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Abstract: A fundamental question in biology is how cell shapes are genetically encoded and en-
zymatically generated. Prevalent shapes among walled bacteria include spheres and rods. These
shapes are chiefly determined by the peptidoglycan (PG) cell wall. Bacterial division results in two
daughter cells, whose shapes are predetermined by the mother. This makes it difficult to explore the
origin of cell shapes in healthy bacteria. In this review, we argue that the Gram-negative bacterium
Myxococcus xanthus is an ideal model for understanding PG assembly and bacterial morphogenesis,
because it forms rods and spheres at different life stages. Rod-shaped vegetative cells of M. xanthus
can thoroughly degrade their PG and form spherical spores. As these spores germinate, cells rebuild
their PG and reestablish rod shape without preexisting templates. Such a unique sphere-to-rod
transition provides a rare opportunity to visualize de novo PG assembly and rod-like morphogenesis
in a well-established model organism.
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1. Introduction

While spheres may seem simple and physically preferable, cells are seldom spherical.
Instead, most cells invest extra energy to establish and maintain non-spherical shapes
through a process known as “morphogenesis”. How cells use molecules at the nanometer
scale to establish a defined morphology at micrometer scale has become a fundamental
question in biology. Because of their relative simplicity, bacteria are excellent models for
studying how genes and proteins determine cell morphology. Rods are the simplest non-
spherical shapes adopted by many bacteria. Phylogenic studies suggest that the common
ancestor of bacteria was rod-shaped, and that rod-like shapes are advantageous for cell
survival [1–3]. Thus, the switch from primeval spheres to rods may mark the origination of
bacteria, and represents a landmark morphological transition in evolution. Understanding
this switch will likely uncover fundamental mechanisms of morphogenesis.

The word “morphogenesis” (from the Greek words “morphê” and “genesis”) means
“the beginning of shape”. However, despite seeing “the surprising and bewildering riot
of shapes” in bacteria [3], true morphogenesis is seldom studied, because we can rarely
see the beginning of shape. In most bacteria, rigid peptidoglycan (PG) structures largely
determine cell shape. Disruption of PG usually results in the loss of defined cell shape
and, eventually, cell death [4,5]. Thus, in order to maintain their shape during growth,
bacterial cells must add new PG subunits into existing PG structures [6–9]. When cells
divide, the shapes of the daughter cells are already predetermined by their mothers. The
preexistence of PG has become a central challenge that impedes progress in understanding
bacterial morphogenesis.

One way to circumvent this dilemma is to investigate how cells establish non-spherical
shapes from PG-deficient spheres. Some bacteria can shed PG, thus losing their original
morphology to cope with environmental stresses, especially when attacked by host immune
systems and antimicrobial agents [10,11]. Among these PG-deficient cells, spheroplasts
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and L-forms derived from rod-shaped cells are able to regenerate rod shapes [11,12].
Importantly, a stable L-form state can be induced in many bacteria by genetically inhibiting
the synthesis of PG precursors or upregulating membrane biosynthesis [13–15]. L-form
cells of both Bacillus subtilis and Escherichia coli can rebuild rods when their genetic defects
are rescued, which provides potential vehicles for the study of the de novo generation of
non-spherical shapes [16,17]. However, these PG-deficient cells usually take on an array
of irregular shapes, especially during proliferation, which makes reproducible live-cell
imaging technically challenging [16–18]. Moreover, spheroplasts and L-form cells take
several generations to restore their original cell shapes, which implies the involvement
of cell division in morphogenesis [12,17]. These temporal steps make it difficult to track
morphological changes in single cells and to attribute them to a simple PG assembly
system. Therefore, in order to better understand bacterial morphogenesis, it would be very
helpful to find a system in which homogeneous spheres generate non-spherical shapes
independent of both division and pre-existing templates.

Myxococcus xanthus is a Gram-negative bacterium that has been studied extensively
for its motility, multicellular development, and predatory behaviors. Vegetative M. xanthus
cells are long rods (1 µm in diameter and 5–10 µm in length) that go through cell cycles sim-
ilar to other rod-shaped model organisms, such as E. coli and B. subtilis [19,20]. In response
to certain chemicals, individual M. xanthus cells can degrade their PG thoroughly and form
spherical spores [21,22]. During germination, these spores restore vegetative morphology
by assembling rod-shaped PG de novo. As PG is usually essential for bacterial survival,
and its assembly systems are well conserved in most bacteria, including M. xanthus [23],
M. xanthus provides unique opportunities to better understand the mechanisms of PG
assembly and rod-like morphogenesis.

2. PG and Cell Shape

The entire PG layer is a continuous, mesh-like macromolecule of glycan strands that
are crosslinked via short peptides [24]. PG surrounds the whole cell, provides major
mechanical support against turgor pressure, and defines cell shape throughout the life
cycles of most bacteria [25]. As PG is chemically unique, and usually essential for cell
survival, the synthesis and turnover of PG have been predominant targets for antibacterial
treatments [26].

Cells synthesize lipid II, the PG subunit carried by lipids, using conserved enzymes
in the cytoplasm and the cell membrane. Lipid II is flipped into the periplasm, where it
is assembled into the existing PG structure [9]. PG assembly during vegetative growth
relies on two conserved polymerization systems: the Rod complex and class A penicillin-
binding proteins (aPBPs). The central components of Rod complex are RodA, PBP2 and
MreB. RodA, a SEDS (shape, elongation, division, and sporulation) family transglycosylase
(TGase), catalyzes the formation of glycosidic bonds in the glycan strands. PBP2, a member
of the class B penicillin-binding proteins (bPBPs) that has transpeptidase (TPase) activity,
crosslinks the short peptides on adjacent glycan strands [23,27–30]. MreB, an actin-like
cytoskeletal protein that is conserved in most rod-shaped bacteria, is proposed to form
the scaffolds that orchestrate PG assembly [31]. Different from the Rod components,
aPBPs have both TGase and TPase activity. While the Rod system is essential for rod-like
morphology [31–33], the functions of aPBPs are still not fully understood [34]. A recent
work suggests that aPBPs contribute to shape maintenance indirectly by repairing PG
defects [35]. In general, the Rod complexes reduce cell diameter, whereas aPBPs increase
it [36]. Hydrolases also play important roles in PG growth, by generating small openings
in the existing PG layer to allow for the insertion of new subunits. Thus, PG is a dynamic
structure under the coordinated control of its polymerases and hydrolases [37].

3. The Sporulation and Germination of M. xanthus

Many bacteria form spores in order to survive under unfavorable environmental
conditions. The endospores formed by Firmicutes such as Bacilli and Clostridia have been
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subject to extensive studies. In these organisms, the morphological differentiation from
rod-shaped vegetative cells to oval spores begins with an asymmetric division, resulting
in the formation of a smaller cell—the forespore—and a larger mother cell. Eventually,
the forespore is engulfed by, and becomes wholly contained within, the mother cell. The
resulting endospores contain intact and, in many cases, thickened PG. In addition, because
the cell poles in forespores are generated through division, the mature endospores are also
likely to preserve the information of cell polarity [38–40].

Strikingly different from endospore-forming bacteria, cell division is not involved in
the sporulation of M. xanthus. M. xanthus can form spores using two distinct mechanisms,
both of which exhibit the transformation of entire rod-shaped vegetative cells into spheres.
First, in response to starvation, large groups of vegetative cells can aggregate on solid
surfaces and build fruiting bodies, which are filled up with spores. Such spores are difficult
to study because in order to release individual spores, the coats of fruiting bodies have to
be broken and removed via intensive sonication [20]. In the second mechanism, individual
vegetative cells can form dispersed, spherical spores in response to various chemical
signals, such as glycerol, dimethyl sulfoxide (DMSO), and agents that inhibit PG synthesis
or disrupt PG—including β-lactams, D-cycloserine, fosfomycin, and lysozyme [41,42]. In
contrast to fruiting bodies that require millions of cells, solid surfaces, and days to form,
chemical-induced sporulation can occur at low cell density, in liquid media, and in a few
hours. For example, adding 0.5–1 M glycerol into rich liquid media induces the transition
of M. xanthus from rod-shaped vegetative cells to spherical spores in 1–3 h [41]. These
“quick” spores used to be considered artificial. However, we believe that chemical-induced
sporulation is a naturally occurring process through which dispersed cells form spores
rapidly under particular environmental stresses. First, many signals that induce quick
sporulation are also present in the natural habitats of M. xanthus. Second, chemical-induced
spores show typical characteristics of starvation-induced spores, such as considerable
resistance to heat, desiccation, UV irradiation, sonication, detergents, and enzymatic
digestion [43].

Unlike endospores, glycerol-induced M. xanthus spores are PG-deficient. Using high-
performance liquid chromatography (HPLC) and transmission electron microscopy (TEM),
Bui et al. first reported that such spores contained no detectable muropeptides [21]. This
conclusion was later confirmed using cryo-electron tomography (cryo-ET) [22]. Thus,
during sporulation, vegetative cells thoroughly degrade their PG, shrink into near-perfect
spheres [21], and synthesize spore coats that consist of polysaccharides and proteins [44].
Sensing certain environmental signals, such as inorganic ions HPO4

2−, Mg2+, Ca2+, and
NH4

+, M. xanthus spores regenerate vegetative cells with rod-like morphology [45]. So
far, Ca2+ has been found to be a strong germinant that induces roughly synchronized
germination [46]. When incubated in rich liquid media containing Ca2+, M. xanthus spores
can restore vegetative cell shape within 2–3 h [22,46,47].

4. PG Assembly and Morphological Transition during M. xanthus Spore Germination

Do M. xanthus spores preserve PG subunits from previous vegetative cells? Bui et al.
proposed that glycerol-induced M. xanthus spores may contain PG subunits [21]. Consistent
with this report, these spores are able to germinate and restore vegetative morphology in
the presence of fosfomycin, an antibiotic that inhibits the production of UDP-MurNAc—
a precursor of PG. However, after the exhaustion of preserved PG subunits, nascent
vegetative cells become sensitive to fosfomycin, and are unable to elongate further [22,48].
These results indicate that glycerol-induced spores preserve most of the PG subunits from
previous vegetative cells. Thus, PG assembly, rather than the production of PG subunits, is
the decisive step for the restoration of rod shape.

Similar to endospores [49], M. xanthus spores are refractile, and appear bright under a
phase-contrast microscope [46,47]. Upon being suspended in rich media containing Ca2+,
most spores lose their refractility within a few minutes, indicating that germination initiates
immediately upon induction [46,47]. However, germinating spores remain spherical,
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and do not elongate until 45–60 min later [22]. Despite the absence of morphological
changes, PG assembly initiates immediately once germination starts, as germinating spores
begin to incorporate TAMRA 3-amino-D-alanine (TADA)—a fluorescent D-amino acid
(FDAA)—evenly onto their surfaces (Figure 1A) [22]. Because FDAAs specifically label
newly assembled PG [50,51], the incorporation pattern of TADA indicates that spores first
synthesize spherical PG layers in this early phase of germination.
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Figure 1. A schematic model for the de novo establishment of rod-shape from spherical, PG-deficient spores. (A) As the
wild-type (WT) spores germinate, nascent cells restrict Rod complexes, and thus PG assembly, to non-polar regions in
the elongation phase of germination. Such a pattern of PG growth maintains the integrity of cell surfaces and restores
vegetative morphology within 3 h. In contrast, in the mgl spores (from the strains of ∆mglA, ∆mglB, and mglAQ82L that
encode a GTPase-inactive variant of MglA, and mglBOE that overexpresses MglB) and the agl spores that express truncated
gliding motors, the localizations of Rod complexes and PG assembly are not restricted. As a result, such spores grow into
bulged intermediates that are sensitive to osmotic stresses and restore vegetative cell shape much more slowly (4–7 h). The
asterisks mark the sites where Rod complexes mislocalize and bulges appear. (B) Symmetry breaking by MglB and MglA.
The GTP-bound form of MglA (MglA-GTP) connects to Rod complexes via MreB filaments. Through the mutual expulsion
between MglB and MglA-GTP, MglB clusters survey the status of PG synthesis indirectly, and cannot localize at the sites
where PG assembly is active and Rod complexes are present. Therefore, MglB clusters move randomly in the early spherical
phase, when Rod complexes distribute randomly on cell surfaces. Once a patch of PG is completely assembled and the Rod
complexes leave, the MglB cluster will stall at this site, which will become the first future pole. At the first pole, MglB expels
MglA-GTP, and thus the Rod complexes, toward the second pole. MglA-GTP then occupies the second pole, stimulating the
assembly of the gliding machineries, which transport MreB filaments, together with Rod complexes, toward the first pole.
As a result, the diametrically opposing clusters of MglA-GTP and MglB restrict the Rod system, and thus the assembly of
PG, to non-polar locations.

After remaining spherical for approximately one hour, germinating spores quickly
start to elongate. Compared to vegetative cells, which double their length in about four



Microorganisms 2021, 9, 916 5 of 12

hours, the elongation of germinating spores proceeds quite rapidly, growing one cell length
within an hour [22]. During elongation, cells only incorporate TADA to the cylindrical,
non-polar portion of their surfaces, indicating that the cell poles become inert for PG
growth (Figure 1A) [22].

These distinct growth patterns allow us to divide M. xanthus spore germination
into two phases: the spherical phase (Phase I), in the first hour of germination, when
spores assemble PG evenly on their entire surfaces; and the elongation phase (Phase
II), in the second to third hours, when PG growth at the non-polar regions drives cell
elongation (Figure 1A). The correlation between the shapes of cells and the patterns of PG
growth suggests that a major switch in the mode of PG assembly results in the de novo
establishment of rod shape.

5. Roles of aPBPs and the Rod System during Germination

The roles aPBPs and the Rod system play in PG assembly can be studied by monitoring
TADA incorporation in the presence of antibiotics, which specifically inhibit either aPBPs or
the Rod system. In the spherical phase, neither mecillinam—an inhibitor of PBP2 in the Rod
system—nor cefsulodin or cefmetazole—antibiotics that mainly inhibit aPBPs—are able
to block TADA incorporation. However, spores stop incorporating TADA when treated
with all three antibiotics. In contrast, once spores enter the elongation phase, mecillinam
alone is sufficient to block TADA incorporation, whereas cefsulodin and cefmetazole do
not show significant effects [22]. M. xanthus spores are able to germinate into rods in the
presence of cefsulodin and cefmetazole, indicating that aPBPs are dispensable for cell
elongation [22]. However, elongated cells revert to spheres after prolonged inhibition of
aPBPs, which suggests that aPBPs stabilize rod shapes [22]. This observation echoes the
reports on E. coli, where aPBPs did not determine rod shape, but rather maintained PG
integrity, especially across different pH environments [35,52]. Whereas both aPBPs and the
Rod system participate in the assembly of spherical PG layers, the Rod system is essential
for the establishment of rod shape.

The Rod proteins are stably produced, and remain active during the entire germination
process [22,44], whereas the spatial distribution of the Rod complexes alters dramatically
when the spores start to elongate. While RodA localizes randomly on spore surfaces in
the spherical phase, it concentrates at non-polar regions during elongation [22]. Similarly
to RodA, MreB first appears diffusive in the spherical phase, and then forms filaments
that mainly localize at non-polar regions as nascent cells elongate [22]. Such non-polar
localization of Rod complexes is consistent with the lateral growth patterns of PG. Taken
together, to establish rods from spheres, germinating M. xanthus spores must first establish
cell poles, and then restrict Rod complexes to non-polar regions.

6. De Novo Establishment of Cell Poles

While M. xanthus spores are approximately spherical, those spheres are rarely “per-
fect”. If such morphological “imperfection” preserves polarity from previous vegetative
cells, each germinating spore is expected to elongate along the long axis of the ovoid. How-
ever, the elongation axis during germination appears random in many spores, independent
of their original morphology [22].

Then how do spores establish cell poles de novo? In vegetative M. xanthus cells,
directed motility requires a head–tail polarity axis, which is under the modulation of
multiple regulators, including the Mgl regulators (MglA, MglB and MglC) [53–55], the
RomR–RomX pair [56–58], and PlpA [59]. Among these regulators, MglA—a Ras-like
GTPase—and its GTPase-activating protein—MglB—are required for rapid cell elongation
in the elongation phase of germination. Specifically, fine-tuned MglA is critical for optimal
germination efficiency. Deleting MglA or MglB, nullifying the active site of MglA, or
overstimulating the GTPase activity of MglA by overproducing MglB all cause severe
delays in cell elongation (Figure 1A) [22]. Strikingly, unlike the wild-type spores, which
maintain relatively smooth cell surfaces throughout the germination process, these Mgl
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mutant spores germinate into bulged, multipolar intermediates (Figure 1A). Many of these
intermediates lyse before becoming vegetative cells, especially under osmotic stress [22].
Such morphological abnormality directly reflects the structural defects in newly assembled
PG. A large portion of Rod complexes heavily incorporate TDA, mislocalize at cell poles,
and bulge in elongating Mgl mutant spores. This is in contrast to wild-type spores in
which Rod complexes, and therefore PG assembly, are restricted to non-polar regions in
the elongation phase of germination (Figure 1A) [22]. These findings indicate that the Mgl
system plays a central role in expelling PG assembly from cell poles during germination.

7. Symmetry Breaking by Random Fluctuation

Does polarity originate from preserved spatial cues, or from stochastic fluctuations?
During sporulation M. xanthus retains both MglA and MglB in its spores [22,60,61]. Here,
fluorescence-labeled MglB is seen to form a single bright cluster in each spore throughout
the entire course of germination. These clusters first move randomly in the spherical
phase, and then abruptly stop moving. Importantly, once an MglB cluster stalls, the spore
immediately starts to elongate, using the position of the MglB cluster as one cell pole
(Figure 1B) [22]. In contrast, MglA only begins to form a cluster after MglB stalls, and
the formation of MglA clusters requires MglB. Once formed, clusters of MglB and MglA
always occupy opposite sides of the same spore (Figure 1B) [22]. Thus, the sequential
stabilization of MglB and MglA clusters establishes the polarity axis for PG assembly.

The random “walk” of MglB clusters during the spherical phase of germination
suggests that polarity is not preserved. The localizations of stalled MglB clusters do not
correlate with the geometry of the spores. Instead, MglB clusters are immobilized by
the inhibitors of PG assembly—especially the agents that inhibit the Rod system, such as
mecillinam [22]. Thus, MglB clusters could stall at the sites where PG assembly has been
completed, or has not yet initiated. In this case, it is unlikely that PG assembly has not
yet initiated, because no obvious PG assembly activity is observed near the nascent cell
poles after the stall of MglB clusters (Figure 1A) [22]. MglB activates the GTPase activity of
MglA, and turns MglA-GTP into MglA-GDP. As MglA-GDP cannot form clusters, clusters
of MglB and MglA (MglA-GTP) always maintain the farthest distance possible in the
same cell [53,54]. As a consequence, once an MglB cluster stalls at one pole, the expulsion
between MglB and MglA-GTP causes MglA-GTP to cluster at the opposite side of the
spore—the second cell pole (Figure 1B).

8. When PG Assembly Intersects with Gliding Motility

MglB clusters must have the ability to survey the random fluctuation of PG growth
during the spherical phase of germination, and stall at the region where PG growth
completes first. Once polarity is established, Mgl regulators must expel the Rod complexes
from the cell poles. How do Mgl regulators connect to the Rod system? Besides being a
component in the Rod system, MreB also supports the gliding motility of M. xanthus. MglA-
GTP stimulates the assembly of the gliding machineries through direct interaction with
MreB [62–65], and then directs them toward non-polar regions [66]. The gliding motors
then carry MreB filaments as they move rapidly in the membrane [48,67,68]. MglA-GTP
clusters therefore co-localize with MreB filaments that lso carry Rod complexes [53,54,63,69];
however, MglB clusters do not (Figure 1B).

Through the mutual expulsion between MglB and MglA-GTP, MglB clusters stall at
the sites where PG assembly is complete and Rod complexes are absent. At the first pole,
which contains the MglB cluster, MglB expels MglA-GTP, and thus the Rod complexes,
toward the second pole. MglA-GTP then occupies the second pole and stimulates the
assembly of the gliding machineries [63,70], which transport the Rod complexes toward the
first pole [48,66]. As a result, the diametrically opposing clusters of MglA-GTP and MglB
restrict the Rod system, and thus the assembly of PG, to non-polar locations (Figure 1B).
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9. Perspectives
9.1. What Does It Take to Make a Rod?

As the assembly of PG is widely conserved in bacteria, the mechanisms by which
M. xanthus rebuilds rods from spheres might reveal the common principles for rod-like
morphogenesis. During M. xanthus spore germination, the Rod system is the only element
known to be essential for the establishment of rod shape. Similarly, to our knowledge,
artificial spheres from other rod-shaped cells are not able to restore their original shapes in
the absence of the Rod system [71]. Given their critical roles, we hypothesize that restricting
Rod complexes to a non-polar, but expanded region, might be a common prerequisite for
building and maintaining a rod. On the one hand, when this restriction is relieved in the
Mgl mutants, the cells generate poles randomly and display bulged morphology. On the
other hand, in bacteria that over-restrict Rod complexes to very narrow regions, the cells
are naturally oval [72,73].

9.2. The Versatile MreB

In comparison to its analogs in other bacteria, MreB in M. xanthus is truly extraordi-
nary for its connection to the Mgl regulators and gliding machineries. MreB filaments in M.
xanthus display a rapid, directed motion that is not yet reported in other organisms [48]. On
the other hand, as in most rod-shaped bacteria, M. xanthus MreB plays conserved roles in
PG assembly. As MreB filaments are intrinsically curved, and bind to the cytoplasmic mem-
branes, the balance between filament bending and membrane deformation can lead MreB
filaments to localize at inwardly curved regions [31,74–78]. This localization preference, in
turn, affects the localization and dynamics of Rod complexes, which could be sufficient
for the maintenance of rod shape [31–33,71,76,79,80]. Additionally, the composition and
fluidity of the cytoplasmic membrane could also modulate the localization and dynamics
of MreB [81–84]. For instance, rafts of anionic phospholipids preferentially enrich MreB
monomers at the cell poles, and expel MreB filaments to non-polar regions [81]. Using these
mechanisms, cells are able to generate rod shape spontaneously, based on random fluctua-
tions, albeit much slower. For example, the Mgl and motor mutant spores can still elongate
into rods and correct morphological defects after prolonged germination, and the artificial
spheres of E. coli and B. subtilis can regain rod shapes after several generations [17,22]. In
addition, Mgl and gliding motors are dispensable for vegetative growth [67,85]. Thus,
rather than being the determinants of symmetry breaking, Mgl and gliding motors are
supplementary accelerators. Nevertheless, such accelerators provide critical advantages for
the survival of M. xanthus spores. As chemical-induced M. xanthus spores are dispersed and
PG deficient, they are vulnerable to biotic and abiotic environments during germination.
Equipped with the Mgl regulators and gliding machineries, M. xanthus spores are able to
regain fitness within one generation.

While the Rod complexes move relatively slowly, with nm/s velocities, gliding motors
in M. xanthus move significantly faster, at µm/s [48,86–88]. Then how do MreB filaments
co-ordinate multiple functions that require distinct dynamics? Aside from PG assem-
bly, MreB affects a broad range of cellular functions, either directly or indirectly—such
as membrane organization, DNA replication and segregation, twitching motility, and
pathogenesis [89–96]. Studying MreB in M. xanthus provides an opportunity to understand
how MreB organizes multiple functions simultaneously.

9.3. Are Small GTPases the Universal Regulators of Cell Polarity?

MglA-like GTPases distribute widely in phylogenically diverse bacteria. MglA and its
eukaryotic homologs are proposed to have evolved from a common ancestor [97]. GTPase-
mediated cell polarization is common in eukaryotes. The Rho-family GTPase Cdc42 and
its homologs widely exist, in organisms ranging from yeast to human beings [98]. The
rod-shaped yeast Schizosaccharomyces pombe forms spherical spores. During germination,
Cdc42 first moves randomly during the isotropic growth phase, before stalling at a future
pole [98,99]. Analogous to the connection between MglA and the Rod system in M. xanthus,
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Cdc42 in S. pombe is able to survey the integrity of the spore cell wall by interacting
with cytoskeletons, cell wall-related enzymes, and molecular motors [99]. Such striking
similarities suggest that M. xanthus might preserve a prototype of a polarity regulation
system that evolved before the divergence between prokaryotes and eukaryotes. Therefore,
studying the interactions between Mgl regulators, MreB, and motor-associated proteins
may also aid in the understanding of cell polarity in a broad range of organisms.

9.4. What Are the Primary Roles of the Gliding Motors?

Vegetative M. xanthus cells move on surfaces using both gliding and twitching motility.
In contrast to twitching—which exists in many phylogenically diverse bacteria—gliding,
driven by fluid motor complexes, is rather unique to Myxococcales [100,101]. While
twitching is required for group behaviors such as coordinated migration, predation, and
multicellular development—to name but a few—gliding is rather secondary for vegetative
growth [19,102]. Besides accelerating germination, the gliding machineries are also the
distributors of spore coat polysaccharides during sporulation, which is critical for the
resilience of the spores [22,103]. Thus, rather than facilitating cell locomotion, the primary
function of the gliding machineries might be the distribution of various protein complexes
in the cell membranes.

9.5. How Do PG Polymerases Co-Ordinate with Hydrolases?

It is commonly accepted that the insertion of new PG subunits is associated with
the local hydrolysis of the existing PG network [9,25,37]. It is therefore reasonable to
hypothesize that a regulated co-ordination exists between PG polymerases and hydrolases.
Hence, exploiting the synergy between these two types of enzymes could usher in new
treatments for bacterial infections [104,105]. As of now, our understanding of PG hydrolases
has long been hampered by several challenges. First, these enzymes are highly redundant
in most bacteria, where strains lacking single hydrolases usually do not show significant
growth defects. Second, as the uncontrolled action of PG hydrolases potentially leads to cell
lysis, it is difficult to observe highly activated PG hydrolysis during normal cell growth [37].
The sporulation process, in which vegetative M. xanthus cells degrade their PG thoroughly
within two hours [21,22,41,106], sets the perfect stage for the study of PG hydrolases.
In order to facilitate rapid PG degradation, the balance between PG polymerases and
hydrolases changes, and hydrolysis becomes dominant over synthesis. Thus, studying PG
hydrolases during sporulation could provide valuable insight into how PG polymerase
co-ordinates with hydrolase.

In conclusion, the complete degradation of PG during chemical-induced sporulation
makes M. xanthus an invaluable model organism for investigating the dynamics of PG
and cell morphology. First, when M. xanthus spores germinate, cells must rebuild their
walls and re-establish rod shape without pre-existing PG as a template, matching the
definition of “morphogenesis” perfectly. Second, unlike spheroplasts and L-forms, nascent
M. xanthus cells restore rod-shape within one generation [22], which largely excludes the
involvement of cell division. Third, the germination progress of individual M. xanthus
spores can be tracked using simple bright-field imaging techniques, such as phase-contrast
and differential interference contrast microscopy. At the population level, germination
progress can be easily quantified using the aspect ratio (length/width) of individual
spores [22]. Using M. xanthus as a model to study PG dynamics and cell morphology may
allow us to answer many questions regarding bacterial growth and survival.
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