
RESEARCH ARTICLE

A streamlined method for transposon

mutagenesis of Rickettsia parkeri yields

numerous mutations that impact infection

Rebecca L. Lamason¤a*, Natasha M. Kafai¤b, Matthew D. Welch*

Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of

America

¤a Current address: Department of Biology, Massachusetts Institute of Technology, Cambridge,

Massachusetts, United States of America

¤b Current address: Medical Scientist Training Program, Washington University in St. Louis School of

Medicine, St. Louis, Missouri, United States of America

* rlamason@mit.edu (RLL); welch@berkeley.edu (MDW)

Abstract

The rickettsiae are obligate intracellular alphaproteobacteria that exhibit a complex infec-

tious life cycle in both arthropod and mammalian hosts. As obligate intracellular bacteria,

rickettsiae are highly adapted to living inside a variety of host cells, including vascular endo-

thelial cells during mammalian infection. Although it is assumed that the rickettsiae produce

numerous virulence factors that usurp or disrupt various host cell pathways, they have been

challenging to genetically manipulate to identify the key bacterial factors that contribute to

infection. Motivated to overcome this challenge, we sought to expand the repertoire of avail-

able rickettsial loss-of-function mutants, using an improved mariner-based transposon

mutagenesis scheme. Here, we present the isolation of over 100 transposon mutants in the

spotted fever group species Rickettsia parkeri. Transposon insertions disrupted genes

whose products are implicated in a variety of pathways, including bacterial replication and

metabolism, the type IV secretion system, factors with previously established roles in host

cell interactions and pathogenesis, or are of unknown function. Given the need to identify

critical virulence factors, forward genetic screens such as this will provide an excellent plat-

form to more directly investigate rickettsial biology and pathogenesis.

Introduction

Bacteria in the genus Rickettsia are obligate intracellular alphaproteobacteria that are divided

into four groups—the spotted fever group (SFG), typhus group (TG), ancestral group (AG),

and transitional group (TRG) [1]. They inhabit arthropods (ticks, fleas, and mites), and many

can be transmitted to humans and other mammals. Pathogenic species primarily target endo-

thelial cells in the vasculature, causing a variety of vascular diseases such as typhus and Rocky

Mountain spotted fever [2]. Despite the prevalence of rickettsial diseases throughout the

world, we know little about the bacterial factors required for infection and pathogenesis.
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The SFG species Rickettsia parkeri, a tick-borne pathogen that causes a mild form of spotted

fever in humans [3,4], is emerging as a model organism to study SFG rickettsial pathogenesis.

R. parkeri can be studied under BL2 conditions and has animal models of pathogenesis that

mimic aspects of human infection [5,6]. Furthermore, the R. parkeri life cycle closely matches

that of the more virulent SFG species Rickettsia rickettsii [7,8], the causative agent of Rocky

Mountain spotted fever. Like its more virulent relative, R. parkeri invades non-phagocytic cells

and is taken into a primary phagocytic vacuole [9]. They then break out of this vacuole and

enter the cytosol to replicate and grow [10]. R. parkeri and many other Rickettsia species also

hijack the host cell actin cytoskeleton to polymerize actin tails and undergo actin-based motil-

ity [11–13]. During spread, motile R. parkeri move to a host cell-cell junction but then lose

their actin tails before entering into a short (~1 μm) plasma membrane protrusion that is sub-

sequently engulfed into the neighboring cell. The bacterium then lyses the double-membrane

secondary vacuole to enter the neighboring cell cytosol to begin the process of spread again

[14]. Because of its experimental tractability and the fact that its lifecycle is indistinguishable

from more virulent species, R. parkeri provides an attractive system for investigating rickettsial

host-pathogen interactions.

As an obligate intracellular pathogen, R. parkeri must produce virulence factors that usurp

or disrupt various host cell pathways. However, due to their obligate growth requirement, it

has been challenging to genetically manipulate rickettsiae to identify the key bacterial factors

that contribute to infection [15]. Fortunately, recent advances have expanded the genetic

toolkit that can be used in the rickettsiae, allowing us to peer more directly into the molecular

mechanisms that drive rickettsial biology. Chief among these advances was the development of

a Himar1 mariner-based transposon system for random mutagenesis of rickettsial genomes

[16]. To date, smaller-scale mutagenesis studies have been completed in the TG species R. pro-
wazekii [16–18] and the SFG species R. rickettsii [18,19].

Despite these advances, we still do not know all of the critical bacterial factors that mediate

interactions with the host. Moreover, many of the genes in R. parkeri are annotated to encode

hypothetical proteins, which limits our ability to rationally explore their functions. Therefore,

we set out to expand the repertoire of available R. parkeri mutants using a forward genetic

screen. We used the mariner-based transposon system [16] and developed a more streamlined

protocol to rapidly isolate R. parkeri mutants that alter plaque size [14]. To date, we have iso-

lated over 100 mutants that disrupt genes predicted to function in a variety of pathways. We

have previously published our detailed analysis of three mutants–in sca2, rickA, and sca4
[14,20]. Here, we present the full panel of mutants to demonstrate the potential and ease of

developing rickettsial transposon libraries.

Materials and methods

Cell lines

Vero cells (monkey, kidney epithelial) were obtained from the University of California, Berke-

ley tissue culture facility and grown in Dulbecco’s modified Eagle’s medium (DMEM) (Invi-

trogen) containing 5% fetal bovine serum (FBS) at 37˚C in 5% CO2.

Transposon mutagenesis in R. parkeri
R. parkeri Portsmouth strain was a gift from Dr. Chris Paddock (Centers for Disease Control

and Prevention). Wild-type R. parkeri were expanded and purified by centrifugation through a

30% MD-76R solution, as previously described [14]. The pMW1650 plasmid carrying the

Himar1 mariner-based transposon [16] (a gift from Dr. David Wood, University of South Ala-

bama) was used to generate R. parkeri strains carrying transposon insertions, as previously
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described [14] and reintroduced here. To isolate small plaque mutants, we implemented a

small-scale electroporation protocol. A T75 cm2 flask of confluent Vero cells was infected with

approximately 107 WT R. parkeri. When Vero cells were at least 90% rounded at 3 d post infec-

tion, they were scraped from the flask. Infected cells were spun down for 5 min at 1800 x g at

4˚C and resuspended in 3–6 ml of K-36 buffer. To release bacteria, infected cells were mechan-

ically disrupted either by passing them through a 27.5 gauge syringe needle 10 times, or by vor-

texing at ~2900 rpm using a Vortex Genie 2 (Scientific Industries Inc.) in a 15 ml conical tube

containing 2 g of 1 mm glass beads, with two 30 s pulses and 30 s incubations in ice after each

pulse. This bead disruption procedure was adopted for a majority of the screen, because it was

faster and reduced the possibility of a needle stick. Host cell debris was pelleted by centrifuga-

tion for 5 min at 200 x g at 4˚C. The supernatant containing R. parkeri was transferred to 1.5

ml microcentrifuge tubes and spun for 2 min at 9000 x g at 4˚C. Bacterial pellets were then

washed three times in cold 250 mM sucrose, resuspended in 50 μl cold 250 mM sucrose,

mixed with 1 μg of pMW1650 plasmid, placed in a 0.1 cm cuvette, and electroporated at 1.8

kV, 200 ohms, 25 μF, 5 ms using a Gene Pulser Xcell (Bio-Rad). Bacteria were immediately

recovered in 1.2 ml brain heart infusion (BHI) medium. For infections of confluent Vero cells

in 6-well plates, medium was removed from each well, and cells were washed with phosphate-

buffered saline (PBS). Electroporated bacteria (100 μl) was added to each well, and plates were

placed in a humidified chamber and rocked for 30 min at 37˚C. An overlay of DMEM with 5%

FBS and 0.5% agarose was then added to each well. Infected cells were incubated at 33˚C, 5%

CO2 for 24 h, and then to select for transformants, a second overlay was added containing

rifampicin (Sigma) to a final concentration 200 ng/ml to select for transformants. Stock solu-

tions of rifampicin were prepared in DMSO at 25 mg/ml and stored at -20˚C. After at least 3

or 4 d, plaques were visible by eye in the cell monolayer, and plaques smaller or bigger relative

to neighboring plaques were harvested and re-plated for further analysis, as described below.

To isolate and expand mutant strains before mapping the sites of transposon insertion, pla-

ques were picked and resuspended in 200 μl of BHI. Medium was aspirated from confluent

Vero cells in 6-well plates, and the isolated plaque resuspension was used to infect the cells at

37˚C for 30 min with rocking. Then 3 ml DMEM with 2% FBS and 200 ng/ml rifampicin was

added to each well, and infections were allowed to progress until monolayers were fully

infected. Infected cells were isolated using mechanical disruption as described above, except

that bacteria were immediately resuspended in BHI without a sucrose wash and stored at

-80˚C. These plaque-purified strains were then used as described below to map the transposon

insertion sites.

Semi-random nested PCR

To map the transposon insertion sites, plaque-purified R. parkeri strains were boiled for 10

min and used as templates for PCR reactions. Genomic DNA at insertion sites was amplified

for sequencing using semi-random nested PCR. The first “external” PCR reaction used trans-

poson-specific primers (ExTn1 5’-CACCAATTGCTAAATTAGCTTTAGTTCC-3’; or ExTn2

5’-GTGAGCTATGAGAAAGCGCCACGC-3’) and a universal primer (Univ1 5’-GCTAGCG
GCCGCACTAGTCGANNNNNNNNNNCTTCT-3’). Univ1 has a specific sequence at the 5’ end

and a random sequence near the 3’ end to allow for random annealing throughout the chro-

mosome. The first PCR reaction yielded the “external” product that served as a template in the

subsequent “internal” PCR reaction using transposon-specific primers (InTn1 5’-GCTAGCG
GCCGCGGTCCTTGTACTTGTTTATAATTATCATGAG-3’;or InTn2 5’-GCTAGCGGCCGCCC
TGGTATCTTTATAGTCCTGTCGG-3’) and a different universal primer (Univ2 5’-GCTAGC
GGCCGCACTAGTCGA-3’).Univ2 contains the same specific sequence as Univ1, allowing for
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specific amplification of the external PCR product. PCR products were cleaned using ExoSA-

P-IT PCR Product Cleanup Reagent (Affymetrix) and sequenced using transposon-specific

primers SR095 5’-CGCCACCTCTGACTTGAGCGTCG-3’ and SR096 5’-CCATATGAAAACA
CTCCAAAAAAC-3’.Genomic locations were determined using BLAST against the R. parkeri
strain Portsmouth genome (GenBank/NCBI accession NC_017044.1).

Results

Design of an improved transposon mutagenesis scheme

We used the pMW1650 plasmid, which carries a Himar1 mariner-based transposon [16], to

randomly mutate the R. parkeri genome. pMW1650 encodes the Himar1 transposase, a trans-

poson cassette that contains the R. prowazekii arr-2 rifampin resistance gene, and a variant of

green fluorescent protein (GFPuv) [16] (Fig 1A). The first reported application of this system

in R. prowazekii [16] and R. rickettsii [18] yielded some transposon mutants, but we sought to

improve the mutagenesis scheme to increase the chances of identifying genes important for

infection. Therefore, we developed a simple and rapid procedure to extract bacteria from

infected host cells [14]. In the past, we had purified R. parkeri from infected host cells using an

hours-long process involving mechanical disruption and density gradient centrifugation prior

to electroporation [21]. In recent work, we optimized this procedure to more quickly isolate

and electroporate bacteria and re-infect host cells in under an hour [14]. To mechanically dis-

rupt infected cells, we either passed infected cells through a syringe needle or vortexed cells in

the presence of 1 mm glass beads. Samples were then spun at low speed for 5 min to pellet host

cell debris, followed by a 2 min high-speed spin to pellet bacteria. Bacteria were then quickly

washed 2–3 times in cold sucrose prior to electroporation.

To identify genes involved in infection, we screened for transformants that showed altered

plaque size and/or morphology (Fig 1B). We predicted that plaque size changes would result

from defects at different stages of the rickettsial life cycle, including in intracellular growth,

replication, motility, and/or spread. To screen for such mutants, pMW1650-electroporated

bacteria were immediately used to setup plaque assays in the presence of rifampicin to select

for transformants. Plaque size was monitored visually over the course of 3–9 days, and those

displaying a small plaque (Sp) or big plaque (Bp) phenotype relative to their neighbors were

A
bacterial harvest, 
electroporation, 
plaque assay

isolate and expand 
individual clones

map insertions with 
semi-random nested PCR

small 
plaque

(Sp)

Co
lE

I

Kan
 R

Rif R

GFPuv

pMW1650

him
ar1

B

 

 

pMW1650

R. parkeri

+

Sp1 Sp2 Sp3

Sp4 Sp5 Sp6

IRIR

Fig 1. Transposon mutagenesis of R. parkeri. (A) Map of the pMW1650 plasmid used in this study for transposon mutagenesis (IR, inverted repeats). (B) Experimental

scheme for transposon mutagenesis and isolation of individual mutants.

https://doi.org/10.1371/journal.pone.0197012.g001
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selected for expansion. After independently repeating this process 7 times, 120 Sp mutant and

2 Bp mutants were selected for further analysis, as detailed below.

Expansion and mapping of the transposon mutants

To expand the isolated transformants, plaques were picked and transferred to uninfected host

cells to propagate each bacterial strain. Once the host cells were >75% infected, bacteria were

purified using the rapid isolation procedure outlined above. Nine isolates did not grow in this

expansion procedure, possibly due to a lack of live bacteria in the original plaque or poor isola-

tion of the infected cells. The remaining transformants could be expanded, and for these the

transposon insertion site was mapped using a semi-random nested PCR protocol. In short, the

junctions between the transposon and the flanking genomic regions were amplified via two

nested PCR reactions, using transposon-specific and universal primers (Fig 2A). PCR products

were sent directly for sequencing. Mapping of the transposon insertion sites to the R. parkeri
chromosome (accession number CP003341) revealed no preference for specific regions (Fig

2B), similar to what was observed in R. rickettsii [18,19] and R. prowazekii [16,18]. Using this

procedure, we identified the transposon insertion sites for 106 mutants. For 6 isolates the

transposon insertion site could not be mapped, and the strains did not express GFPuv (data

not shown), suggesting these were spontaneous rifampicin-resistant strains. Of the 106 trans-

poson mutations mapped, 81 were within the coding regions of 75 distinct genes and 25 were

in intergenic regions (Table 1). These results lay the groundwork for critical follow-up studies

(e.g. purification of clonal populations, complementation, phenotypic analyses, etc.) required

for revealing gene function. They also highlight that transposon mutagenesis can be readily

adapted for large-scale forward genetic screening in R. parkeri.

Discussion

A critical barrier to identifying and characterizing virulence factors in obligate intracellular

bacterial pathogens has been the inability to easily manipulate their genomes. In this study, we

sought to overcome this barrier and harness recent advances in rickettsial genetics to build a

library of transposon mutants of the SFG Rickettsia species, R. parkeri. We streamlined previ-

ous protocols to introduce a mariner-based transposon into the R. parkeri genome and isolated

106 transposon insertion mutations. Our study represents the first such transposon mutant

library in this species, and the most extensive reported library in the rickettsiae.

In our study, we selected for mutants that showed an altered plaque size phenotype in

infected host cell monolayers. Transposon mutations may cause a small plaque phenotype due

to any number of defects, including: poor bacterial replication, reduced access to or survival

within the cytosol, impaired cytosolic actin-based motility, and defective cell-to-cell spread. It

was thus not surprising that we identified genes with a diverse set of predicted functions.

Many genes with products predicted to perform bacterial-intrinsic functions (e.g. DNA repli-

cation) were identified and are expected to indirectly influence host-pathogen interactions

through their role in bacterial growth and division. Other genes had more direct connections

to the infectious life cycle and were further characterized in our recent studies to reveal their

specific functions in intracellular infection [14,20]. For example, we previously described

transposon mutations that disrupt the rickA (Sp34) and sca2 (Sp2) genes and showed that

these gene products are required for two independent phases of R. parkeri actin-based motility

[20]. We also identified a transposon insertion (Sp19) in sca4 gene and showed this encodes a

secreted effector that promotes cell-to-cell spread [14].

Other genes mutated in this screen have been suggested to play critical roles during the

infectious life cycle of other Rickettsia species but have yet to be characterized in R. parkeri. For
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example, we isolated transposon insertion mutants in the ompA (Sp80) and ompB (Sp106)

genes, encoding the outer membrane proteins OmpA and OmpB. Work with SFG species R.

conorii and R. rickettsii showed that OmpA and OmpB may regulate adhesion to and/or inva-

sion of host cells [22–25]. However, some of this work relied on expression of these proteins in

other bacterial species because mutants were not available. Interestingly, targeted knockout of

ompA in R. rickettsii via an LtrA group II intron retrohoming system revealed no clear require-

ment for OmpA in invasion [26], suggesting it alone is not necessary. This highlights the

importance of studying loss-of-function mutants to reveal gene function. The fact that ompA
and ompB mutants exhibit a small plaque phenotype suggest additional functions of these pro-

teins, putative indirect effects of the truncated products, or simply a need for efficient invasion

of neighboring cells after host cells lyse during plaque development. Future work on these

mutants should help reveal the relative importance of these proteins during invasion and/or

other stages of the R. parkeri life cycle.

Our screen also revealed genes for which no specific role has been ascribed during the infec-

tious life cycle, although the sequence of their protein products suggests a role in interaction

with host cells. These proteins include some with eukaryotic-like motifs such as ankyrin

repeats, which often mediate protein-protein interactions [27], and are a common motif in

secreted bacterial effector proteins or virulence factors that target host pathways [27,28]. In

particular, mutations in genes encoding R. parkeri orthologs of RARP-1 and RARP-2 from R.

typhi (accession numbers MC1_01745 and MC1_05235, respectively) were identified in our

screen (Sp64, Sp116, and Sp39). Work in R. typhi has revealed that RARP-1 and RARP-2 are

secreted into the host cell, but their precise functions remain unknown [29,30].

Another mystery in rickettsial biology relates to the functional importance of the putative

type IV secretion system (T4SS) encoded in their genomes [31], which in other species is

involved in translocating DNA, nucleoproteins, and effector proteins into host cells [32]. Strik-

ingly, the Rickettsia T4SS has an unusual expansion of the VirB6-like genes (i.e. Rickettsiales

vir homolog, rvhB6), which are predicted to encode inner membrane protein components at

the base of the T4SS [30,31,33]. Interestingly, we isolated a strain with a transposon insertion

mutation in the fifth VirB6-like gene, rvhB6e (Sp9). This mutant will prove useful to explore

the function of the T4SS in rickettsial infection.

Finally, we identified 20 strains, each carrying a transposon insertion disrupting a gene

encoding a hypothetical protein. One of these caused a big plaque phenotype, suggesting

enhanced growth or cell-to-cell spread. Further study of these mutants has the potential to

reveal the function of these uncharacterized gene products during rickettsial infection. We

also identified 25 small plaque mutants with insertions in intergenic regions. In these cases,

the mutant phenotype could be caused by transposon insertion into a promoter region that

alters gene expression. These mutants may represent tools for exploring gene regulation dur-

ing the R. parkeri life cycle.

Overall, our mutant collection provides an important resource that can be used to uncover

key bacterial players that regulate rickettsial interactions with their host cells. This will also

allow for more direct analysis of gene function in the rickettsiae without the reliance on intro-

ducing genes into heterologous organisms. This forward genetics approach has the potential to

reveal new insights into rickettsial biology and pathogenesis; however, limitations remain. For

example, because the rickettsiae are obligate intracellular pathogens, screens such as these are

Fig 2. Mapping the transposon insertion sites. (A) Diagram showing the insertion of the transposon cassette into a chromosomal region (in grey).

Primers specific to the transposon ends were paired with universal primers to amplify the chromosome- transposon junctions (red triangles), using semi-

random nested PCR. Two nested PCR reactions were done to improve amplification of the chromosome-transposon junction directly from boiled

bacteria. (B) R. parkeri chromosomal map showing all transposon insertion sites (see red lines) identified in this screen.

https://doi.org/10.1371/journal.pone.0197012.g002
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Table 1. Transposon insertion sites in R. parkeri.

Name Genome position Gene symbol Gene product description

Sp1 101427 MC1_00610 Putative cytoplasmic protein

Sp2 112315 MC1_00650 �� Surface cell antigen 2 (Sca2)

Sp3 681322–681323 MC1_03895 Single-stranded-DNA-specific exonuclease RecJ

Sp6 365840 MC1_02010 Cytochrome c1, heme protein

Sp7 670632 MC1_03810 Folylpolyglutamate synthase

Sp8 1047805–1047806 Intergenic n/a

Sp9 151196–151197 MC1_00820 VirB6 Type IV secretory pathway (rvhB6e)

Sp10 491813 Intergenic n/a

Sp11 1136147 MC1_06660 DNA polymerase I

Sp13 563189–563190 MC1_03195 RND efflux transporter

Sp14 518698–518699 MC1_02960 CTP synthetase

Sp15 520939 MC1_02980 Hypothetical protein

Sp17 1248850–1248851 MC1_07220 Transcriptional regulator

Sp18 70364 MC1_00450 Hypothetical protein

Sp19 654506–654507 MC1_03740 Antigenic heat-stable 120 kDa protein (Sca4)

Sp20 531536 MC1_03025 �� ampG protein

Sp21 20179 Intergenic n/a

Sp22 29609 MC1_00175 F0F1 ATP synthase subunit B

Sp23 474265 MC1_02665 Outer membrane assembly protein

Sp24 753916 Intergenic n/a

Sp25 728290 MC1_04100 Isopentenyl pyrophosphate isomerase

Sp26 33338 MC1_00210 Transcriptional regulator

Sp27 30722 Intergenic n/a

Sp28 301811 MC1_01650 Protease

Sp29 225255 MC1_01180 Acriflavin resistance protein D

Sp30 886852 Intergenic n/a

Sp31 262955–262956 MC1_01410 Hypothetical protein

Sp33 299510 MC1_01640 Putative toxin of toxin-antitoxin (TA) system

Sp34 888003 MC1_05085 �� Actin polymerization protein RickA

Sp35 589425 MC1_03370 Thiol:disulfide interchange protein dsbA

Sp36 230327 MC1_01215 Prolyl endopeptidase

Sp37 637085 MC1_03670 Hypothetical protein

Sp38 292360–292361 MC1_01595 S-adenosylmethionine:tRNA ribosyltransferase-isomerase

Sp39 912985 MC1_05235 Hypothetical protein (RARP-2)

Sp40 1279632 Intergenic n/a

Sp41 995818 Intergenic n/a

Sp42 372020 MC1_02055 �� GTP-binding protein LepA

Sp43 651603–651604 MC1_03735 ADP, ATP carrier protein

Sp44 868641 MC1_04970 HAD-superfamily hydrolase

Sp45 761156 MC1_04295 Microcin C7 resistance protein

Sp46 852817 MC1_04870 Methylated-DNA-protein-cysteine methyltransferase

Sp47 856486 MC1_04920 Hypothetical protein

Sp48 243782–243780 MC1_01300 DNA repair protein RecN

Sp49 687339 MC1_03930 Hypothetical protein

Sp50 1158028 MC1_06730 Hypothetical protein

Sp51 888088 MC1_05085 �� Actin polymerization protein RickA

Sp52 346470 Intergenic n/a

(Continued)
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Table 1. (Continued)

Name Genome position Gene symbol Gene product description

Sp53 793762 MC1_04525 Hypothetical protein

Sp54 1258878 MC1_07285 Hypothetical protein

Sp55 1245896 MC1_07200 tig Trigger factor

Sp56 1243741–1243742 Intergenic n/a

Sp57 1004249–1004250 Intergenic n/a

Sp58 1273429 MC1_07360 NAD(P) transhydrogenase subunit alpha

Sp59 1181227 Intergenic n/a

Sp60 1158028 MC1_01115 Hypothetical protein

Sp62 350030–350031 MC1_01915 Cytochrome c oxidase assembly protein

Sp63 109070 MC1_00650 �� Surface cell antigen (Sca2)

Sp64 314932 MC1_01745 �� Ankyrin repeat-containing protein (RARP-1)

Sp65 726967 Intergenic n/a

Sp66 615509–615510 MC1_03545 Hypothetical protein

Sp71 371351 MC1_02055 �� GTP-binding protein LepA

Sp72 83786 MC1_00525 Stage 0 sporulation protein J

Sp73 655844 MC1_03745 Putative transcriptional regulator

Sp74 991759–991760 MC1_05745 Hypothetical protein

Sp75 251100 MC1_01335 Ankyrin repeat-containing protein

Sp76 9674 Intergenic n/a

Sp78 672659 Intergenic n/a

Sp79 65481 Intergenic n/a

Sp80 1210788–1210789 MC1_07040 Outer membrane protein OmpA

Sp81 365135 MC1_02000 Cytochrome b

Sp82 549578–549579 MC1_03115 Cytochrome c oxidase polypeptide

Sp83 480829 MC1_02715 Hypothetical protein

Sp84 689140 Intergenic n/a

Sp85 514488 Intergenic n/a

Sp88 241435 MC1_01295 Thermostable carboxypeptidase

Sp90 1127301 MC1_06610 Hypothetical protein

Sp91 82796 MC1_00515 16S rRNA methyltransferase GidB

Sp92 1229489–1229490 MC1_07110 17 kDa surface antigen

Sp93 1223170 MC1_07070 Undecaprenyl-phosphate alpha-N-acetylglucosaminyltransferase

Sp94 774831 Intergenic n/a

Sp95 902617 MC1_05150 Patatin b1

Sp96 561640–561641 MC1_03180 Hypothetical protein

Sp97 641129–641130 MC1_03685 miaA tRNA delta(2)-isopentenylpyrophosphate transferase

Sp98 34100–34101 MC1_00220 Putative methyltransferase

Sp99 1104365 Intergenic n/a

Sp100 375061 Intergenic n/a

Sp101 152889–152890 Intergenic n/a

Sp102 406474–406475 MC1_02260 DNA mismatch repair protein MutS

Sp103 662735 MC1_03780 Hypothetical protein

Sp104 1161553 MC1_06745 Hypothetical protein

Sp105 593543–593544 MC1_03405 Acylamino acid-releasing protein

Sp106 1045462–1045463 MC1_06065 Outer membrane protein OmpB

Sp107 531709 MC1_03025 �� ampG protein

Sp108 1177263 MC1_06810 F0F1 ATP synthase subunit beta

(Continued)
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unlikely to reveal genes that are essential for invasion or intracellular growth. Therefore, we

cannot necessarily assess the relative importance of genes not identified in forward genetic

screens. Additionally, the reported protocol still has limits with regard to electroporation effi-

ciency and recovery on host cells, which makes it harder to adapt for large-scale mutagenesis

work. Continued optimization of the protocols we report—by further characterizing and

enhancing transformation efficiency and bacterial viability—will help investigators expand the

available toolkit to generate more Rickettsia mutants. Additional advancements in rickettsial

genetic methods will also be necessary to complement our work and more effectively probe

the molecular mechanisms of all genes whose products may control critical host-pathogen

interactions.
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