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ABSTRACT
This study evaluated the effects of combining an OX40 agonistic antibody (aOX40) with a cell vaccine targeting
HER2/neu, called “Triplex”. Such HER2/neu cell vaccine included two biological adjuvants (interleukin 12 (IL12)
and allogeneic histocompatibility antigens) and was previously found able to prevent autochthonous HER2/neu-
driven mammary carcinogenesis. Timing of aOX40 administration, concomitantly or after cell vaccination, gave
opposite results. Unexpectedly, vaccine efficacy was hampered by concomitant OX40 triggering. Such decreased
immunoprevention was likely due to a reduced induction of anti-HER2/neu antibodies and to a higher level of
Treg activation. On the contrary, aOX40 administration after the completion of vaccination slightly but
significantly increased immunopreventive vaccine efficacy, and led to increased production of GM-CSF and IL10.
In conclusion, OX40 triggering can either impair or ameliorate immunoprevention of HER2/neu-driven
mammary carcinogenesis depending on the schedule of aOX40 administration.
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Introduction

Immunoprevention in individuals prone to develop cancers is
an appealing approach.1 Cancer vaccines applied to advanced
tumors often fail, likely because of multiple immune escape
mechanisms. On the contrary, vaccination of cancer prone
mice succeeded in significantly delaying cancer onset. A well-
studied model for cancer immunoprevention is that of HER2/
neu transgenic mice, in which autochthonous mammary cancer
can be almost totally prevented by a cell vaccine combining dif-
ferent stimuli (HER2/neu antigen and, as adjuvants, allogeneic
major histocompatibility antigens and IL12).2-4 Cancer immu-
noprevention of autochthonous tumors by cell vaccine relied
on the induction of anti-HER2/neu antibodies and IFNg.5

However, vaccine optimal effects were dependent on two con-
ditions (start of vaccination at a preneoplastic stage and lifelong
administration of the vaccine)6 that could be hardly imple-
mented in a translational perspective.

In tumor-bearing mice, hyporesponsivity to tumor antigens
can be driven by high proportion of specific regulatory T cells
(Treg) and a Treg immune-suppressive microenvironment.7

Treg were found to play a role in tolerance to HER2/neu and
depletion of Treg combined to immunization elicited a stronger
immune response.8,9 Chronic IL12 administration to HER2/
neu tolerant mice can effectively induce IFNg, but in the long

term this was countered by the induction of Treg cells.10 In
search of more effective immunopreventive approaches, we
investigated the combination of the cell vaccine with a Treg tar-
geting approach consisting in engagement of OX40.

OX40 is a co-stimulatory molecule belonging to the TNFR
immune checkpoints family.7,11,12 In mice OX40 is constitutively
expressed on Treg, as well as on activated CD4 and CD8 immune
cells. OX40 triggering with agonistic antibodies determines the
functional inactivation of Treg, prolongs the survival of antigen-
activated immune cells, and leads to tumor rejection, tolerance
prevention and reversion of the immune anergy.13-17 Such activi-
ties prompted the inclusion of OX40 engagement inmurine mod-
els and in human trials of cancer immunotherapy, often in
combination with other immunological approaches.7,11,12

A combined immunotherapy based on OX40 triggering plus
vaccination showed an increased ability to eradicate or prevent
the growth of HER2/neu cells.18-22 Most studies, however, used
cancer cell injection to induce tumors or to evaluate vaccine
power, often in non-tolerant or partially HER2/neu-tolerant
mice. Under these conditions the main response evoked was a
T cell response. HER2/neu transgenic mice showing onset of
autochthonous mammary tumors could more faithfully model
the situation of spontaneously arising tumors and relationships
with their immunologically tolerant host.
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In the present study we investigated the effect of OX40 trig-
gering in combination with a cancer vaccine for the prevention
of autochthonous HER2/neu-driven mammary tumors.

Results and discussion

HER2/neu transgenic BALB-neuT mice show spontaneous
onset of mammary carcinoma, with the first tumor being
observed at a median time of 16 weeks of age.2 In these mice
mammary carcinoma can be almost completely prevented by
the life-long vaccination with an engineered IL12-producing
allogeneic HER2/neu-positive cell vaccine through mechanisms
that include host production of anti-neu antibodies and
IFNg.3,5,6 In search of more efficient vaccine schedules, we
investigated the efficacy of combining vaccination with a
monoclonal antibody triggering OX40 (aOX40). A suboptimal
vaccine schedule was chosen to observe either increased or
decreased preventive efficacy: mice were therefore vaccinated
starting at 10 weeks of age for three monthly cycles. Two sched-
ules of aOX40 administration were used: concomitant to cell
vaccine (aOX40Cvax) or after the completion of 3 cycles of
vaccination (aOX40postvax) (Fig. 1A). Cell vaccine alone, even
at the suboptimal conditions here employed, was able to delay
the spontaneous onset of mammary carcinoma, with the first
tumor being observed at a median time of 35 weeks (Fig. 1B
and C, black circles). OX40 triggering with the agonistic OX86
antibody concomitant to vaccine (aOX40Cvax) partially
impaired prevention efficacy, causing a significantly earlier
tumor onset (at a median time of 28.5 weeks) and higher num-
bers of tumors per mouse with respect to vaccine alone (Fig. 1B
and C, red squares). The aOX40postvax schedule yielded a
slight but significant increase in the immunopreventive activity
of the vaccine, with tumor onset at a median age of 39 weeks
and decreased number of tumors per mouse (Fig. 1B and 1C,
blue triangles).

Immunopreventive efficacy in BALB-neuT mice was depen-
dent on humoral mechanisms.5,6 We therefore evaluated the
induction of anti-HER2/neu antibodies in the different groups
of treatment (Fig. 2). Mice treated with cell vaccine alone
showed an increase of anti-HER2/neu antibodies during vacci-
nation that peaked at 20 weeks. Thereafter vaccination was dis-
continued and antibody level progressively declined. Such
decrease preceeded the onset of mammary tumors, confirming
the role played by anti-neu antibodies in the immunopreven-
tive effect.5,6 Mice receiving aOX40 concomitant with cell vac-
cine (aOX40Cvax) had a significantly decreased production of
anti-neu antibodies, which further decreased after vaccine dis-
continuation, reaching very low levels at about 37 weeks.
aOX40Cvax-treated mice produced significantly less total IgG
against HER2/neu (Fig. 2A) and significantly less IgG2a and
IgG3 than mice subjected to vaccine only, with unaltered iso-
type ratios (Fig. 2B-C). Antibody response included anti-H-2q

IgG antibodies (Fig. 2A inset). No preferential isotype induc-
tion was observed in anti-H-2q response (Fig. 2D). The
decreased antibody levels correlated well with the decreased
immunoprevention by cell vaccine. Mice treated with aOX40
after the completion of the three vaccine cycles (aOX40postvax)
showed kinetics and isotypes of anti-neu antibodies

superimposable to that of vaccine alone (Fig. 2A, B, C). Since
the administration of aOX40postvax did not maintain higher
anti-neu antibody levels, the increased preventive efficacy of
the OX40 triggering after the completion of cell vaccination
should rely upon antibody-independent mechanisms.

HER2/neu transgenic mice showed about 15% of Treg both
in blood and in lymphoid organs (axillary and mesentheric
lymph nodes and spleen) (Fig. 3 and data not shown).
aOX40Cvax did not affect Treg number, but significantly
increased the frequency of Treg expressing the activationmarker
CD103. aOX40Cvax treatment did not modify Treg expression
of GITR (see Fig. 3) or CD44 (data not shown) in comparison to
vaccine only. Therefore, in aOX40Cvax-treated mice, Treg fre-
quency was unaffected but Treg appeared more activated.

In the aOX40postvax schedule, the frequency of Treg and
the frequency of effector memory T cells (Tem) were unaltered,
with respect to vaccine only group (Fig. 4A). Splenocytes of
aOX40postvax mice, restimulated for 6 days with HER2/neu
cells, showed a significantly higher production of GM-CSF and
IL10 than splenocytes of mice treated with vaccine only,
whereas IFNg showed no difference (Fig. 4B).

Our study shows that the administration of an agonistic
antibody triggering OX40 combined to a powerful cell vaccine
can tune the immunopreventive ability depending on aOX40
timing: vaccine efficacy was hampered by concomitant
OX40 triggering, but was increased by aOX40 administration
after the completion of vaccination. Contrasting results have
been reported regarding the effect of OX40 triggering on Treg
perhaps in dependency of tumor microenvironment.11,12 Here
we showed for the first time that OX40 triggering can have
opposite results when combined with a cell vaccine even within
the same tumor model depending on the timing of aOX40
administration.

Treatment with aOX40 after the completion of vaccinations
induced a weak but significant increase in vaccine efficacy, in
accordance with published results showing that OX40 activa-
tion boosted a previous cell vaccination.23 However, increased
efficacy was not related to variations in antibody response or in
Treg and effector memory T cell frequencies in the spleen of
treated mice. The only observed variations were the increased
production of GM-CSF and IL10 but not IFNg in splenocytes.
Increased expression of IL10 and GM-CSF was reported by
OX40 triggering in some studies.21,24 It is worth noting that
IL10, which is generally considered as a suppressor cytokine,
also has antitumor activities.25-27

The decreased preventive efficacy induced by concomitant
OX40 triggering was unexpected but correlated well with the
decreased antibody response (the main effector of immunopre-
vention) and with the induction of a more activated Treg phe-
notype. Both reduction and increase of immune suppression
upon OX40 engagement in different model systems are
possible.11,12

In addition, some studies report OX40 triggering combined
with anti-tumor immunization in mice injected with cancer
cell lines. Using a tumor cell line derived from HER2/neu trans-
genic mice, an immunotherapeutic approach combining OX40
agonist and CTLA-4 blockade together with HER2 vaccination
reversed T-cell anergy and extended survival of tumor-bearing
mice.21
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In our study, combined immunotherapy was investigated to
prevent the progression of a HER2/neu-driven spontaneous
carcinogenic program. It was started when only preneoplastic
lesions were present and lasted for several months during
which tumor growth was delayed but progressed anyway. This

implies that mice had already been exposed to tumor antigen,
i.e. even the pretreatment with aOX40 did not find truly na€ıve
mice. Several models studied so far administered aOX40 to
truly na€ıve mice and then vaccinated them or challenged them
with tumor cells. Patients are much more similar to our model

Figure 1. Effect of different timings of aOX40 administration combined to vaccination on mammary carcinogenesis in BALB-neuT mice. (A) Schedule of mice treatment.
Black ticks: i.p. injection of a cell vaccine dose. Red squares: i.p. injection of aOX40 concomitant to vaccine (aOX40Cvax). Blue triangles: i.p. injection of aOX40 after com-
pletion of vaccine cycles (aOX40postvax). (B) Tumor-free survival curves. Groups: untreated, n D 21; vaccine: n D 34; aOX40Cvax, n D 13; aOX40postvax, n D 18. #p <

0.01 vs vaccine only group (Mantel-Haenszel test). All treated groups were significantly different from untreated (p < 0.01 at least). (C) Tumor multiplicity. Mean § SEM.
�p < 0.05 at least vs vaccine only (Student’s t test). Untreated mice received vehicle (PBS) alone.
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(not truly na€ıve) than to vaccination-challenge model systems.
Furthermore prevention studies span several months, during
which the immune response is edited by tumor growth, and the
microenvironment is continuously changing, because studies
last up to one year and a half. Treg frequency increases with
age28 and strong age-related differences in responses induced
by OX40 triggering have been reported.29 In a comprehensive
immunological perspective, it should be kept in mind that our
vaccine was adjuvanted by transduced expression of IL12 and
by allogeneic histocompatibility antigens, therefore the
observed effects are due to the combined activity of all the
immune stimuli. Finally, HER2/neu driven mammary carcino-
genesis ultimately affect all the mammary glands and, within
each gland, multifocal neoplasms can arise. This is the reason
why we choose a systemic administration route. Better results
were obtained with the intratumoral administration of aOX40,
however it is a route that could be hardly applied to a dissemi-
nated neoplasm.12

Cancer immunotherapy has entered a new renaissance
since checkpoint inhibitors have shown the ability to elicit
powerful long-lasting immune responses leading to clinical
benefit in 20–30% of patients.12 However, most patients are
resistant, and about 10% patients undergo a rapid progres-
sion under checkpoint inhibitor treatment.30 Combining
immunomodulating strategies could increase the proportion
of responders, provided that the optimal timing of combi-
nation is choosen.31,32 Our study shows that when

combining OX40 engagement with an adjuvanted cancer
vaccine opposite results can be obtained depending on tim-
ing of OX40 triggering. OX40 is therefore emerging as a
relevant tuning molecule that might make the difference in
combination therapies in either a positive or negative
way.32,33 The negative interference observed with OX40 trig-
gering concomitant with cancer vaccine suggests that pre-
clinical models should be thoroughly interrogated before
planning clinical trials of combined approaches.

Materials and methods

Mice and tumor growth

BALB-neuT female mice (H-2d haplotype), transgenic for a
mutant rat HER2/neu oncogene driven by the mouse mam-
mary tumor virus promoter, were bred and genetically screened
as reported.2 Experiments were approved by the institutional
review board of the University of Bologna, authorized by the
Italian Ministry of Health and done according to Italian and
European laws and guidelines. Individually tagged virgin
females used in the experiments were treated and inspected
twice weekly for mammary tumor onset. Progressively growing
masses of >3 mm in mean diameter were regarded as tumors.
Mice with tumors in multiple mammary glands, or one tumor
exceeding a mean diameter of 1.5 cm, were killed for ethical
reasons. Tumor multiplicity is the number of tumors per mouse

Figure 2. Effect of different timings of aOX40 administration combined to vaccination on the induction of anti-vaccine antibodies. (A) Kinetics of anti-vaccine antibodies
in mice groups of Fig. 1. MFI D Median fluorescence intensity. Mean § SEM is shown for each point. �p < 0.01 at least vs vaccine only group (Student’s t test). Inset: anti-
H-2q antibodies at two time points (21 and 37 weeks of age). �p < 0.05 at least vs vaccine only group (Student’s t test). (B) Anti-vaccine antibody isotypes at 21 weeks of
age. MFI as in A. Mean § SEM is shown for each point. �p < 0.05 at least vs vaccine only group (Student’s t test). (C) Anti-vaccine antibody isotypes at 37 weeks of age.
MFI as in A. Mean§ SEM is shown for each point. �p< 0.05 at least vs vaccine only group (Student’s t test). (D) Ratio between anti-vaccine and anti-H-2q isotype antibod-
ies at 21 weeks of age. MFI ratio D MFI on TT12.E2 cells/MFI on N202.1E cells.
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at each time point and is expressed as mean § SEM for each
experimental group.6

Vaccine

Vaccine consisted of allogeneic (H-2q) murine mammary carci-
noma cells expressing high levels of HER2/neu and releasing
transduced IL12.3 Each vaccine dose consisted of 2 £ 106 cells,
proliferation-blocked by treatment with mitomycin C (40 mg/
ml Sigma-Aldrich, Milan, Italy), administered intraperitoneally
in 0.4 ml of phosphate-buffered saline (PBS) (Invitrogen,
Milan, Italy). Control mice received PBS alone. Mice were vac-
cinated at 10, 11, 14, 15, 18, 19 weeks of age (two doses per
week, 12 vaccinations in total).

aOX40 treatment

The rat IgG1 monoclonal antibody OX86 (European Collection
of Cell Cultures), which binds OX40 with agonist activity (here
referred to as aOX40) was administered i.p. (100 mg in

200 ml),14 according the following schedules (as shown in
Fig. 1A):
aOX40Cvax: treatment with aOX40 the day before the first
vaccination (at 10 weeks of age) and in weeks 12, 16, 20.

aOX40postvax: treatment with aOX40 every 4 weeks starting at
22 weeks of age.

In Vitro restimulation, cytotoxicity assay and cytokine
release

Mixed lymphocyte-tumor cell cultures (MLTC) were performed
with spleen mononuclear cells cocultured at a 50:1 ratio with
proliferation-blocked Neu/H-2q cells for 6 days in RPMI 1640
supplemented with 10% fetal bovine serum and with 20 units/ml
of recombinant IL-2. Supernatants from MLTC were assayed for
IFNg, GM-CSF and IL10 by ELISA assays (R&D Systems Inc.).

Antibody Response
Sera were collected from individual mice at different time
points and stored at ¡80�C. To determine the level of anti-

Figure 3. Effect of aOX40Cvax combined treatment on Treg number and phenotype. (A) Cytofluorometric plots of a representative mouse per group (at 17 weeks of age):
vaccine alone (upper row), aOX40Cvax (lower row). Panels from left to right show: Treg frequency over total splenocytes, CD103C cells over Treg, GITR expression level
(Mean fluorescence intensity, MFI) over Treg, CD103C Treg frequency in gated CD4C splenocytes. (B) Each bar represents the mean and SEM from mice of the different
groups studied (at 17 weeks of age). For comparison, data from untreated mice and from mice treated with aOX40 alone are shown. Groups: untreated, n D 3; aOX40, n
D 10; vaccine, n D 20; aOX40Cvax, n D 25. Significance at the Student’s t test is reported.
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vaccine antibodies, sera diluted 1:65 were used in indirect
immunofluorescence assay to stain viable TT12.E2 cells
(HER2/neu overexpressing and H-2q positive) followed by
cytofluorometric analysis as previously described.3 The inten-
sity of fluorescence of each serum sample was normalized to
the expression of rat HER2/neu by the target cells (determined
using the monoclonal antibody Ab4, clone 7.16.4, 5 mg/ml,
Oncogene Research Products, Cambridge, MA, USA). Anti-H-
2q antibodies were determined by indirect immunofluorescence
assay against N202.1E cells (HER2/neu-negative and H-2q posi-
tive). Isotype subclasses analyses were carried out by indirect
immunofluorescence assays with sera diluted 1:20. Secondary
fluorescein-conjugated monoclonal antibodies directed against
Ig subclasses were as follows: anti–mouse IgG1 clone A85–1;
anti–mouse IgG2a clone R19–15; anti–mouse IgG2b clone
R12–3; anti–mouse IgG3 clone R40–82. All of them were pur-
chased from BD PharMingen.

Lymphocyte subpopulations

Cell suspensions were obtained from individual lymphoid organs
(spleen, bone marrow, lymph nodes) as described.16 PE-Cy7 anti-
CD4 (RM4–5), APC anti-Foxp3 (FJK-16s), PE anti-CD103 (2E7)
and FITC anti-GITR were purchased from eBioscience. Surface
staining was performed on cells obtained from each organ by incu-
bating antibodies at 5mg/mL on ice for 30min in PBS containing
2% FBS. Flow cytometry data were acquired on a FACSCalibur
(Becton Dickinson) and analysed with FlowJo software (version
8.8.4; Treestar). Data from different organs of each mouse, if statis-
tically not different, were pooled in the final elaboration.

Statistical analysis

Differences in tumor-free survival curves were analyzed by the
Mantel-Haenszel test. Tumor multiplicity, T cell frequency,

antibody or cytokine levels were compared by the Student’s t
test or the nonparametric Wilcoxon test.
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