria based on VH/VL identity,
our analysis comes to a similar estimate of 0.2-0.4% shared clo-
notypes between the two donors analyzed. These findings suggest
that such convergent clonotypes may be selected by common envi-
ronmental antigens, possibly with unique structural motifs®”. The
production of recombinant antibodies using the VH/VL sequences
available in the datasets and RepSeq Playground will be instrumen-
tal to determine the specificity of the antibodies produced by con-
vergent or expanded families.

Although mutations and isotype switching are both mediated by
activation-induced cytidine deaminase enzyme, the two mechanisms
are differentially regulated in time and space’®”. The genealogic
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>

Fig. 4 | Relationship of circulating plasmablasts to long-term memory B cells. a,b, Scatter-plots show the projection of circulating plasmablast (PB)

families identified in the 2020 samples (x axis) from D1 or D2 on MBC families identified in samples collected in 2010 (D1) or 2014 (D2) (y axis). Shared
(diagonal) and non-shared (x and y axes) families are ranked according to size. The size of the bubbles represents the number of members in each family.
Shade of color reflects the proportion of families shared between the two time points. The tables below show the total number of 2020 PB clonal families
binned according to family size and the number and percent of families shared with MBC families isolated 10 (D1) or 6 (D2) years before. ¢,d, Genealogical
trees compile PBs (triangles) and MBCs (circles) obtained at the indicated time points for six representative clonal families of D1and D2. Isotypes are
color-coded (x indicates isotype not determined). The number of somatic mutations at nucleotide and amino acid (in parenthesis) are indicated on
individual branches of the trees. The vertical thin dotted lines without arrowheads connect cells with identical VH/VL sequences. The thickness of the
arrows reflects the number of mutations. The order of isotypes in the branches of the family trees does not represent class-switching sequence.
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analysis of large families comprising both memory B cells and plas-
mablasts shows multiple switching events occurring at different
branches in already mutated cells as well as in cells with identical

Monoclonal antibody (ng mi™)
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mutations. This finding indicates that switching involves both
proximal and distal isotypes classes® and that the option to switch
remains open during or following somatic mutations.
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‘

Fig. 5 | Plasmablasts in the steady state contain unique and recurrent clonotypes. a,b, VVenn diagram depicts PB families shared between samples from
D1and D2 collected at the indicated time points. ¢,d, Honeycomb plots compile recurrent PB sequences from samples of different time points from D1
and D2 into clonal families (left) and corresponding isotype expressed by each cell in the family (right). The bar plots below show the percent total and
recurrent PB families with a given isotype. e, PBs were isolated from D1and D2 7 d after influenza vaccination in 2010-11 and plated on mesenchymal
stromal cells. The culture supernatants were tested for the presence of IgG antibodies to influenza vaccine and to recall antigens to which the individual
was not recently exposed. TT, tetanus toxoid; MV, measles virus, VZV, varicella zoster virus; TG, Toxoplasma gondii. f, The same analysis was performed
on PBs isolated in the steady state. g, The specificity of the antibodies produced by single PBs of D1 was confirmed through the isolation of monoclonal

antibodies against TT or MV.

Circulating plasmablasts are thought to reflect ongoing immune
responses®'~, a notion that is consistent with our finding of a sub-
stantial homogeneity of the plasmablasts analyzed and with the
broad distribution of clonal families within multiple UMAP clus-
ters. Thus, it was surprising to find that at any time point a sub-
stantial fraction of plasmablasts derive from long-term memory B
cells identified several years before and that certain B cell families
produce plasmablasts at multiple and even at all time points ana-
lyzed. While it is possible that these recurrent plasmablasts may be
produced in response to continuous stimulation by environmental,
commensal or persisting antigens, it is unlikely that this mecha-
nism may account for the sustained production of IgG antibodies
to measles virus or tetanus toxoid that represent recall antigens to
which the donor was exposed several years before the analysis. It is
therefore tempting to speculate that sustained production of plas-
mablasts could be also maintained by antigen-independent mecha-
nisms acting on memory B cells that are prone to differentiate in
response to polyclonal stimuli®*'.

While it is well established that plasma cells can become long
lived in bone marrow niches", it has also been shown that bone
marrow cells are heterogeneous™* and that vaccine-induced
plasma cells can transiently populate the bone marrow but decrease
to pre-boost levels after 1 year®. We suggest that recurrent plas-
mablast production may represents a homeostatic mechanism that
counteracts the attrition of bone marrow plasma cells.
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Methods

Donors and sample collection. Peripheral blood samples were collected from
two healthy male donors, D1 (69 years old) and D2 (50 years old) at the time of
latest sampling. Both D1 and D2 were vaccinated with the seasonal vaccine in year
2010-11 and 2009-10, respectively. Peripheral blood mononuclear cells (PBMCs)
from the year 2010 (D1) and 2014 (D1) were isolated by standard density-gradient
centrifugation and cryopreserved until the day of use. Blood samples collected in
2020 from both D1 and D2 were processed immediately to isolate memory B cells
and plasmablasts by flow cytometry followed by single-cell immune profiling using
the 10X system. The donors provided written informed consent for using these
blood samples, following approval by the Cantonal Ethical Committee of Canton
Ticino, Switzerland.

Isolation of memory B cells and plasmablasts. The CD19* cell fraction was
enriched from PBMCs by positive selection with CD19 magnetic microbeads
(Miltenyi Biotech) and subsequently stained on ice for 20 min with the following
fluorochrome-labeled mouse monoclonal antibodies: CD3-APC/Cy?7 (dilution
1:40, clone HIT3a, catalog no. 300317, BioLegend), CD27-Bv650 (dilution 1:50,
clone 0323, catalog no. 302827, BioLegend), CD19-PE-Cy7 (dilution 1:50,
clone SJ25Cl1, catalog no. 341113, BD Biosciences), HLA-DR-BD Horizon V500
(dilution 1:100, clone G46-6, catalog no. 561224, BD Biosciences) and CD38-PE
(dilution 1:100, clone T16, catalog no. IM1832U, Beckman Coulter). Cells were
sorted to over 98% purity on a FACSAria III (BD) using the following gating
strategy: circulating memory B cells were sorted as CD3-CD19*CD27+CD38~/*
cells, whereas circulating plasmablasts were sorted as CD3-CD19*CD27"CD38"
cells. FACS-sorted cells were collected in 6 pl FCS in Eppendorf tubes that were
pre-coated overnight with 2% BSA.

Single-cell RNA-seq library preparation and sequencing. The 5’ single-cell
RNA-seq libraries were generated using Chromium Next GEM Single Cell V(D)

J Reagent kit v.1, 1.1 or v.2 (10X Genomics) according to the manufacturer’s
protocol. Paired heavy and light chain BCR libraries were prepared from the
sorted B cell populations. Additional gene expression (messenger RNA) libraries
were constructed from freshly isolated plasmablasts from D1. Briefly, up to 20,000
memory B cells and 5,000-10,000 plasmablasts (depending on their recovery from
total B cell pool from given donor or time point) per well of 10X chip were loaded
in the 10X Genomics Chromium Controller to generate single-cell gel beads

in emulsion. After reverse transcription, gel beads in emulsion were disrupted.
Barcoded complementary DNA was isolated and used for the preparation of BCR
and gene expression libraries. All the steps were followed as per the manufacturer’s
instructions in user guide recommended for 10X Genomics kit v.1, 1.1 or 2. The
purified libraries from each time point were pooled separately and sequenced

on the NextSeq550 (Illumina) as per the instructions provided in 10X Genomics
user guide for the read length and depth. The D1 sample from February 2021
included memory B cells and plasmablasts sequenced on NovaSeq (Illumina) to
obtain paired VD] and gene expression information. Based on unique molecular
identifier (UMI) (VDJ transcript) count and gene expression information, data for
plasmablasts were extracted and used in the study.

Bioinformatic analyses. We used CellRanger (v.5.0.0) pipeline for raw sequencing
processing, including 5’ gene expression analysis and V(D)]J analysis of memory B
cells and plasmablasts. Using CellRanger, outputs following downstream analyses
were performed.

Computational analyses of V(D)] sequences. Raw output files were demultiplexed
and processed using CellRanger v.5.0.0 software (10X Genomics). For each donor,
a donor-specific V] genes database was generated using IgDiscover'’, whereas to
identify the convergent clonotypes, publicly available reference sequences from the
IMGT/V-QUEST reference directory at https://www.imgt.org/ were used to jointly
analyze the antibody sequences from both donors. Next, data were processed and
analyzed using the Immcantation Framework (http://immcantation.org) with
Change-O v.1.0.2 (ref. ). For each 10X dataset, the filtered_contig.fasta file was
annotated using IgBlast v.1.16 (ref. *”) with the related donor-specific V] genes
database. To generate adaptive immune receptor repertoire (AIRR) rearrangement
data, the filtered_contig_annotations.csv file was used and only productive
sequences were kept. The heavy and light chain sequences were separated in two
files. The threshold for trimming the hierarchical clustering of B cell clones was
determined by the SHazaM module for determining distance to nearest neighbor'".
With the Change-O DefineClones function, clones were assigned based on IGHV
genes, IGH] gene and junction distance calculated by SHazaM (distance 0.15).

The generated clone-pass file was verified and corrected using the Change-O
light_cluster function, based on the analysis of the light chain partners associated
with the heavy chain clone. Independent clone-pass files were generated for each
10X run. For downstream analysis, all clone-pass files from D1 and D2 donors
and the D1 antigen-specific antibodies file (also processed by Change-O) were
combined and re-clustered all together. Germlines were reconstructed using

the Change-O CreateGermlines function. To obtain the final AIRR format file
containing paired information on the same row, we used a Java script to process
and filter the sequences. Only the heavy chains paired with one k and/or one A

were filtered in for downstream analysis. Finally, matrices with percentage of
identity between each sequence within each clone (heavy and light separated),
were generated for the RepSeq Playground. Dnaml from Phylip package (v.3.69)
or IgPhyml (optional) was used to produce the genealogical trees of each clone'**.
The Morisita~-Horn similarity index between the different samples was calculated
using the morisita.horn function from the fossil R package*-*'. Honeycomb plots
were created using the enclone tool (v.0.5) available from 10X Genomics. The
class-switching propensity matrices were calculated by counting the number of
clonal families containing each possible pair of immunoglobulin classes (upstream
and downstream isotypes) and the families having cells of unique isotype

only (diagonal).

Single-cell RNA-seq data quality control, processing, annotation and differential
gene expression analysis. For single plasmablast transcriptome analysis, we mainly
used the CellRanger pipeline** and Seurat package® for quantification, quality
control, data normalization, dimensionality reduction, clustering, differential
expression analysis and data visualization. We used the CellRanger pipeline to
generate gene expression count matrices from the raw data. For each sample, a
gene-by-cell counts matrix was used to create a Seurat object using Seurat**". We
filtered cell barcodes with <500 and >2,500 UMIs as well as >5% mitochondrial
contents. Each individual sample was then normalized by a factor of 10,000

and log transformed (NormalizeData). The top 2,000 most variable genes were
then identified using the FindVariableFeatures method. The gene expression
matrix obtained by applying the filtering steps above was then used to perform
principal-component analysis (RunPCA), preliminary clustering analysis,
including nearest neighbor graph (FindNeighbors) and unbiased clustering
(FindClusters) and cell type annotation. UMAP was then used to visualize the
expression data. We identified gene expression markers for each cluster using
FindAllMarkers from Seurat with default settings, including Wilcoxon test and
Bonferroni P value correction**. Differential gene expression between specified
clusters (or subclusters) was performed using FindMarkers (Wilcoxon rank-sum
test) with Benjamini-Hochberg false discovery rate (FDR) correction and average
log fold change (FC). Genes were considered (significantly) differentially expressed
if FDR <0.05 and logFC> 0.2 in a given group. Cells with undetectable or very
low expression of the specific marker genes such as XBP1, PRDM1 and TNFRSF17
were removed from the downstream analyses. All computational analyses were
performed in R (v.3.6.3)

RepSeq Playground: interactive BCR platform to interrogate B cell repertoires.
RepSeq Playground (v.1.0) is a user-friendly and interactive web-based

platform for the analysis and visualization of BCR sequencing data. It enables
immunologists (users) to easily visualize and explore BCR data to better
understand the underlying biological mechanisms in a short period of time. The
platform can handle combined data from multiple sources and experiments,
including screened antigen-specific antibody sequences and paired or unpaired
heavy and light chain sequences obtained from high-throughput bulk or single-cell
sequencing experiments. The functionalities of the platform range from simple
descriptive statistical charts to more advanced analyses of clonal family expansion.
For descriptive visualizations, it offers statistical comparisons between donors

or different experimental datasets such as the total number (or percentage) of
sequences, CDR3 length distribution, isotype distribution or gene usage. To better
understand clonal expansion, it is possible to interactively visualize each clonal
family with a graph structure on the platform, with each node representing a
sequence and an edge corresponding to a homology similarity between a pair

of sequences. When the end user hovers the mouse over nodes and edges, the
platform provides detailed information on each sequence and homology similarity.
RepSeq Playground also generates phylogenetic tree analysis for four different
methods. In addition, it provides multiple sequence alignment for each clonal
family and further annotations based on various input factors such as isotype, gene
usage, antigen specificity and collection date. RepSeq Playground is accessible at
https://repseq.bigomics.ch to interactively visualize and analyze individual clonal
families from D1 and D2.

Monoclonal antibody isolation from memory B cells. Memory B cells were
isolated from cryopreserved or fresh PBMCs using FITC-labeled anti-CD22
monoclonal antibody (BD Biosciences) followed by anti FITC-beads (Miltenyi)
and cell sorting on a FACSAria (BD Biosciences). Cells were immortalized

with Epstein-Barr virus (EBV) as described previously”. After 2 weeks, culture
supernatants were screened for the presence of monoclonal antibodies specific

to recall antigen (measles virus, tetanus toxoid, influenza virus and respiratory
syncytial virus) and positive EBV B cell cultures were expanded in complete RPMI
medium. VH and VL sequences were obtained from positive B cell cultures by PCR
with reverse transcription (RT-PCR) and antibodies were produced by transfection
of HEK293T cells to formally prove their specificity as described™.

Analysis of antibodies produced by plasmablasts against recall antigens.
Recently generated circulating plasmablasts were isolated form healthy donors
in the steady state or 7d after intramuscular vaccination with seasonal influenza
vaccine. Briefly, plasmablasts were isolated from PBMCs using CD138-PE
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and anti-PE magnetic beads, followed by staining with HLA-DR-APC and
L-selectin-PC5 and cell sorting on a FACSAria (BD). CD138*HLA-DR*L-selectin*
circulating plasmablasts were seeded on a monolayer of mesenchymal stromal
cells at 0.5 cells per well in 384 well plates in RPMI 1640 medium supplemented
with 10% FCS (Hyclone) and 10 ng ml~ human r-interleukin-6 (R&D)". After 3d,
culture supernatants were collected using an automated liquid handling equipment
(PerkinElmer) and tested in micro-ELISA (5l per well) for the presence of

IgG antibodies to the specific antigens. From positive cultures, the VH and VL
sequences were retrieved by nested RT-PCR and cloned into human IgG1 and IgL
expression vectors (kindly provided by M. Nussenzweig, Rockefeller University) as
described*. Monoclonal antibodies were produced by transient transfection of 293
Freestyle cells (Invitrogen) with polyethyleneimine. Supernatants from transfected
cells were collected after 7d of culture.

ELISA. To screen plasma cell supernatants, high protein binding 384 well plates
(PerkinElmer) were coated with 1 ugml~ of tetanus toxoid, measle virus, varicella
zoster virus, Toxoplasma gondii antigens or 1:100 influenza vaccine preparation in
PBS. After blocking with PBS 1% BSA, culture supernatants were added for 1h at
room temperature. Plates were then washed and alkaline phosphatase-conjugated
F(ab’), goat anti-human IgG (Southern Biotech) was added for further 45 min at
room temperature. Antibody binding was revealed, after washing plates, by adding
substrate (p-NPP, Sigma). Plates were read at 405 nm.

Statistical analysis. Flow cytometric data were acquired using BD FACSDiva
(v.9.0) software. Flow cytometric data were analyzed using FlowJo (v.10.7.1) and
CellRanger 5.0 pipeline for the preprocessing of raw V(D)] and gene expression
data. Single-cell RNA-seq data were analyzed using R (v.3.6.3) and Seurat (v.4).

R (v.3.6.3) and GraphPad (v.9.3.1, Prism software) were used to perform graphing
and statistical analyses. No statistical methods were used to predetermine sample
size. The experiments were not randomized and investigators were not blinded to
allocation during experiments and outcome assessment.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All single B cell 10X VDJ generated in this study are available under ArrayExpress
accession E-MTAB-11174 and E-MTAB-11697. Single-cell 5’ gene expression data
of plasmablasts are available at the NCBI Gene Expression Omnibus database:
GSE188681. Antigen-specific single-cell HC and LC sequences are available from
GenBank under accession numbers OL450601-0OL451038. The authors declare
that all data supporting the findings of this study are available within the article
and its supplementary files can be obtained from the corresponding authors upon
reasonable request.

Code availability

The code for preprocessing BCR sequences is available at https://github.com/
MathildeFogPerez/manuscript-rep-phad.

RepSeq Playground (v.1.0) is accessible at https://repseq.bigomics.ch.
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Extended Data Fig. 1| Isotype distribution and switching in memory B cell clonal families. a, The table shows the number of single memory B cells
(MBCs) and plasmablasts (PBs) profiled from different time points from D1and D2. b, Representative flow cytometry plots showing gating strategy for
MBC and PB populations. ¢, Size distribution of MBC clonal families in D1 and D2 comprising one or more isotypes. Red lines show median values.

d, Class-switch propensity matrices show the number of clonal families having clones of each possible upstream and downstream isotype pair. The
number on the diagonal shows the families having a single isotype (not colored). e,f, Representative genealogic trees depicting the class-switching in
clonal families from D1and D2. The number of somatic mutations at nucleotide and at amino acid (in parenthesis) levels are indicated on individual
branches of the trees. The vertical thin dotted lines without arrowheads connect cells with identical VH/VL sequences. The thickness of the arrows
reflects the number of mutations. The order of isotypes in the branches of the family trees does not represent class-switching sequence. A comprehensive
set can be found in the RepSeq Playground.
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Extended Data Fig. 3 | V gene usage, VH/VL pairing and load of somatic mutations. a,b, Gene usage and VH/VL pairing in memory B cells from D1 and
D2. VH and VL genes are ranked according to their relative expression. €, Percent VH nucleotide mutations in memory B cells of different isotypes from

D1and D2. Number of cells analyzed is shown in parentheses. d, Representative amino acid sequence alignments of heavy and light chains of convergent
antibodies in D1 and D2.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Sharing of clonal families between biological replicates collected at the same time and stability of memory B cell families of
single isotypes. a,b, Scatter-plots show the shared (diagonal) and non-shared (xy-axis) memory B cell (MBC) clonal families from replicate samples from
the same time point. Memory B cells from one vs one lanes (right) or two vs two lanes (left) of 10X chip were used to determine the sharing of families
within the same sample from D2. The size of the bubbles represents the number of members in each family. Shade of color reflects the proportion of
families shared between the replicate samples. Clonal family sizes were binned according to the number of members in each family in the tables shown
below. The total number of MBC clonal families as well as the number and the percent of families shared between the replicate samples is shown in the
table. ¢,d, Scatter-plots with 1:1 dashed line show shared (diagonal) and non-shared (x and y axes) MBC clonal families from D1 (¢) and D2 (d) ranked
according to average percentage V region nucleotide mutation. Clonal families are shown with circles proportional to their size and are grouped in different
scatter-plots according to the expression of different isotypes. The number of shared and unshared families and the number of sequences (in parentheses)
are indicated in each plot.
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Extended Data Fig. 5 | Plasmablast families comprise multi-isotype cells. Genealogical trees show representative clonal families in D1and D2 containing
multi-isotype plasmablasts (triangles). Memory B cells belonging to the same families are also shown (circles). Isotypes are color-coded (x=isotype not
determined). Somatic mutations at nucleotide and at amino acid (in parenthesis) levels is indicated on individual branches of the trees. The vertical thin
dotted lines without arrowheads connect cells with identical VH/VL sequence. The thickness of the arrows reflects the number of mutations. The order of
isotypes in the branches of the family trees does not represent class-switching sequence. More examples can be found in the RepSeq Playground.
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Extended Data Fig. 6 | Clonal structure of circulating steady state plasmablasts. a,b, Waterfall plots represent the size distribution of all clonal families

(left panel) and of families grouped according to the dominant (>80% of cells) isotype (right panel) in D1 (a) and D2 (b). Dotted red line separates
families with >6 or <6 cells. ¢, HCDR3 length distribution in plasmablasts from D1and D2.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Recurrent clonotypes in circulating plasmablasts. a, Genealogical trees show representative clonal families in D1and D2
containing recurrent plasmablasts (triangles) detected at the indicated time points. b, 10X experiments identify in D1 single plasmablasts that belong
to antigen-specific families previously identifies through the isolation of monoclonal antibodies. Shown is the clonal family identity (ID), the antigenic
specificity, the family size and the time at which memory B cells and plasmablasts were detected.
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