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Abstract Stromal fibroblasts influence the behavior of breast
epithelial cells. Fibroblasts derived from normal breast (NAF)
inhibit epithelial growth, whereas fibroblasts from breast
carcinomas (CAF) have less growth inhibitory capacity and
can promote epithelial growth. We sought to identify
molecules that are differentially expressed in NAF versus
CAF and potentially responsible for their different growth
regulatory abilities. To determine the contribution of soluble
molecules to fibroblast—epithelial interactions, NAF were
grown in 3D, transwell or direct contact co-cultures with
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MCF10AT epithelial cells. NAF suppressed proliferation of
MCFI10AT in both direct contact and transwell co-cultures,
but this suppression was significantly greater in direct co-
cultures, indicating involvement of both soluble and contact
factors. Gene expression profiling of early passage fibroblast
cultures identified 420 genes that were differentially expressed
in NAF versus CAF. Of the eight genes selected for validation
by real-time PCR, FIBULIN 1, was overexpressed in NAF,
and DICKKOPF 1, NEUREGULIN 1, PLASMINOGEN
ACTIVATOR INHIBITOR 2, and TISSUE PLASMINOGEN
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ACTIVATOR were overexpressed in CAF. A higher expres-
sion of FIBULIN 1 in normal- than cancer-associated
fibroblastic stroma was confirmed by immunohistochemistry
of breast tissues. Among breast cancers, stromal expression
of Fibulin 1 protein was higher in estrogen receptor o-
positive cancers and low stromal expression of Fibulin 1
correlated with a higher proliferation of cancer epithelial
cells. In conclusion, expression profiling of NAF and CAF
cultures identified many genes with potential relevance to
fibroblast—epithelial interactions in breast cancer. Further-
more, these early passage fibroblast cultures can be
representative of gene expression in stromal fibroblasts in
vivo.

Keywords Breast cancer - Fibroblasts - Fibulin 1 -
Gene expression profiling - Stroma

Abbreviations

3D Three dimensional

BrdU Bromodeoxyuridine

CAF Carcinoma-associated fibroblasts
DKK1 DICKKOPF 1

ECM Extracellular matrix

FBLN1 FIBULIN 1

FITC Fluorescein isothiocyanate

MMP1  MATRIX METALLOPROTEINASE 1

NAF Fibroblasts derived from normal breast
NRG1  NEUREGULIN 1

PAI2 PLASMINOGEN ACTIVATOR INHIBITOR 2
PLAT TISSUE PLASMINOGEN ACTIVATOR

QRT Quantitative real-time PCR

THBS3 THROMBOSPONDIN 3

TFPI2  TISSUE FACTOR PATHWAY INHIBITOR 2
Introduction

Breast tumorigenesis is a multifaceted process involving
molecular and functional alterations in both the stromal and
epithelial compartments of the breast. The interaction
between these two compartments is important in the
tumorigenic process and is rooted in a complex network
of molecules belonging to families of growth factors,
immunomodulatory factors, steroid hormones, and extra-
cellular matrix (ECM) components and proteases [1-3].
Several studies indicate that stromal fibroblasts surrounding
normal and cancerous breast epithelium exert a modulatory
effect on the epithelium, the nature of which is dependent
upon the state of the fibroblasts and the epithelium [3-5].
Specifically, stromal fibroblasts in normal breast serve a
protective function and exert inhibitory signals on the
growth of normal epithelium, while cancer-associated
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stromal fibroblasts act more permissively and allow or
promote growth of normal and cancer epithelium. In vitro
studies with normal-breast associated fibroblasts (NAF)
demonstrate that NAF inhibit the growth of the non-
tumorigenic breast epithelial cell line, MCF10A, and its
more transformed, tumorigenic derivative, MCF10AT [3, 5].
In vivo, admixed NAF exert an inhibitory effect on
histologically normal epithelium but also limit cancer
development and growth as shown in the MCF10AT
xenograft model of proliferative breast disease [6].

Conversely, fibroblasts derived from breast cancer
tissues (CAF) possess permissive or promoting abilities
for epithelial cell growth both in vitro and in vivo and
exhibit molecular and functional characteristics similar to
that of activated stromal fibroblasts normally associated
with wound healing [3, 4]. In contrast to NAF, CAF
proliferate at a higher rate and secrete increased levels of
growth factors, ECM proteins and immunomodulatory
factors [2, 7-9]. The ability of CAF to modulate epithelial
cell growth is dependent on the phenotype of the
corresponding epithelium. As has been previously shown,
CAF inhibit the growth of the MCF10A cells in vitro [3]
but promote the growth of breast cancer cell lines, such as
MCF-7, in vitro and in vivo [4, 10, 11]. Therefore, the
biologic effect of CAF is influenced by the molecular and
functional properties of the CAF and the responsiveness of
the epithelial cells. Only a few specific molecules derived
from CAF, such as Stromal Derived Factor 1 and
Hepatocyte Growth Factor, have been shown to contribute
to the tumorigenic process [4, 12]. Given the complexity of
these stromal—epithelial interactions and the molecular
heterogeneity of breast cancers, there are likely many more
fibroblast-derived molecules important in breast carcino-
genesis and cancer progression that remain to be identified.

In this work, we identify genes that are differentially
expressed in NAF and CAF. These gene products may be
associated with a growth inhibitory function of normal
breast stroma and a growth permissive or promoting
function of breast cancer stroma. Our data also indicate
that fibroblast—epithelial interactions involve both insoluble
and soluble secreted molecules. Insoluble molecules may
be embedded in the ECM or located on cell membranes.
Using gene expression profiling and quantitative RT-PCR,
we identified multiple genes, encoding both soluble and
matrix-bound molecules, that are differentially expressed in
in vitro cultures of NAF and CAF and that are associated
with remodeling of the ECM and/or are secreted proteins
that affect the growth of epithelial cells. Additionally, our
data confirm that the differential expression of the ECM
glycoprotein Fibulin 1 (FBLN1) in NAF and CAF cultures
recapitulated expression of FBLNI in the fibroblastic
stroma of histologically normal breast and breast cancer
tissues.



Differences between NAF and CAF

11

Materials and Methods
Maintenance of Epithelial Cell Lines and Fibroblasts

MCF10AT cells (Karmanos Cancer Institute, Detroit,
Michigan) were cultivated in Dulbecco’s Modified Eagle’s
Medium/Ham’s F-12 (Cambrex, Walkersville, MD) supple-
mented with 0.1 pg/ml cholera toxin (Calbiochem, San
Diego, CA), 10 pg/ml insulin (Sigma, St. Louis, MO),
0.5 pg/ml hydrocortisone (Sigma), 0.02 pg/ml epidermal
growth factor (Upstate Biotechnology, Lake Placid, NY)
and 5% horse serum (Invitrogen, Carlsbad, CA) in a
humidified, 5% CO,, 37°C incubator.

Human breast fibroblasts from mammoplasties and breast
cancer resections were isolated and characterized by immu-
nocytochemistry as per Sadlonova et al. [3]. Fibroblasts were
subjected to immunocytochemical evaluation with anti-
vimentin (mouse IgGl, clone V9; Neomarkers, Fremont,
CA, USA), anti-epithelial membrane antigen (mouse IgG2a,
clone ZCE113; Zymed, San Francisco, CA, USA), and anti-
cytokeratin (CK) 5/CK 8 (mouse IgGl, clone C-50; Neo-
markers) as confirmation of their stromal origin (i.e. strong
vimentin expression, and absence of epithelial membrane
antigen and CK 5/CK 8). Fibroblasts were cultured in
Dulbecco’s Modified Eagle’s Medium supplemented with
10% fetal bovine serum.

Oligonucleotide Microarray Hybridization and Analysis

RNA was isolated from subconfluent cultures, passages 2—
4, of two NAF (isolated by us from two different
individuals) and three CAF (two cultures isolated by us
from two different individuals and the Hs574T cell line, a
CAF purchased from the American Type Culture Collection
(Manassas, VA)) using TRIzol® reagent (Invitrogen).
Biotinylated cRNA probes were generated from the isolated
RNA and hybridized individually to high-density oligonucleo-
tide microarrays (Hu95A array, Affymetrix, Santa Clara, CA).
Hybridization was detected using a streptavidin—phycoerythrin
conjugate and quantified with a high-resolution scanner.

RNA Isolation and Real-Time PCR

RNA was isolated from eight NAF and seven CAF cultures
(all isolated by us from different individuals), passages 3—6,
followed by RNA clean-up with RNeasy® Minikit columns
(Qiagen, Valencia, CA). All RNA samples were subjected to
DNase pretreatment prior to cDNA synthesis. RNA was
converted into double stranded cDNA using the High-
Capacity cDNA Archive kit (Applied Biosystems, Foster
City, CA). Primer/probe sets for DICKKOPF 1 (DKK1),
FIBULIN 1 (FBLN1), MATRIX METALLOPROTEINASE 1
(MMP1), NEUREGULIN 1 (NRG1), PLASMINOGEN

ACTIVATOR-INHIBITOR 2 (PA12), THROMBOSPONDIN 3
(THBS3), TISSUE PLASMINOGEN ACTIVATOR (PLAT),
and TISSUE FACTOR PATHWAY INHIBITOR 2 (TFPI2)
(TagMan® Gene Expression Assays-on-Demand™, Applied
Biosystems, Foster City, CA) interrogated the following
sequences: DKK1—Hs00183740 ml, reference sequence
NM 012242; FBLN1—Hs00242545 ml, reference sequen-
ces NM_ 001996, NM_006487, NM_006486, NM_006485;
FBLNIC—Hs00242546 _ml1, reference sequences
NM 001996; FBLN1D—Hs00972628 ml, reference se-
quence NM_006486; MMP1—Hs00233958 ml, reference
sequence NM_002421; NRG1—Hs00247620 ml, reference
sequences NM 004495, NM 013958, NM 013957,
NM 013956, NM 013964, NM 013962, NM 013961,
NM 013960; PAI2—Hs00234032 ml, reference sequence
NM_002575; PLAT—Hs00263492 ml, reference sequences
NM 033011, NM_000931, NM_000930; THBS3—
Hs00200157 ml, reference sequence NM 007112; TFPI2—
Hs00197918 ml, reference sequence NM_006528.

Sequences for the ribosomal S9 primer/probe set follow: F-
5" ATCCGCCAGCGCCATA 3', R-5" TCAATGTGCT
TCTGGGAATCC 3', probe-5' 6FAMAGCAGGTGGTGAA
CATCCCGTCCTTTAMRA 3.

Each culture was assayed in triplicate and each reaction
contained 1 pl cDNA, 12.5 pl 2x TagMan® Universal PCR
Master Mix (Applied Biosystems), 1.25 ul TagMan® Gene
Expression Assays-on-Demand™ primer/probe set for each
target. Fluorescent signal data was collected by the ABI
Prism 7700 Sequence Detection System. Ribosomal S9 was
used as the internal reference and was selected because it
exhibits minimal variability in tissues of different origins
[13]. The standard curve method was employed to
determine relative expression levels of each gene.

Measuring Proliferation of MCF10AT Cells Grown
with Fibroblasts in 3D Direct and Transwell Co-cultures

In 3D direct and transwell co-cultures, the ratio of epithelial
cells to fibroblasts was 2:1. Cells were grown in serum free
medium and plated on a layer of Growth-Factor-Reduced
Matrigel (BD Biosciences, Franklin Lakes, NJ), as previ-
ously described [3]. For 3D direct cultures, cells were
grown in eight-well chamber slides following the protocol
in Sadlonova et al. [3] For transwell experiments,
MCF10AT cells and fibroblasts were grown in separate
compartments with the epithelial cells plated in the
Matrigel-coated well and the fibroblasts in the Matrigel-
coated insert (0.4 uM pore size, polyester, Corning Costar,
Lowell, MA). Cultures were incubated in a 37°C, 5% CO,
humidified incubator for 14 days. To label proliferating
cells, 0.2 mg/ml bromodeoxyuridine (BrdU) was applied to
all cultures for 24 h. BrdU-labeled cells were counted by
flow cytometry, as previously described [3]. Briefly,
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MCF10AT cells were stained with fluorescein isothiocyanate
(FITC)-conjugated anti-BrdU (mouse IgG,, clone B44, BD
Biosciences Immunocytometry Systems). In direct co-
cultures, MCF10AT cells were distinguished from fibroblasts
by labeling with an allophycocyanin-conjugated anti-
EpCAM (mouse IgGl, clone EBA-1; BD Biosciences
Immunocytometry Systems). Negative controls included
staining with FITC-conjugated IgG; (mouse IgG;, k isotype
control, BD Biosciences Pharmingen). Cells were analyzed
on a BD FACS Calibur™ flow cytometer (BD Biosciences),
and the percentage of BrdU-FITC positive MCF10AT cells
was calculated.

Immunohistochemistry for FBLN1, Estrogen Receptor
and Ki-67

Formalin-fixed, paraffin-embedded breast cancers (n=35),
corresponding uninvolved breast tissue (#=32) and tissue
from breast reduction specimens (n=7) were obtained from
the archives of the University of Alabama at Birmingham
Department of Pathology and clinical information was
obtained from the Department of Surgery after Institutional
Review Board Approval. Our methods of performing
immunohistochemistry have been reported in the literature
[14—17]. For estrogen receptor (ER) and Ki-67 staining,
sections (5 pwm thick) were subjected to low temperature
antigen retrieval with enzymatic pretreatment, which con-
sists of pre-digestion in 0.1% trypsin (Type II-S from
porcine pancreas, Sigma Chemicals, St. Louis, MO) in
phosphate buffered saline for 15 min in a 37°C oven
followed by incubation in 10 mM citrate buffer, pH 6, for
0 h at 80°C, as previously described [14]. Sections for
FBLNI1 staining did not require antigen retrieval. All
sections were incubated with an aqueous solution of 3%
hydrogen peroxide for 5 min followed by incubation with
1% goat serum. Sections were incubated with two mono-
clonal antibodies to FLBNI1 (clone B-5, Santa Cruz
Biotechnology, Santa Cruz, CA at 1 pg/ml or clone A311,
from the laboratory of Scott Argraves [18], at 1 pg/ml), a
monoclonal antibody to ERx (clone ER88, Biogenex, San
Ramon, CA, at 1:30 dilution (0.33 mg/ml total protein)) or
a monoclonal antibody to Ki-67 (clone MIB-1, Biogenex,
San Ramon, CA, at 1:30 dilution (0.37 mg/ml total
protein)) diluted in phosphate buffered saline (pH 7.6)
containing 1% bovine serum albumin, 1 mM ethylenedi-
amine tetraacetic acid, and 1.5 mM sodium azide for one
hour at room temperature. This was followed by secondary
detection with a streptavidin horseradish peroxidase system
(Signet Laboratories) and diaminobenzidine was utilized as
the chromogen. Negative control slides, without addition of
primary antibody, were also prepared.

All immunohistochemical stains were examined and
scored by two of the authors (ARF and AS) concurrently.
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To semi-quantify FBLN1 immunostaining, a scoring sys-
tem based on both staining intensity and percentage of cells
or area stained was utilized, as previously described [14,
15, 17]. In this system, the intensity of staining is graded
from 0 (no staining) to 4 (greatest staining possible). The
proportion of cells/area staining at each intensity is
multiplied by the corresponding intensity value and these
products are added to obtain an immunostaining score
(immunoscore) ranging from 0 to 4. For ERx and Ki-67,
the percentage of cancer epithelial cells with nuclear
staining was quantified.

Statistical Analysis

Microarray array images were processed to extract expression
quantification with MAS 5 using the Affymetrix GCOS
software. High-Dimensional-Biology-Statistics (HDBStat!;
Department of Biostatistics, University of Alabama at
Birmingham [19]) was used for analysis of the gene
expression data, including quantile-quantile normalization,
quality control and comparison of gene expression. Genes
determined to be differentially expressed and chosen for
validation had a fold difference of at least 2.5 and a p value<
0.05 by the equal variance ¢ test. The percentage of BrdU
and Ki-67 positive cells, real-time PCR expression values
and tumor size were compared by the ¢ test for unequal
variances. The proportion of patients with positive lymph
nodes in FBLNI1 low versus high breast cancers was
compared using Fisher’s exact test. Immunohistochemical
scores for FBLN1 were compared by the Wilcoxon signed
rank two sample test or the Mann Whitney test, as
appropriate.

Results

Gene Expression Profiling of NAF and CAF Revealed
Many Differentially Expressed Genes

We have previously shown that NAF have a greater ability
to inhibit epithelial cell growth than CAF in direct contact
co-cultures [3]. To identify molecules through which NAF
may inhibit epithelial growth to a greater extent than CAF,
the gene expression profiles of NAF and CAF were
compared. Affymetrix Hu95A arrays interrogating approx-
imately 10,000 full length genes were used to compare gene
expression. Early passage NAF (two cultures) and CAF
(three cultures) were used. Each of the fibroblast cultures
were from a different individual. The comparison of mean
expression in NAF versus CAF yielded 420 genes that were
differentially expressed with a p value<0.05 and at least a
2.5-fold difference in expression level. Of the 420 differ-
entially expressed genes, 180 were overexpressed in NAF
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and 240 overexpressed in CAF (Supplemental Tables 1
and 2).

NAF Suppressed Proliferation of MCF10AT Epithelial
Cells Through Soluble and Insoluble Factors

To assist us in selecting genes identified as differentially
expressed by expression microarray for validation, we wanted
to know if both soluble and insoluble secreted factors were
important in the growth inhibition of epithelial cells induced by
NAF. To determine this, we prepared 3D transwell and direct
co-cultures of MCF10AT epithelial cells and NAF. Transwell
co-cultures allow assessment of soluble secreted molecules
that can traverse the filter to influence cells in a paracrine
manner. In direct co-cultures, the roles of both soluble secreted
molecules and insoluble molecules, such as matrix- or
membrane-bound molecules that depend on direct contact
between cells or between cells and the ECM, can be analyzed.
In transwell co-cultures, the mean percentage of MCF10AT
cells labeled by BrdU (i.e., BrdU labeling index) was
decreased by 20% in co-culture with NAF (p=0.011). The
NAF utilized were derived from three different individuals. In
direct co-cultures, the mean reduction in BrdU labeling by the
same three NAF was 46% (p<0.001) (Fig. 1). There was
variability among the three NAF in their ability to inhibit
proliferation of MCF10AT, particularly in direct contact co-
cultures. The greater reduction in proliferation of MCF10AT
in direct versus transwell co-culture was significant (p=0.04)
(Fig. 1). These results indicate that inhibition of epithelial
growth by NAF is mediated by a mixture of direct-contact/
insoluble and soluble factors. Therefore, we selected differ-
entially expressed genes from the microarray analysis
encoding both soluble and matrix-bound, insoluble molecules
for validation by quantitative, real-time PCR (QRT).

Expression of a Subset of Differentially Expressed Genes
was Confirmed by Real-Time PCR

We selected eight genes from the list of 420 differentially
expressed genes in NAF and CAF for validation by QRT
(Fig. 2a, Supplemental Tables 1 and 2). The primary
criterion for selecting genes for validation was that they
encoded a secreted protein, either soluble or matrix-bound,
that was known to regulate cell growth, migration, invasion
and/or ECM remodeling. Among those selected, some
genes had a high fold expression ratio (PAI2 and TFPI2
with a 51-52-fold CAF/NAF expression), a medium fold
ratio (DKK1 and MMP1 with a 9-10 fold CAF/NAF
expression), and a lower fold ratio (NRG1 and PLAT with a
4-fold CAF/NAF expression; FBLN1 and THBS3 with a 4—
5 fold NAF/CAF expression). For validation by QRT
analysis, early passage NAF and CAF derived from eight
and seven different individuals, respectively, were used.
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Fig. 1 Proliferation of MCF10AT in 3D direct and transwell co-
cultures with NAF. Direct and transwell 3D (i.e., in Matrigel) co-
cultures of MCF10AT cells with each of three NAF from different
individuals were prepared. BrdU labeling of MCF10AT cells was
counted by flow cytometry. Each NAF (i.e., NAF1, NAF2 and NAF3)
suppressed proliferation of co-cultured MCF10AT cells to some extent
in transwell co-cultures, and two of the three NAF (i.e., NAF1 and
NAF3) suppressed proliferation of MCF10AT in direct co-cultures.
When comparing the overall reduction in proliferation of MCF10AT
induced by the three NAF in all transwell co-cultures combined (n=
10, checkered bar) to MCF10AT grown without co-cultured NAF
(black bar), the decrease in proliferation was significant (p=0.011).
Similarly, the overall decrease in proliferation induced by the three
NAF in all direct co-cultures combined (n=14, checkered bar)
compared to MCF10AT monocultures (black bar) was significant
(»<0.001). However, the degree of suppression was significantly
greater in direct than transwell co-cultures (p=0.04). Data are
normalized to corresponding MCF10AT monocultures. Mean and
standard error are shown

Two genes overexpressed in NAF cultures were selected
for validation: the ECM protein FBLN1 (5.4 fold greater,
p=0.011) and the ECM glycoprotein THBS3 (4.1 fold
greater, p=0.014) (Fig. 2a and Supplemental Table 1). Of
these two genes, FBLN1 expression was confirmed to be
higher among NAF cultures compared to CAF cultures by
QRT (Fig. 2b). No difference in expression was detected
between NAF and CAF for THBS3 (Fig. 2b).

Six genes overexpressed in CAF were selected for
validation: the Wnt antagonist DKK1 (9.8 fold greater, p=
0.002), MMP1 (10.3 fold greater, p=0.016), NRG1 (4.1 fold
greater, p=0.010), TFPI2 (51.5 fold greater, p=0.001), which
is involved in the regulation of coagulation, and two members
of the plasminogen activating/plasmin system—PAI2 (also
known as SERPINB2, 52.2 fold greater, p=0.015) and PLAT
(also known as tPA, 4.2 fold greater, p=0.041) (Fig. 2a and
Supplemental Table 1). In the QRT validation analysis, the
expressilon of DKKI1, NRGI, PAI2, and PLAT was
confirmed to be higher in CAF cultures (p<0.05) (Fig. 2b).
The expression of MMP1 was also found to be higher in
CAF than NAF, but this difference reached only borderline
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Fig. 2 Results of expression
array analysis and QRT of 60=
genes selected for validation.

a Graphical presentation of ex- 55
pression array data for the eight
significantly (p<0.05) differen-
tially expressed genes selected
for QRT validation. Mean ex-
pression of two NAF and three
CAF cultures is presented rela-
tive to the expression in NAF
(NAF expression=1). b Expres-
sion of selected genes as
assessed by QRT in eight NAF
and seven CAF cultures. Mean
expression and standard devia-
tion are presented relative to
expression in NAF. Significant
differences in expression in
NAF and CAF were found for
FBLN1 (»p<0.001), DKK1 (p=
0.033), NRG1 (p=0.043), PAI2
(»p=0.002), and PLAT (p=
0.037), indicated by asterisks
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statistical significance (p=0.065) (Fig. 2b). There was no dif-
ference in expression of TFPI2 in NAF and CAF. Therefore,
FBLNI1, DKK1, NRG1, PAI2, and PLAT were confirmed to
be differentially expressed in NAF and CAF by QRT.

Expression of FBLN1 Was Reduced in Breast Cancer Stroma

To identify genes differentially expressed in NAF and CAF,
we used in vitro cultures of fibroblasts isolated from breast
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tissues. We used early passages of these cells in an attempt
to reduce changes in gene expression induced by cell
culture. However, gene expression can differ in vitro and in
vivo. To determine whether any of the expression differ-
ences in NAF and CAF identified in vitro are reflective of
expression in breast tissues ex vivo, expression of FBLNI
in the fibroblastic stroma (fibroblasts and ECM) surround-
ing breast epithelium was assessed by immunohistochem-
istry in cancers and corresponding benign, histologically
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Fig. 3 Immunostaining for A
FBLNI1. a FBLN1 expression
by immunohistochemistry with
either A311 or B-5 antibody is
lower in the stroma of breast
cancers (n=32) than in the
stroma of corresponding benign
breast (n=32) from the same
individual (»p<0.001 and
p=0.047 for antibodies A311 or
B-5, respectively). Expression in
the stroma of benign breast
(from breast cancer resection
specimens) and in normal breast
(from mammoplasty specimens)
(n=7) is similar. Expression of
FBLNI1 is greater in cancer B

Stromal Expression

FBLN1 Immunoscore

[

Epithelial Expression
Bl Antibody A311 OB *

E=1 Antibody B-5 4
‘go.-i-
§o.3-
Euz-
gm-
0.0-L 18 p =
) & B & &
"P&p & c?o" Qp&p & (Pé‘
Cancer

epithelium than benign epitheli-
um with the A311 antibody
(»=0.002). The mean immuno-
score and standard error are
shown. b Immunohistochemical
staining of one breast cancer
and corresponding benign breast
demonstrating greater staining
of stroma (S) (both extracellular
matrix and fibroblasts) sur-
rounding epithelial structures in
benign breast than in breast
cancer. In this particular case,
immunostaining is greater in
cancer epithelium (£) than in
benign epithelium with both
antibodies. (bar=50 pm)

normal breast from breast cancer resection specimens and
in normal breast tissue from breast reduction specimens
(Fig. 3b). We selected FBLN1 for further validation
because (1) it has been reported to suppress the growth
and motility cancer cells [20-22], (2) the fold difference in
expression between NAF and CAF was relatively high
(Fig. 2b), and (3) antibodies suitable for use in formalin-
fixed, paraffin-embedded tissues were readily available.
Two different monoclonal antibodies to FBLN1 were used,
A311 and B-5. Both antibodies identify all documented
splice variants and recognize epitopes located at the N-
terminus of FBLN1 protein [23].

Thirty-two breast cancers and corresponding uninvolved,
histologically normal tissue (i.e., benign) from the same
breast cancer resection specimen, as well as tissue from
seven breast reduction specimens (i.e., normal) were stained
with both anti-FBLNI1 antibodies. The histologic sections
of benign breast selected for analysis were derived from an
area of the breast not immediately adjacent to the breast
cancers. The immunostaining was semi-quantified using a
scoring system that combines the number of cells or area
stained and the intensity of the staining. This scoring
system has been used by us and others previously [14—17].
Stroma surrounding histologically normal breast epithelium
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Table 1 Stromal immunoscores for FBLN1 in 32 matching pairs of benign breast and breast cancer

Benign/cancer pair Antibody A311

Stromal immunoscore

Benign/cancer pair Antibody B-5

Stromal immunoscore

Benign Cancer Fold difference® Benign Cancer Fold difference®
A 0.53 0.04 13.13 A 1.00 0.18 5.71
B 1.00 0.13 7.69 C 1.80 0.63 2.88
C 1.15 0.18 6.27 B 1.50 0.65 2.31
D 1.18 0.33 3.62 G 1.60 0.85 1.88
E 1.24 0.47 2.64 P 1.55 0.83 1.88
F 1.75 0.70 2.50 S 2.20 1.40 1.57
G 1.05 0.43 2.47 I 1.80 1.15 1.57
H 1.10 0.50 2.20 \Y% 1.60 1.08 1.49
I 1.35 0.63 2.16 F 1.60 1.13 1.42
J 0.76 0.36 2.10 J 1.46 1.06 1.38
K 0.96 0.48 2.02 N 1.90 1.40 1.36
L 1.50 0.75 2.00 Q 1.50 1.13 1.33
M 1.21 0.71 1.70 H 1.10 0.85 1.29
N 1.23 0.83 1.48 D 1.35 1.05 1.29
(0) 1.70 1.15 1.48 (0) 1.48 1.15 1.28
P 0.95 0.65 1.46 T 1.60 1.25 1.28
Q 1.35 0.93 1.46 z 1.88 1.50 1.25
R 0.85 0.60 1.42 E 0.85 0.75 1.13
S 1.30 0.93 1.41 BB 1.28 1.13 1.13
T 1.25 0.93 1.35 M 1.40 1.27 1.11
U 1.13 0.90 1.25 L 2.33 233 1.00
\% 0.90 0.80 1.13 R 1.35 1.40 0.96
W 1.05 0.99 1.07 W 1.73 1.85 0.93
X 1.08 1.05 1.02 X 1.45 1.60 0.91
Y 0.53 0.53 1.00 U 1.48 1.65 0.89
z 1.03 1.05 0.98 CC 1.60 1.90 0.84
AA 1.00 1.23 0.82 DD 1.20 1.45 0.83
BB 0.71 0.98 0.72 AA 1.40 1.80 0.78
CC 0.95 1.35 0.70 Y 0.75 1.00 0.75
DD 0.93 1.35 0.69 FF 0.80 1.08 0.74
EE 0.93 1.65 0.56 EE 1.35 2.05 0.66
FF 0.59 1.15 0.51 K 0.65 1.25 0.52

“*Benign/Cancer

and within breast cancers was immunoscored. The mean
immunoscore for FBLN1 was significantly higher in
stromal fibroblasts and associated ECM in benign breast
than in cancer-associated stromal fibroblasts and ECM
when using either antibody A311 (»p=0.001) or antibody B-
5 (p=0.047) (Fig. 3a). Of the 32 breast cancer and benign
tissue pairs, FBLN1 expression was higher in benign
stroma than cancer-associated stroma in 75% and 63% of
cases immunostained with antibody A311 and antibody
B-5, respectively (Table 1). Because the NAF cultures were
derived from the breasts of women without cancer, we also
assessed expression of FBLNI in breast reduction speci-
mens. The mean immunoscore was similar in the fibroblastic
stroma of the normal breast in reduction specimens and the
benign tissue from breast cancer patients, stained with either
antibody (Fig. 3a). These results indicate that expression of
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FBLNT1 is reduced in CAF in vitro and in the fibroblastic
stroma of breast cancer ex vivo.

We also noted that the cytoplasm of epithelial cells in
some breast cancers stained more strongly than the
epithelium in the histologically normal counterpart. The
normal or benign epithelium did not stain with the B-5
antibody, whereas there was cytoplasmic staining of
epithelium using the A311 antibody (Fig. 3b). With the
A311 antibody, the mean immunoscore of the benign
ductolobular epithelium in cancer resection specimens was
3-fold lower than in the corresponding cancer epithelium
(»=0.002). A similar result with the A311 antibody was
previously reported [18]. The epithelium of five breast
cancers stained with the B-5 antibody, but there was no
significant difference in staining between benign and cancer
epithelium (p=0.082) (Fig. 3a).
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Fig. 4 Expression of FBLNI isoforms in NAF and CAF cultures.
Expression of FBLN1C and FBLNID was assessed by QRT using
isoform-specific primer/probe sets in all eight NAF and seven CAF.
Expression of FBLN1C and FBLN1D was lower in CAF than NAF
(»=0.008 and p=0.011, respectively, marked by asterisks). Further-
more, the ratio of FBLNIC to FBLNID did not differ in NAF and
CAF. The mean and standard deviation are shown

The Ratio of Expression of FBLN1 Isoforms
did not Differ in NAF and CAF Cultures

There are four different splice variants of FBLN1 named A,
B, C and D. Only FBLNIC and FBLNID have been
detected in breast cancer cell lines and tissues [18].
Furthermore, it has been reported that the ratio of mRNA
expression of FBLN1C to FBLNI1D is increased in breast
cancers in comparison to corresponding normal breast [24].
Additionally, expression of FBLNIC is induced by estro-
gen [25], which suggests a potential mechanism for the
increased expression of FBLNIC in breast cancer. To
determine whether there was a similar increase in the ratio
of FBLNIC to 1D in CAF compared to NAF, we assessed
expression of FBLN1C and FBLNI1D in the NAF and CAF
cultures by QRT. Expression of both FBLNIC and
FBLNID isoforms was significantly lower in CAF than
NAF (p=0.008 and p=0.011, respectively), and the ratio of

Table 2 Breast cancer clinicopathologic data

Age (years) 27-83
Race (%)

White 73
African American 24
Other 3
Tumor size (cm) 1.1-12.0
Lymph node status (%)

Positive 49
Negative 40
Unknown 11
Pathologic stage (%)

I-11 57
HI-1v 29
Unknown 14

1C to 1D was similar in NAF and CAF (Fig. 4). Because all
FBLNI antibodies available recognized both fibulin iso-
forms, we were unable to compare isoform expression in
the stroma of the breast tissues by immunohistochemistry.

Expression of FBLN1 is Higher in Estrogen
Receptor-Positive than Estrogen Receptor-Negative
Carcinomas

Because expression of FBLNI1C is induced by estrogen
through estrogen receptor (ER) « [23, 24], we determined
whether expression of FBLNI1 differed in ERo-positive
versus -negative carcinomas. Thirty-five breast cancers (the
32 cancers with corresponding normal breast plus three
additional cancers without corresponding normal breast)
were divided into ERa-positive and -negative subtypes,
based on a the percentage of cells with nuclei that stained
for ERx (i.e., less than 10%=ER« negative). Clinical and
pathologic information related to these 35 cancers is
summarized in Table 2. The immunoscores for FBLNI1
were compared between ERo-positive and -negative carci-
nomas. Using the A311 antibody, FBLNI1 in the stroma was
significantly higher in ERx-positive than -negative cancers
(»=0.032, Fig. 5). The mean FBLNI immunoscore in
cancer stroma with the B-5 antibody was also higher in
ERo-positive cancers, but this did not reach statistical
significance (p=0.097). Similarly, the mean FBLNI immu-
noscore in cancer epithelium with either the A311 or B-5
antibody was higher in ERa-positive cancers, but this was
not statistically significant (p=0.307 and p=0.167, respec-
tively) (Fig. 5). These findings further support an associa-
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A311 B-5 A311 B-5
Stromal Epithelial
Expression Expression

Fig. 5 Comparison of FBLN1 immunoscores in ERx-positive and -
negative breast cancers. FBLNI expression was assessed by immu-
nohistochemistry in 35 breast cancers. Nineteen were ERx-negative,
14 were ERo-positive and the ER status was unknown in two.
Expression of FBLN1 was higher in the fibroblastic stroma of ER«x-
positive cancers than ERx-negative cancers, but this was statistically
significant with antibody A311 (p=0.032) only. The difference in
FBLNI1 expression in the epithelium of ERo-positive versus -negative
cancers was not statistically significant. The mean immunoscore and
standard error are presented
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tion between FBLN1 expression, particularly in the stroma,
and the presence of ERx in cancer epithelial cells.

Higher Expression of FBLN1 in Fibroblastic Stroma
is Associated with Lower Rates of Cancer Proliferation

FBLNI has been demonstrated to inhibit in vitro adhesion
and motility of various cancer cell lines, including breast
cancer [20, 21], and to suppress the growth of human
fibrosarcoma cells [22]. Therefore, its loss in breast cancer
stroma may allow enhanced growth and invasion of cancer
cells. We compared proliferation of cancer epithelial cells in
breast cancers with higher versus lower expression of
FBLNI in both stroma and epithelium. The mean FBLN1
immunoscore for each antibody in cancer stroma or
epithelium was used as the corresponding cut-off value
for higher versus lower expression. Proliferation was
determined by immunohistochemistry for Ki-67. In general,
the rate of proliferation (i.e., the percentage of epithelial
cells labeled by Ki-67) was lower in breast cancers with
higher stromal FBLN1 expression (Fig. 6a). However, this
difference was only statistically significant for stromal
FBLNI assessed with the A311 antibody (p=0.034), but
not with the B-5 antibody (p=0.178) and not for epithelial
FBLNI1 with either antibody (A311, p=0.468; B-5, p=
0.173). To determine whether there was any correlation
between FBLNI expression in breast cancers and other
indicators of invasiveness and growth (i.e., tumor size and
lymph node metastasis) of the breast cancers, we compared
these parameters in cancers with higher versus lower
FBLNI immunoscores in stroma or epithelium with both
antibodies. There was no significant difference in tumor

Ki-67 B

J>

Tumor Size C

size or the percentage of patients with lymph node
metastases in FBLN1 higher versus FBLN1 lower (stromal
or epithelial expression) cancers (Fig. 6b,c).

Discussion

The vast array of molecules involved in breast stromal—
epithelial interactions makes it difficult to identify dominant
molecules affecting breast cancer initiation and progression.
The ambiguity of the spatial and temporal origin of
carcinogenesis-related functional and molecular alterations
adds another layer of complexity. Even though these
alterations have been identified in both stromal and
epithelial compartments early in the carcinogenic process
[26-28], it is still unclear which compartment is affected
first—the epithelium, stroma or both of them simultaneous-
ly. These complex issues emphasize a need for additional
assessment of the molecular and functional signatures of
fibroblasts in normal and cancerous tissues that can
eventually expand our understanding of the role of
fibroblast—epithelial interactions in cancer.

Results from the current study complement our previous
work demonstrating that NAF have a greater inhibitory
effect on the proliferation of breast epithelial cells than
CAF [3]. We now show that both soluble and matrix- or
membrane-bound molecules are important for the inhibitory
signal. The greater inhibition of epithelial growth by NAF
in direct co-cultures is likely a result of the closer proximity
of epithelial cells and fibroblasts allowing for direct contact
between different cell types and their ECM. However,
significant inhibition of epithelial cell growth by NAF in

Lymph Node Status

(72}
> @l Low FBLN1 Expression EE Low FBLN1 Expression ° I Low FBLN1 Expression
% 50+ [ High FBLN1 Expression __ 61 [ High FBLN1 Expression & 601 [ High FBLN1 Expression
S £ o
2 404 < z
a 2 4 g 404
W 30 £ x
® 8 P
2 20 a 2
a
%" F £
£ ] = ] B |
'S A311 -5 A311 B-5 A311 -5 A311 B-5 *® A311 B-5 A311 B-5
(4
s Stromal Epithelial Stroma_l Epithelial Stromal Epithelial
Expression Expression Expression Expression Expression Expression

Fig. 6 Proliferation, tumor size, and lymph node status in breast
cancers with lower versus higher FBLN1 expression. Thirty-five
breast cancers were assessed for FBLNI expression by immunohis-
tochemistry using antibody A311 or B-5. Cancers were divided into
lower versus higher FBLN1 expression in stroma or epithelium based
on the mean immunoscore for stromal or epithelial expression with
each antibody (i.e., mean FBLNI immunoscore was 0.74 for stromal
expression with A311, 1.19 for stromal expression with B-5, 0.37 for
epithelial expression with A311, and 0.08 for epithelial expression
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with B-5) (as in Fig. 3). a Proliferation, as measured by Ki-67 labeling
of cancer epithelial cells, was lower in cancers with higher stromal
expression of FBLNI, but this was statistically significant only with
the A311 antibody (p=0.034). There was no significant difference in
proliferation in cancer with higher versus lower epithelial expression
of FBLNI1. b, ¢ There was no difference in tumor size (b) or the
percentage of patients with positive lymph nodes (¢) in breast cancers
with higher versus lower stromal or epithelial FBLN1
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transwell cultures indicates that soluble secreted factors are
also important. Therefore, our selection of differentially
expressed genes for validation included soluble secreted
factors, ECM-bound proteins and molecules that contribute
to remodeling of the ECM.

Remodeling of the ECM is characteristic of the stromal
response to cancer, contributes to the tumor microenvironment
and results in molecular alterations that affect cancer behavior
[29, 30]. In CAF, we observed significant overexpression of
several molecules involved in ECM remodeling—PAI2 and
PLAT. PAI2 inhibits ECM remodeling by inhibiting uroki-
nase plasminogen activator (uPA) [31-33], while PLAT
activates a variety of proteins embedded in the ECM by
cleaving plasminogen to plasmin and thereby promoting
tissue degeneration and ECM remodeling [34, 35]. Over-
expression of TFPI2 in CAF was not confirmed by QRT, but
TFPI2 is an inhibitor of coagulation and is proposed to be a
maintenance factor of ECM remodeling [36]. Our results
indicate a borderline increase in MMP1. MMP1 breaks down
collagens and other ECM components and has been reported
to be expressed at a higher level in breast cancers, but
primarily in cancer epithelial cells rather than stromal
fibroblasts [37]. However, stromal-derived MMP-1 has been
shown to increase breast cancer cell migration and invasion
by cleaving protease-activated receptor 1 [38].

Of'the two ECM proteins chosen for validation (FBLN1 and
THBS3), only FBLNI was found to be differentially
expressed. FBLN1 inhibits in vitro adhesion and motility of
various carcinoma cell lines [20]. THBS3 was recently
detected in a small number of breast tumors [39, 40].
However, the function of THBS3 is not well defined and this
is the first account of THBS3 expression in breast fibroblasts.

Each of the soluble secreted factors chosen for valida-
tion, DKK1 and NRGI, were found to be differentially
expressed. The Wnt signaling pathway contributes to
mammary gland development and tumorigenesis [41].
DKK1 is an antagonist of Wnt signaling and may play an
anti-tumorigenic role [42]. However, expression of DKK1
was recently found to be increased in breast cancer cell
lines with the ability to metastasize to bone and in the
serum of breast cancer patients with bone metastasis [43].
NRGI1 is an EGF-like signaling molecule that binds to
transmembrane tyrosine kinase receptors of the ErbB
family and governs the ductal differentiation of the
mammary epithelium. Recent studies demonstrated that it
was capable of activating the ErbB2 oncoprotein in breast
cancer cells, and NRG1 overexpression in transgenic mice
lead to increased breast tumor formation [44, 45]. There-
fore, overexpression of these secreted molecules by CAF
may enhance breast cancer epithelial cell growth and
metastasis.

The extent to which the gene expression profiles of in
vitro cultured fibroblasts reflect their gene expression in

vivo is not well defined. It is likely that components of the
molecular signatures of NAF and CAF are lost during the
isolation process and growth in vitro. However, it has been
found that the expression of some molecules, such as SMA,
in myofibroblasts remains unchanged after multiple sub-
cultures [4]. This persistence of expression may be specific
only to some molecules, while for others, expression is
more context-dependent and changes when placed in vitro.
We demonstrated that expression of one gene, FBLNI, was
higher in NAF than CAF cultures in vitro and, correspond-
ingly, in stromal fibroblasts and their ECM in normal breast
than in breast cancer ex vivo. Therefore, in vitro breast
fibroblast cultures can accurately represent expression of
some molecules in stromal fibroblasts of the breast in vivo.

We did not find an increase in the ratio of FBLNI1C to
FBLNID in NAF and CAF, as has been reported for breast
cancers in general [24]. Because FBLNI1C expression is
induced by estrogen through ER« [24], the overexpression
of FBLNI1C in breast cancers may be limited to the ER -
expressing epithelial component, rather than the stroma.
ERa has only rarely been detected in adult stromal
fibroblasts of the breast [46], and this expression is not
detectable by immunohistochemistry [47]. Interestingly, we
did find a correlation between the stromal expression of
FBLNI1 and ER« in cancer epithelial cells, suggesting that
paracrine factors produced by ER«x positive epithelial cells
may increase FBLN1 expression in stromal fibroblasts.

FBLNI1 reduces the adhesion and motility of breast
cancer cells in vitro and the growth of fibrosarcomas in a
mouse xenograft model [20-22]. Therefore, decreased
FBLNI in breast cancer stroma may provide a microenvi-
ronment that is more conducive to epithelial cell growth
and migration than stroma in normal breast. In support of
this possibility, cancers with higher FBLN1 in breast stroma
had a lower rate of epithelial proliferation than did cancers
with lower stromal FBLN1. This relationship is confounded
by the lower rate of proliferation of ERo-positive carcino-
mas [15]. In the 35 breast cancers studied here, the
percentage of Ki-67 labeled cells was 46% in the ER«x-
negative cancers compared to 16% in the ERoa-positive
cancers. The observed increase in epithelial proliferation in
cancers with lower stromal FBLNI1, however, did not
correlate with the clinical data in our study in that there
were no differences in tumor size or lymph node status in
breast cancers with lower versus higher stromal expression
of FBLNI1. As has been previously described [18],
epithelial expression of FBLNI, as assessed with the
A311 antibody, was significantly greater in breast cancers
than in normal epithelium in our study.
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