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Abstract: Neck pain is a frequent health complaint. Prolonged protracted malpositions of the head
are associated with neck pain and headaches and could be prevented using biofeedback systems.
A practical biofeedback system to detect malpositions should be realized with a simple measurement
setup. To achieve this, a simple biomechanical model representing head orientation and translation
relative to the thorax is introduced. To identify the parameters of this model, anthropometric data
were acquired from eight healthy volunteers. In this work we determine (i) the accuracy of the
proposed model when the neck length is known, (ii) the dependency of the neck length on the body
height, and (iii) the impact of a wrong neck length on the models accuracy. The resulting model
is able to describe the motion of the head with a maximum uncertainty of 5 mm only. To achieve
this high accuracy the effective neck length must be known a priory. If however, this parameter is
assumed to be a linear function of the palpable neck length, the measurement error increases. Still,
the resulting accuracy can be sufficient to identify and monitor a protracted malposition of the head
relative to the thorax.

Keywords: neck; protraction; posture monitoring; neck pain; stereophotogrammetry; biomechanical
model; movement analysis

1. Introduction
1.1. Neck Pain

Neck pain is a frequent health complaint and is globally ranked in third place for
musculoskeletal disorders with a yearly prevalence of more than 15 percent in 2013, which
has risen by 54 percent since 1990 [1]. In western countries, office workers in particular
have been found vulnerable to develop neck pain [2]. Neck pain symptomatic female
office workers showed a protraction of the head relative to the thorax, also known as a
protracted “forward head posture” (FHP), compared to asymptomatic controls [3]. A FHP
has frequently been reported for multiple activities and postures, such as driving, computer
work, or reading [4]. It has furthermore strongly been associated with headaches such as
migraines, tension-type, and cervicogenic headache [5,6], neck pain, and even shoulder
problems [7–10]. Additionally FHP is associated with impairments related to decreased
neck proprioception such as balance [11–13] and visual impairments [14]. Cervical range
of motion (ROM) has been found reduced when performed out of a FHP [15] and altered
for coupled movements [16]. Park et al. found reduced upper cervical (UCS) flexion ROM
due to sustained computer work [17] and Ernst et al. demonstrated strong associations
between reduced UCS flexion and headache [18]. Protraction and retraction are regarded
as combined and opposite movements of the upper cervical (UCS = occiput to cervical
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vertebra 3), and the lower cervical-spine (LCS = cervical vertebrae 3–7) [19]. Besides office
workers, adolescents are regarded especially susceptible to adopt FHP, particularly when
frequently using unfitted computers or other technology [7,20–22]. Therefore, monitoring
the occurrence of a FHP while working or gaming on a computer screen might be regarded
useful to prevent those aforementioned impairments. However, the evidence regarding the
validity of clinical techniques to determine an exact craniovertebral posture is inconsistent
and only little evidence for the assessment of cervical ROM is provided [23]. One difficulty
is that the cervical spine moves around 3-D axes [19]. Therefore, different initial positions
will lead to different axial rotation values and these axial rotation values also differ between
younger and older, female and male persons [24].

1.2. Identifying Malposition

A prolonged malposition of the head can be prevented through feedback [25]. How-
ever, to provide feedback, a measuring device must allow for posture tracking. Even
though modern marker-based 3-D motion capture systems are capable of tracking position
and rotation accurately in six degrees of freedom [26], they are either time-consuming,
expensive, stationary, or all of the above and therefore are inappropriate for daily use.
However, other approaches to measure FHP already exist. Instead of measuring the dis-
placement of the head [27,28], the craniovertebral angle (CVA) method is widely used
to assess FHP [17,29–31]. Pürkhauer et al. used the Kinect® face tracking algorithm to
measure FHP [32]. Another approach is to use a combination of inertial measurement units
(IMU) and strain gauges on the neck, which allows tracking the neck angle [33]. Even
though these approaches seem promising, economic measurement systems are needed for
reliable, valid, and objective ongoing monitoring, for example during computer work or
gaming. Existing IMU models measure the angles of the neck accurately to some extent,
but none of these models include an estimate of translation which would be important
for the study of forward head postures [34–36]. In contrast, camera-based systems limit
a persons’ range of motion because the person must always act within the field of view
of the cameras [32,34,37]. A simple biomechanical model of the neck that can estimate
translation but is independent of cameras would therefore be of great advantage. In clinical
practice, it would be preferable to use an already existing measurement system, like IMU
or electromagentic tracking systems [38–41]. However, first a precise biomechanical model
is needed, which ideally is developed with the measurement data of a high-precision
measurement system, such as a 3-D optoelectronic system [42–45].

1.3. Contribution

To overcome these limitations, this study proposes a simple neck model to explain
head orientation and translation relative to the thorax. Due to its simplicity, only two rigid
bodies are required to infer the relative position of the head with respect to the thorax, a
thorax, and a neck stick. An important parameter in this model is specifically the length of
the neck stick. In this work we determine (i) the accuracy of the proposed model when
the neck length is known, (ii) the dependency of the neck length on the body height, and
(iii) the impact of an incorrect neck length on the models accuracy.

2. Neck Model

The cervical spine has the largest mobility of all sectors of the human spine. Since the
head moves with six degrees of freedom relative to the thorax, the cervical spine has six
degrees of freedom [17,37,46]. The range of motion differs between directions. In particular,
along the spinal direction, motion is limited to few millimeters only. Therefore, a simplified
model with five degrees of freedom could be used to describe relative head motion with
an accuracy that is satisfactory for clinical applications such as biofeedback on FHP. In
this work we propose a simplified neck model consisting of two ball joints, one in the
proximity of vertebra C2 and the other in the proximity of vertebra C7. The two ball joints
J1 and J2 are connected with a stiff neck-stick of fixed length l12 (Figure 1). Each ball joint
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offers three rotational degrees of freedom. However, one of them, i.e., the rotation around
the neck-stick axis, is common to both joints such that head motion is modeled by only
five degrees of freedom. In this model the position of the head center is defined to be the
position of J2. The such defined head position does not depend on rotations of the head
around J2. Furthermore, the relative head position is defined as the position of J2 relative
to J1 and is described by the vector l12 rotated according to the orientation measurement of
the neck.

Clinical assessments do not allow for reference measurements of the neck length and
thus prohibit identification of the exact neck length for an individual. To overcome this
limitation, the neck-stick length l12 could be predicted from an individual’s body size
assuming that a taller person has a longer neck. An even more precise predictor for l12
should be the measurable distance lC2C7 between the vertebra C2 and C7 (Figure 2). As we
expect l12 to grow with lC2C7 and for simplicity we assume a linear model:

l12 = β1 · lC2C7 + β0, (1)

with offset β0 and sensitivity β1. The quality of this prediction will be discussed in
Section 4.1. The purpose of the neck model is to describe the 3-D position of the head
relative to the thorax, which is equivalent to describing the position of joint J2 relative to
joint J1. The compelling feature of this model is that the position of the head center J2
is determined by just two easily measurable orientations, the orientation of the thorax-
and the orientation of the neck-stick. The measurement of these orientations in local earth
coordinates could later on be conducted with economic instrumentation such as IMUs that
include a magnetometer and sensor fusion.
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Figure 1. The neck model shown in blue contains the neck-stick which is assumed to be rigidly
connected to the neck rigid body and the sternum rigid body. The extended model comprises one
pose sensing tripod at the sternum and one at the forehead. These two tripods are assumed to
be rigidly connected to head-stick and the thorax-stick. The joints J1 and J2 are ball joints. The
extended model, comprising a head-stick and head rigid body is introduced for identification of the
neck-stick l12.
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Figure 2. Determination of the protraction p from the orientation of the neck relative to the orientation
of the thorax. The red arrow is fixed to the thorax tripod. It is defined to be exactly vertical when
the upright posture is assumed during the calibration phase. The distance between C2 and C7,
measurable by palpation is denoted as lC2C7.

2.1. Coordinate Frames

To enable numeric computations, vectors are expressed with respect to a specific
coordinate frame, for simplicity called frame. A specific frame b is defined by an orientation
Rb and an origin ob i.e., by the tuple (ob, Rb). We define both, the origin and the orientation
with respect to some other frame, say frame-g. To indicate this, we set g as a superscript
and form the notation (og

b , Rg
b) to denote the frame-b which is expressed in terms of frame-g.

The concept of a frame is identical to the concept of a pose. Therefore, the terms frame
and pose are used synonymously. In this work we define four different frames: (i) The
earth-frame e, whose orientation is defined by the local gravitation and the magnetic field
vector and whose origin is any arbitrary position. (ii) The local frame l, defined by the
optoelectronic measurement equipment, (iii) the sternum frame s, and (iv) the head frame
h. A vector ve indicating a specific position with respect to frame-e, is related to the vector
vl that indicates the same position with respect to frame-l by the following equation:

ve = Re
l · v

l − oe
l . (2)

In contrast, if the vector vl indicates a specific direction, the origin oe
l must be omitted. In

this notation we can write Rl
e for the matrix inverse of Re

l .

2.2. Model Parameter Identification

The proposed model contains the length l12 of the neck-stick as its only parameter.
This length is an a priory unknown as the joints J1 and J2 are not defined by palpable
anatomical landmarks. However, the direction of the neck-stick is identical to the y-axis
of the rotation Re

n of the neck rigid body. To enable identification of l12, we extend the
setup by two rigid segments. A head segment located on the forehead, and a sternum
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segment placed on the sternum with their respective poses (ol
h, Rl

h) and (ol
s, Rl

s). The
unknown vector pointing from the origin os to the center of joint J1 is called the thorax
vector vs

s1. Another unknown is the head vector vh
2h pointing from J2 to the origin oh of the

head segment. These two vectors are assumed to have constant entries under head motion,
when they are expressed with respect to their native frames s and h, respectively. In total,
the extended model contains seven unknown constants. They can be identified by fitting
the predicted to the measured head position.

2.2.1. Predicted Head Position

The prediction ôh of the head’s origin oh can be expressed with respect to the s-frame
according to Figure 1:

ôs
h = vs

s1 + vs
12 + vs

2h. (3)

The direction of the neck-stick vector ve
12 is determined by the y- axis of the orientation ma-

trix Re
s, which is provided by the neck rigid body, i.e., ve

12 = l12 · (0, 1, 0)T and vs
12 = Rs

e · ve
12.

Furthermore, by using the identity vs
2h = Rs

h · vh
2h, we can express the predictor (3) as

ôs
h = vs

s1 + Rs
e · l12 · (0, 1, 0)T + Rs

h · v
h
2h. (4)

2.2.2. Measured Head Position

The head position oh can be inferred from the pose measurements of the head
and sternum:

os
h = Rs

l · (o
l
h − ol

s). (5)

2.2.3. Parameter Fitting

The desired parameter is the neck-stick length l12, while the thorax vector vs
s1 and

the head vector vh
2h constitute six scalar nuisance parameters. These seven parameters

minimize the sum of squared Euclidean errors between prediction ôs
h and measurement

õs
h as:

l12, vs
s1, vh

2h = argmin
l12, vs

s1, vh
2h

∑
i∈I

∑
t∈Ti

‖ôs
h(i, t)− õs

h(i, t)‖2
2, (6)

where I is the set of all measurements of one participant and Ti is the set of sampling
time instants t in the measurement i. The difference ôs

h − õs
h linearly depends on these

parameters. Hence, the optimization problem at hand is a linear least squares problem that
can be solved in a single step [47].

2.3. Calibration Procedure

Assuming that rigid bodies have an ideal accuracy, the orientations of the rigid bodies
still need to be adjusted, so that the sensed rotation matrices equal:

Re
n = Re

s = I3,

where I3 is the unity matrix with dimension 3× 3, at calibration time t = t0, when an
upright posture is assumed by the participant.

2.4. Measuring Protraction

The described neck model determines rotation but also translation, e.g., protraction
of the head relative to the thorax. Figure 2 shows a moderate protraction p in the sag-
ital domain. The protraction angle ϕ results in the head displacement or protraction
p = l12 sin(ϕ). A vertical alignment of J1 and J2 would result in ϕ = 0. The general 3-D
protraction vector pe is obtained by the difference:

pe = ve
12 − l12ue

s,
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where ue
s = Re

s[0, 0, 1]T is the head pointing vector, indicated by the red arrow in Figure 2.
It is defined to be exactly vertical when the upright posture is assumed during the calibra-
tion phase.

3. Materials and Methods
3.1. Participants

The study was conducted according to the Declaration of Helsinki, juristically verified
by the local ethics committee (req-2019-00043), and received written informed consent from
all participants. Eight healthy volunteers (four females) were recruited from the university
campus. The descriptive characteristics of the participants are presented in Table 1.

Table 1. Descriptive characteristics of participants.

Participant Length C7–S2 (cm) Length C2–C7 (cm) Height (m) BMI (kg/m2) Age (Years)

Mean (standard deviation) 50.7 (2.2) 5.8 (0.9) 1.73 (0.09) 24.0 (2.4) 41.1 (11.9)

Participant 1 49.5 6.1 1.61 23.3 30

Participant 2 52.0 5.1 1.81 23.4 52

Participant 3 48.8 5.3 1.65 20.5 31

Participant 4 53.2 7.7 1.81 27.8 28

Participant 5 51.0 5.5 1.72 23.9 52

Participant 6 53.8 6.5 1.87 25.5 53

Participant 7 47.5 5.1 1.69 21.2 31

Participant 8 49.5 5.0 1.68 26.1 52

3.2. Equipment

Neck movements were captured using an optoelectronic VICON® motion capture
system (Vicon Motion Systems, Oxford, UK). The neck movements were captured through
tripods attached at the middle of the forehead (head), the sternum (sternum), and the
midpoint between the cervical vertebras C2 and C7 (neck). The position and orientation
of each of these tripods were measured using three reflective markers and rigid bodies of
the head and thorax were modeled from their orientation and position data [48]. Raw data
were sampled at 120 Hz. All signals were used without filtering or elimination of outliers.
The angular difference between two tripods was calculated and transformed into Euler
angles. Gimbal-lock was prevented by choosing the intermediate Euler angle to consider
lateral inclination whose absolute magnitude is guaranteed to be sufficiently different from
90◦. For optical verification all measurements were filmed with two VICON Vue® video
cameras at 30 Hz.

3.3. Measurement Procedure

The length between the vertebrae C7–S2 and C2–C7 was measured following previ-
ously described methods [49,50]. Following a static measurement in an upright posture,
seated on a stool, each participant performed the tasks described in Table 2. To perform
the movement tasks, the participants wore a laser pointer attached to their forehead. The
participants were asked to follow the movement patterns as precisely as possible with
the laser emitting from the laser pointer. After a practice trial and if necessary manual
guidance, two repetitions of the tasks were performed at a self-defined speed in fixed order
since any learning or fatigue effects were not of interest for this study. Data from both
repetitions were used for further analysis. The measurement setup is illustrated in Figure 3.
Participants rested for five seconds between repetitions and one minute between tasks.
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Figure 3. Measurement setup—one participant seated on a stool. The head pose tripoid and the
sternum pose tripoid with reflective markers are visible. The neck orientation tripoid is fixated to the
black collar. The illustration of the movement pattern is attached to the vertical bar in a way that is
clearly visible to the participant.

Table 2. Tasks and instructions, except for static sitting and free movement all tasks were re-
peated twice.

Task Instructions Illustration

Static sitting
Sit up straight and straighten up the pelvis.
Loosely put your arms on your lap and look
straight ahead. Hold this position.

Zigzag in neutral
head position

Follow the zigzag pattern on the wall with
your head, keeping as close as possible to the
middle line. Start moving to the top left.
Repeat this movement three times.

Zigzag in protracted
head position

Follow the zigzag pattern on the wall with
your head, keeping as close as possible to the
middle line. Start moving to the top left.
Repeat this movement three times. Hold
your head forward.

Cross in neutral
head position

Follow the cross pattern on the wall with
your head, keeping as close as possible to the
middle line. Start moving to the top. Repeat
this movement three times.
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Table 2. Cont.

Task Instructions Illustration

Cross in protracted
head position

Follow the cross pattern on the wall with
your head, keeping as close as possible to the
middle line. Start moving to the top. Hold
your head forward. Repeat this movement
three times.

Free movement Now move your head completely free, at
your comfortable speed, for 30 s.

3.4. Data Analysis
3.4.1. Neck Length Estimates

To estimate the unknown neck length l12, the procedure described in Section 2.2 was
used. The fitting was conducted individually for each participant (6). Per participant there
was a set I of motion patterns i ∈ I and per motion pattern there was a set of observation
time-instants t ∈ Ti. The fitting procedure yielded the neck-stick length l12 and the constant
vectors vs1 and v2h. Based on these, the head position os

h was predicted from the poses
of the sternum and the neck rigid bodies. To verify the model accuracy, the discrepancy
between measured and predicted forehead position by evaluating the sum of squared
Euclidean errors in (6) was considered and the accuracy of the neck length estimates was
expressed as the mean error (ME) and the 5% and 95% percentiles of the error.

3.4.2. Real-World Model Validation

Linear models as described in Section 2 were fitted to describe the dependency be-
tween estimated neck-stick length l12 versus the measured length C2–C7. The residual
errors of the parametrized model for the movement of J2 with respect to the fitted model
were expressed as ME and the 5% and 95% percentiles of the error.

3.4.3. Noise Sensitivity

Independent identically distributed Gaussian noise samples were added to the posi-
tion and orientation measurements with a 5- and 10-times higher standard deviation (SD)
than is included in the measurements. Using these disturbed noise position measurements,
the position and orientation of the thorax, neck, and head were recalculated. From this,
the model parameters were identified according to (6). This procedure was repeated with
25 independently generated noise samples for the entire set of measurements taken from
a participant and the distribution of the estimated neck length l̂12 was analyzed. Three
variants were considered: (i) Extra position noise only, (ii) extra orientation noise only, and
(iii) extra position and orientation noise.

3.4.4. Video Analysis

To further investigate the correlation between neck length C2–C7 and the estimated
neck length l̂12, the participants cervical and thoracic movement patterns were visually
investigated from the videos taken during the measurements.

4. Results
4.1. Neck Length Estimates

Table 3 summarizes the corresponding ME and the 5% and 95% percentiles of eh in
three axis for the fitted model. For all participants, the ME is in the lower millimeter range.
The error in the predicted position of J2 was directly linked to the error of the predicted
forehead position via the vector v2h, which is a constant when expressed in the h-frame.
Therefore the model predicts the position J2 with an ME in the lower millimeter range.
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Table 3. Residual errors of the fitted model for the movement of the head; ME—mean error

Participant
ME

X [mm]
X Percent. [mm] ME

Y [mm]
Y Percent. [mm] ME

Z [mm]
Z Percent. [mm]

5% 95% 5% 95% 5% 95%

1 −0.52 −8.45 3.83 −0.85 −6.96 5.07 1.42 −4.41 8.67

2 −2.62 −10.51 2.83 −0.26 −6.93 5.37 −2.24 −8.36 3.68

3 −1.03 −5.99 3.07 −0.28 −3.95 3.49 −2.48 −7.27 1.92

4 0.98 −3.43 4.88 −3.10 −12.48 1.91 −0.99 −4.86 3.27

5 −3.59 −10.05 2.52 −1.22 −6.74 3.27 1.22 −3.79 6.13

6 −4.96 −11.73 0.71 0.16 −6.15 6.27 2.64 −2.50 7.76

7 −1.34 −5.17 2.39 −2.21 −7.97 6.46 2.41 −3.09 7.31

8 −1.97 −9.76 4.20 −2.81 −9.97 3.84 1.47 −6.31 12.81

4.2. Real-World Model Validation

Table 4 and Figure 4 show the residual errors and estimated neck-stick length l12
versus the measured length C2-C7 for each participant. To clarify if these residuals are
caused by noisy neck length estimates, the impact of extra measurement noise on the
estimated neck length l̂12 in the next section.

Figure 4. Linear model to describe the fitted length of vector l12 depending on the distance between C2 and C7. Data points
are labeled with the subject number. The linear model describes the distance l12 with a large residual error.
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Table 4. Residual errors of the parametrized model for the movement of J2 with respect to the fitted model; ME—mean
error.

Participant ME
X [mm]

X Percent. [mm] ME
Y [mm]

Y Percent. [mm] ME
Z [mm]

Z Percent. [mm]

5% 95% 5% 95% 5% 95%

1 −0.52 −8.45 3.83 −0.85 −6.96 5.07 1.42 −4.41 8.67

2 −2.62 −10.51 2.83 −0.26 −6.93 5.37 −2.24 −8.36 3.68

3 −1.03 −5.99 3.07 −0.28 −3.95 3.49 −2.48 −7.27 1.92

4 0.98 −3.43 4.88 −3.10 −12.48 1.91 −0.99 −4.86 3.27

5 −3.59 −10.05 2.52 −1.22 −6.74 3.27 1.22 −3.79 6.13

6 −4.96 −11.73 0.71 0.16 −6.15 6.27 2.64 −2.50 7.76

7 −1.34 −5.17 2.39 −2.21 −7.97 6.46 2.41 −3.09 7.31

8 −1.97 −9.76 4.20 −2.81 −9.97 3.84 1.47 −6.31 12.81

4.3. Noise Sensitivity

Figure 5–7 illustrate the noise sensitivity of the neck-length estimator.
The estimation without noise shows a standard deviation of about ±3 mm, while ori-

entation noise caused an estimation bias towards shorter neck lengths. This bias was on the
order of −1.5 mm if no extra noise was added. Therefore: (i) The measurement equipment
and estimation procedure (6) resulted in a neck-length estimate with an uncertainty of few
millimeters only. (ii) The effect of noise on the estimation error of l̂12 was by far too weak
to explain the observed residuals on the order of tens of millimeters shown in Figure 4.

Figure 5. Influence of position noise on the parameter estimation.
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Figure 6. Influence of orientation noise on parameter estimation: A bias towards smaller neck lengths is introduced.

Figure 7. Influence of position and orientation noise on parameter estimation.
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4.4. Video Analysis

The video analysis revealed varying movement patterns. Participants’ distributed their
movement differently over the vertebrae of the neck and upper thorax. Some participants
moved with their cervical spine and upper thorax, while others only moved with their
cervical spine.

4.5. Outlook

In a next step the models quality criteria such as the concurrent validity, reliability, and
applicability need to be addressed. The concurrent validity should be assessed by tracking
the head position simultaneously with an optoelectronic motion capture system and an
IMU system [48]. Reliability should be addressed in a test retest design [37]. Following
this, the applicability of the model could be tested in a real life situation, such as during
office work.

5. Conclusions

The aim of this work was (i) to introduce a simple neck model that describes the
relative motion of the head to the thorax and (ii) to measure relative protraction by means
of this model and 3D-orientation measurements of the neck and thorax. The model consists
of a simple two joint model with joints J1 and J2 in the vicinity of vertebrae C2 and C7,
respectively and a stiff neck-stick of length l12 between the joints. The center of joint J2
is defined as the head position. The advantage of this model lies in its simplicity, as it
describes the head motion with the model parameter l12 and the measured orientation
of the neck relative to the thorax. The model parameter l12 was fitted to the model for
different motion exercises. The resulting model describes the relative head motion with a
maximum uncertainty of 5 mm only. However, in a practical application the length l12 is
unknown. To replace its estimation, we propose to predict the length l12 from the palpable
distance C2–C7, which, however, is a weak predictor. Applying it despite of this, resulted
in a protraction measurement error of up to 30% of the true protraction distance in our
experiments. It is important to notice, that this error is proportional to the true protraction
distance, i.e., the proposed model allows to observe accurate relative protraction. We
conclude that the proposed model could be sufficiently accurate to determine protracted
malposition in some applications. The advantage of the proposed model is that protraction
of the head relative to the thorax can be measured with only two rigid bodies, one on the
neck and one on the sternum. This might make it possible to combine this model with
more economical measurement methods after it has been validated for these methods.
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