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Abstract: We report a physiologically stable and cytocompatible glucose-responsive nonviral gene
delivery system made up of boronate functionalized polymeric material. Herein, we utilize boronate
cis-diol interactions to develop a glucose-responsive submicron particle (SMP) system. The stability
of the boronate interaction at a physiological pH was achieved by copolymerization of dimethyl
aminoethyl methacrylate (DMAEMA) with acrylamidophenylboronic acid (AAPBA) and the forma-
tion of a complex with polyvinylalcohol (PVA) which is governed by cis-diol interactions. The shift in
hydrodynamic diameter of SMPs was observed and correlated with increasing glucose concentrations
at a physiological pH. Optimal transfection was observed for a 5 µg dose of the gaussia luciferase
reporter gene in NIH3T3 cells without any adverse effect on cellular viability. The destabilization of
the AAPBA–PVA complex by interacting with glucose allowed the release of encapsulated bovine
serum albumin (BSA) in a glucose-responsive manner. In total, 95% of BSA was released from SMPs
at a 50 mM glucose concentration after 72 h. A two-fold increase in transfection was observed in
50 mM glucose compared to that of 10 mM glucose.

Keywords: glucose-responsive gene delivery; boronic acid; free radical polymerization; drug delivery

1. Introduction

Nonviral gene therapy is a promising therapeutic choice for many diseases [1,2].
However, low transfection is one of the main barriers associated with nonviral gene car-
riers [1–3]. This challenge can be solved by the use of a stimulus-responsive delivery
system [4]. Glucose-responsive drug delivery systems represent up-and-coming appli-
cations in diabetes therapy and have attracted much more interest in recent years [5,6].
Glucose-responsive delivery systems are widely preferred stimulus-responsive delivery
systems based on Glucose oxidase enzyme (GOx), glucose binding proteins (GBPs), and
phenylboronic acid (PBA) [6]. The use of these glucose oxidase-based systems is minimal,
as enzyme activity can be reduced over time [7]. Concanavalin A is a natural GBP class that
is one of the most widely used lectins for glucose-responsive insulin delivery. The problem
with concanavalin-based systems is that they are inflammatory [8]. PBA is a synthetic
molecule that reversibly binds to 1,2- or 1,3-cis-diols, including many kinds of sugars, to
form cyclic esters.

Recently, boronate-based systems have been reported for their potential applications
as saccharide [9], optical [10], and conductivity sensors [11,12], and also in drug release
systems [13–15]. Boronate-based systems have been widely preferred because of their
stability, efficiency, and ease of use. In aqueous media, phenylboronic acid forms a pH-
dependent equilibrium between the nonionic trigonal boronic acid and anionic tetrahedral
boronate. Boronate provides a reversible interaction with cis-diol-containing carbohydrates,
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nucleotides, nucleoside, and glycoproteins [16]. It has been used to develop glucose-
responsive delivery systems for closed-loop insulin delivery [6]. However, boronate-based
glucose-responsive polymers have been reported to remain functional only in alkaline
media and not at physiological pH [17]. This is due to the high pKa value of the boronate
moiety. Hence, boronate’s optimal use in biomedical engineering is restricted due to the
limitations of boronate groups’ inactivity at physiological pH (7.4) [17–20]. Several methods
have been developed to reduce the pKa of the boronate group to enhance its functional
sensitivity at physiological pH. One such approach involves introducing an amino group
in the vicinity of boronic acid to decrease the boronate group’s pKa value by forming a
coordination bond between nitrogen and boron (Figure 1). The effect could be increased by
introducing a tertiary amine into the boronate system [21]. Boronate-containing polymeric
systems also showed adverse effects on cell metabolic activity [22]. These problems still
need to be resolved before their potentially significant contribution to clinical applications
can be recognized.
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Figure 1. Schematic representation of stabilization of boronate by tertiary amine of dimethyl
aminoethyl methacrylate (DMAEMA) in a submicron particle (SMP) system. The pKa of boronate
was reduced by the addition of amino group in the vicinity of boronic acid by the formation of a
coordination bond between nitrogen and boron.

The goal of the study is to develop a boronate-based glucose sensitive gene deliv-
ery system. As per our knowledge, this is the first of its kind research to report the
glucose-responsive gene delivery system. Additionally, we have made boronate active at
physiological pH and made this synthesis very simple by using a single-pot reaction. To
achieve this, we hypothesized that copolymerization of the boronate-containing monomer
with dimethyl aminoethyl methacrylate (DMAEMA) and the complexation of a boronate
moiety with polyvinyl alcohol (PVA) in a single reaction mixture could provide an efficient
method for the fabrication of boronate-containing particles for delivery in physiological
conditions. Herein, we fabricate boronate-PVA submicron particles (SMPs) and charac-
terize the release of bovine serum albumin (BSA) as a standard biomolecule at different
glucose concentrations. The SMPs were validated for glucose-responsive delivery of gaus-
sia luciferase (GLuc) polyplexes which transfected an NIH3T3 fibroblast cell line without
adversely affecting cellular viability.
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2. Materials and Methods
2.1. Synthesis of 3-Acrylamidophenyl Boronic Acid (AAPBA)

AAPBA was synthesized from 3-aminophenylboronic acid, as previously reported [23].
The synthesis of AAPBA was carried out, as expressed by the following reaction (Scheme 1).
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Scheme 1. Synthesis of acrylamidophenylboronic acid (AAPBA).

Briefly, 3-aminophenylboronic acid (1.72 gm, 10 mM) was dissolved in 20 mL NaOH
and cooled in an ice bath. Acryloyl chloride (1.6 mL) was then added, and the reaction was
stirred for one hour. Following this, the HCl (2M) was then added to adjust the solution to
pH 1, which caused the precipitation of the product in the form of a white powder. The
product was filtered on the sintered glass funnel and washed with 50 mL cold distilled
water. The precipitated product was collected and dissolved in the water heated at 60 ◦C
and, finally, the dissolved precipitate was kept at 4 ◦C overnight. The monomer crystals
were formed and washed with cold water several times and finally dried under vacuum.

2.2. Synthesis of AAPBA-PVA SMPs by Oil Emulsion Method

AAPBA-PVA SMPs were synthesized by the oil emulsion method by mixing two
solutions. Solution A was prepared by mixing modified boronate monomer AAPBA
(20 mg, 25 mM), DMAEMA (20 µl, 30 mM), 2-hydroxyethyl methacrylate (HEMA), (150 µl,
300 mM), and 10 µl N,N,N’,N’-Tetramethylethane-1,2-diamine (TEMED) was added to
this solution just before the initiation of polymerization. Solution B was prepared by
adding PVA (20 mg, 50 µM) and 10 mg ammonium persulfate (APS). The homogenous oil
phase was prepared by adding 3.8 mL of paraffin oil and 50 µl of emulsifier Tween 20 and
150 µl of Spam 80. Free radical polymerization was initiated by mixing solutions A and
B, which were immediately added dropwise in the oil phase and incubated overnight at
room temperature. The emulsion was then centrifuged at 11,000 rpm for 15 min, and the
pellet was washed twice with n-hexane followed by distilled water. The final product was
freeze-dried and stored at 4 ◦C.

2.3. Physiochemical Characterization

Synthesis of AAPBA was further characterized by proton nuclear magnetic reso-
nance (1H NMR) and boron nuclear magnetic resonance (11B NMR) by an Agilent-NMR5-
vnmrs500 instrument (Agilent Technologies Ireland Limited, Cork, Ireland) using DMSO
as a solvent. The synthesis of both AAPBA and SMPs was confirmed by Fourier-transform
infrared spectroscopy (FTIR) analysis (FTIR—Varian 660-IR, Agilent Technologies Ireland
Limited, Cork, Ireland). Freeze-dried powder of samples was used for this experiment.
Scanning electron microscopy (SEM) was used for surface morphological analysis of SMPs.
The gold coated samples were visualized under SEM (Hitachi S-4700 Scanning Electron
Microscope, Daresbury, Warrington WA4 4AB, UK). Surface charge on the SMPs was
determined by zeta sizer (Malvern, Nano-ZS90, Malvern, UK).

2.4. Functional Integrity of Boronate

Curcumin forms a red complex with boronate and color formation can be observed by
the thin layer chromatography (TLC) method [24]. To prepare the curcumin stain, 100 mg
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of curcumin was dissolved in a 100 mL solution of ethanol with 2 N HCl (99:1 v/v). Boronic
acid was dissolved in methanol and a single spot of each sample was placed using a glass
“spotter” onto a silica TLC plate (Sigma Aldrich, City Dublin, Ireland). The TLC plate was
then inserted into the curcumin stain for five seconds and then dried using a heat gun for
five seconds.

2.5. Transfection

A range of different plasmid:polymer ratios, i.e., 1:2, 1:3.5, 1:7, 1:20, have been in-
vestigated to obtain an optimal complexation concentration of polymer for transfection.
Agarose gel electrophoresis was run to determine the optimal concentration for complete
complexation. The transfection experiment was carried out using NIH3T3 cells to confirm
the results further. The widely used transfection reagent polyethylenimine (PEI) was used
as positive control while naked plasmid was used as the negative control. Transfection
of cells was analyzed after 48 h by luciferase assays using a BioLux® luciferase assay kit
(Biolab, Dublin, Ireland).

2.6. Polyplex Dose

Optimization of GLuc polyplex concentration for higher transfection was analyzed
using NIH3T3 cells. In a 12-well plate, 25,000 cells/well were seeded and incubated
overnight for the attachment. A few different polyplex concentrations, i.e., 0, 1, 2, 5, 25 µg
were added to the cells and incubated for four hours. After four hours, the polyplex solution
was replaced with regular growth medium, and the transfected cells were incubated for
48 h. After incubation, transfection was determined by luciferase assay as outlined above.

2.7. Glucose-Responsive Behavior

The glucose-responsiveness of the fabricated boronate SMPs was investigated by
using the following techniques. Swelling of the SMPs in the presence of different glu-
cose concentrations was analyzed with zeta sizer (Malvern, Nano-ZS90, Malvern, UK),
whereas glucose-responsive release of BSA was estimated by a spectrophotometer. Further-
more, glucose-responsive gene delivery was confirmed by luciferase assay using a gaussia
luciferase assay kit.

2.7.1. Hydrodynamic Diameter Change by DLS Measurement

Changes in the hydrodynamic diameter of SMPs in the presence of glucose were
determined by zeta sizer (Malvern, Nano-ZS90). The SMPs (2 mg) were incubated with 5,
10, 20, and 50 mM of glucose in PBS for 30 min and the change in hydrodynamic diameter
was investigated. The same amount of SMPs was also incubated with PBS only as the
negative control, and the hydrodynamic diameter was calculated. All the samples were
run in triplicate.

2.7.2. Glucose-Responsive Release of Encapsulated BSA

To assess the glucose-responsive delivery from SMPs, BSA was encapsulated within
the SMPs during their fabrication. Release of BSA in the presence of 10, 20 and 50 mM
glucose concentrations in PBS over 168 h was determined. The released BSA was quantified
using the Bradford assay, and the absorbance reading was measured using a varioskanflash
plate reader (Thermo Scientific, Dublin, Ireland).

2.7.3. Glucose-responsive Transfection

In a 12-well plate, 25,000 NIH3T3 cells/well were seeded and incubated overnight
for attachment. Glucose-responsive SMPs loaded with GLuc polyplexes were incubated
with the cells in a range of glucose concentrations—i.e., 0, 10, 20 and 50 mM for 24 h. The
expression of the excreted luciferase protein 48 h post-transfection was quantified using
the luciferase assay using a gaussia luciferase assay kit.
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2.8. Cytotoxicity
2.8.1. Metabolic Activity

The influence of the SMPs on the metabolic activity of NIH3T3 fibroblasts was quanti-
fied using the alamarBlueTM cell metabolic activity assay. NIH3T3 cells were grown in a
96-well plate and treated with 10, 20, 50, and 100 µg of SMPs per well and incubated for 48 h.
After 48 h, 10% alamarBlueTM solution in the media was added to cells, and the plates were
incubated for a further four hours at 37 ◦C. The supernatant’s fluorescence was measured
by using a varioskan flash microplate reader (Thermo Fisher Scientific, MA, USA). The
used excitation and emission wavelengths were 530–560 nm and 590 nm, respectively. The
following formula was used to determine the percentage of viable cells—fluorescence of
treated cells/fluorescence of untreated cells × 100.

2.8.2. Live Dead Assay

In an eight-chamber slide, 10,000 NIH3T3 cells/chamber were seeded and grown to 70%
confluency. AAPBA-PVA SMPs (100 µg) were added to each of the chambers for 48 h. Then,
cells were washed with PBS and incubated with 10 mM calcein-AM green (Life Technologies,
Dublin, Ireland) and 1 mM ethidium homodimer-1 (Life Technologies, Ireland) for 30 min. The
samples were imaged by using a fluorescence microscope (Olympus BX51, Dublin, Ireland).

3. Results and Discussion
3.1. Chemical and Morphological Characterization

One-pot synthesis of AAPBA–PVA complex with DMAEMA stabilization was per-
formed in this study. In the first step, 3-aminophenylboronic acid was modified to AAPBA
through reaction with acryloyl chloride. This modification of the monomer was neces-
sary to add an allyl moiety for free radical polymerization. The synthesis of AAPBA was
confirmed by FTIR, 1H NMR and 11B NMR (Figure S1). FTIR analysis showed that the
characteristic peaks at 1666 and 1636 cm−1 are attributable to C=O and C=C bond stretch-
ing vibrations, respectively. A typical amide band appears in the spectrum of AAPBA
at 1557 cm−1. The absorption band at 1433 cm−1 is ascribed to benzene stretching vibra-
tions (Figure S1C). The characteristic absorption of boronate took place at 1356 cm−1 (21).
The synthesis of AAPBA was confirmed by 1HNMR (400 MHz, DMSO-d6) δ = 5.75 (1H,
CH2=CH–), 6.27 (1H, CH2=CH), 6.40 (1H, CH2=CH–), 7.28 (1H, phenyl), 7.49 (1H, phenyl),
7.82 (1H, phenyl), 7.88 (1H, phenyl), 8.03 (2H, –B(OH)2, 10.07 (1H, –NH–) (Figure S1A) and
11B NMR 28.7(11B) (Figure S1B).

The synthesis of boronate-PVA SMPs was achieved by using the oil emulsion method.
The fabrication of boronate-PVA SMPs also involved a free radical polymerization of
AAPBA and DMAEMA by using APS/TEMED. Boronate forms a complex with PVA by
cis-diol interactions and the polymeric form of boronate with DMAEMA was formed by
free radical polymerization. We anticipated that the binding of boronate with PVA and
copolymerization of AAPBA with DMAEMA and HEMA would simultaneously take
place. This provides a one-step fabrication method to synthesize boronate-containing
particles. The addition of DMAMEA as a tertiary amine protects the boronate group from
nucleophilic attack by water molecules. The amino group provided by DMAEMA acts as
the lewis base, which donates an electron pair to the vacant p-orbital of boron and forms
an N→B coordination bond (21). This prevents the surrounding water molecules from
forming the tetrahedron boronate configuration.

Hence, in the presence of a tertiary amine, the tetrahedral anionic form of boronate
becomes active at a neutral pH and governs boronate and cis-diol interactions. The size
of glucose-responsive SMPs synthesized by this method was 825–875 nm in diameter
(Figure 2B,C). The particles had a negative charge, which was −12.2 mV as determined
by a zeta sizer. The significant peaks present from both reactants in the FTIR spectra
were 3270 cm−1/O–H 2905 cm−1, and 2940 cm−1/C–H alkyl groups, 1413 cm−1/CH2,
1143 cm−1/C–O or C–O–C, 1085 cm−1/C–O–C (from PVA), and 1665 cm−1/C=O,
1270 cm−1/C–H, 1350 cm−1/B–OH, 701 cm−1/phenyl group (from AAPBA confirms the
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synthesis of the AAPBA-PVA complex (Figure 2A). Curcumin reacts with several boron-
containing species to give a colored complex called a rosocyanine complex. This color is due
to complex formation between the boron species and curcumin (24). In our study, curcumin
replaced the PVA and interacted with boronate to produce a visible red complex confirmed
by TLC (Figure 2D). Hence, the functional integrity of boronate was maintained in the
complexed form.
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1636 cm−1/C=C, Amide II/1555 cm−1, Benzene/1429 cm−1, Boronate/1347 cm−1, OH/3200–3500 cm−1. (B) Size mea-
surement of AAPBA-PVA SMPs by dynamic light scattering (DLS). (C) SEM image of AAPBA-PVA SMPs. (D) Functional
integrity of boronate confirmed by the development of a red-colored spot in curcumin thin layer chromatography (TLC).

3.2. Transfection Studies
3.2.1. Optimization of the Plasmid:Polymer Ratio

A different range of plasmid:polymer ratios was used to form polyplexes. At 1:7 and
1:20 plasmid:polymer ratios, the complete complexation of GLuc was observed by agarose
gel electrophoresis (Figure 3A). However, transfection of the cells occurred only with the
1:20 ratio (Figure 3B). Therefore, this was the ratio that was used for all further transfection
experiments. The commonly used transfection reagent PEI was used as a positive control,
and naked plasmid was used as a negative control.
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Figure 3. Optimization of transfection efficacy of GLuc polyplex complexation. (A) The complexation of plasmid-polymer
investigated by agarose gel electrophoresis using different plasmid:polymer ratios; (Lanes 1: Ladder, 2: Naked plasmid,
3: PEI, 4: Xfect 1:0.7, 5: Xfect 1:2, 6: Xfect 1:3.5, 7: Xfect 1:7, 8: Xfect 1:20). (B) Analysis of transfection in NIH3T3 cells at
different plasmid:polymer (plasmid/polymer) ratios by luciferase assay (Bars 1: Naked plasmid, 2: PEI, 3: Xfect 1:0.35,
4: Xfect 1:0.7, 5: Xfect 1:2, 6: Xfect 1:3.5, 7: Xfect 1:7, 8: Xfect 1:20, 9: Only cells). (C) Dose optimization in three different
assays, i.e., luciferase assay for cellular transfection, alamarBlue™ assay for metabolic activity, picogreen® assay for DNA
quantification, was performed. Results indicate that Xfect™ showed its maximum transfection with minimal toxicity at
5 µg, * represents statistical significance by one-way ANOVA, n = 3, SD, and p < 0.05.
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3.2.2. Optimization of Polyplex Dose in NIH3T3 Cells

Three different concentrations of polyplex, i.e., 1, 5 and 25 µg/well, were studied
for transfection capability. At 1 µg concentration, the cell viability was good; however,
transfection was less (1.4 × 107 relative light units (RLUs)). In total, 25 µg of polyplex
was toxic to the cells, and thus minimal transfection was observed at this concentration.
A dose of 5 µg of GLuc was optimal for NIH3T3 cells where the highest transfection
(1.8 × 108 RLU) was observed (Figure 3C).

3.3. Glucose-Responsive Behavior
3.3.1. Hydrodynamic Diameter

To assess the influence of glucose on the AAPBA–PVA complex, the hydrodynamic
diameter shift of SMPs was observed at different glucose concentrations ranging from 5 to
50 mM (Figure 4A) DLS. It was found that the increase in the hydrodynamic diameter of
SMPs correlated with increasing glucose concentrations. The SMPs swelled from a diameter
of 800 nm to a diameter of 2000 nm in the presence of 10 mM glucose concentration at a
physiological pH. This increase in diameter is due to a slow deterioration of boronate-PVA.
The glucose molecule replaces PVA and allows the inward movement of water into the
SMPs, resulting in the degradation of the SMPs. The degradation of SMPs occurred when
the glucose concentration increased more than 10 mM. Due to the degradation of the SMPs,
the hydrodynamic diameter was reduced at 20 and 50 mM glucose concentrations. This
demonstrates that the boronate remains active at a physiological pH which allows the
weakening of the boronate–PVA complex in the presence of glucose and, in reverse, allows
the formation of the boronate–glucose complex.
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Figure 4. Glucose-responsive behavior of the synthesized SMPs. (A) The increase in the hydrodynamic diameter of
AAPBA-PVA SMPs corresponded with glucose concentration up to a value of 10mM glucose; after this, the integrity of
the SMPs was destabilized because of the high water pressure developed inside them. (B) Release of encapsulated bovine
serum albumin (BSA) from the synthesized AAPBA-PVA SMPs was depending on the concentration of glucose present at
the site. (C) The highest relative light unit (RLU) corresponds to highest transfection was observed at the highest glucose
concentration—i.e., 50 mM; n = 3, SD, p < 0.05, and * represents statistical significance by one-Way ANOVA.

3.3.2. Glucose-responsive BSA Release

Different glucose concentrations (0, 10, 50, 100 mM) were studied to validate BSA
release from the BSA encapsulated SMPs (Figure 4B). The amount of BSA released was
directly proportional to the increase in glucose concentration. The cumulative percentage
of BSA released was plotted as a factor of time. It was observed that 75%, 85%, and 95%
BSA was released from SMPs at 10, 20 and 50 mM glucose concentrations after 72 h.

3.3.3. Glucose-Responsive Transfection

The GLuc polyplexes were successfully loaded within boronate-PVA SMPs. The
release of GLuc polyplexes from the boronate-PVA SMPs correlated with the increasing
glucose concentrations. A two-fold increase in transfection corresponding RLUs was
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observed for 50 mM glucose-containing media compared to 10 or 20 mM glucose-containing
media (Figure 4C).

3.4. Cytocompatibilty
3.4.1. Metabolic Activity

We assessed the cytotoxicity of SMPs in the glucose-containing media on NIH3T3 fi-
broblast monolayer culture. The cytocompatibility of AAPBA-PVA SMPs was assessed with
alamarBlue™ assay. It was found that the metabolic activity of the cells was not affected
by the presence of SMPs even after 48 h at the highest concentration used (100 µg/well)
(Figure 5A). This demonstrates that the SMPs and their degraded polymer by-products do
not cause any short-term cytotoxicity.
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Figure 5. Cytocompatibility of the synthesized SMPs on NIH3T3 cells. (A) The cellular metabolic activity in the presence
of SMPs was assessed by alamarBlueTM assay, and the assays showed that the metabolic activity was not affected in
the presence of SMPs. (B) Merged fluorescence image of live cells (green channel) and dead cells (red channel) without
SMPs. (C) Merged fluorescence image of live cells (green channel) and dead cells (red channel) in the presence of SMPs.
Scale bar = 100 µm. n = 3, SD, p < 0.05, and * represents statistical significance by one-Way ANOVA.

3.4.2. Live Dead Assay

The live dead assay confirmed that no cell death was seen in the presence of AAPBA-
PVA SMPs after 48 h at 100 µg concentration (Figure 5B,C).

4. Conclusions

By utilizing boronate cis-diol interactions, a glucose-responsive SMPs system was
developed. The stability of the boronate interaction at a physiological pH was achieved
by copolymerization of DMAEMA with AAPBA, and cis-diol interactions governed the
formation of a complex with PVA. The complete fabrication of boronate-containing SMPs
was achieved in a single-pot synthesis. The synthesized AAPBA-PVA SMPs exhibited
glucose-responsive behavior at higher glucose concentrations in physiological pH condi-
tions. The hydrodynamic diameter of SMPs increased up to 2000 nm in 10 mM glucose,
and after that degradation was initiated. This suggests the slow and responsive behavior
of SMPs with reversible binding to external glucose molecules. The destabilization of the
AAPBA–PVA complex by interacting with glucose allows the release of the encapsulated
BSA in a glucose-responsive manner. AAPBA-PVA SMP loaded GLuc genes were delivered
to the NIH3T3 cells depending on the glucose concentration present at the delivery site.
Finally, the cellular metabolic activity of NIH3T3 cells was not altered in the presence of the
SMPs at a concentration of 100 µg/well, as shown in alamarBlueTM assay. Herein, we have
successfully presented a fabrication method of glucose-responsive SMPs for gene delivery.
However, investigating these SNPs in an in vivo hyperglycemic disease model is necessary
to ensure its safety and therapeutic potential.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-492
3/13/1/62/s1, Figure S1: Confirmation of AAPBA synthesis by NMR, FTIR analysis.
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