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Abstract 

Gastroenteropancreatic neuroendocrine neoplasms are heterogeneous in their clinical behavior 
and require therapies specially tailored according to staging, grading, origin and expression of 
peptide receptors. Despite extensive scientific efforts, the therapy options are still not satisfactory. 
The main reasons are due to the lack of a broad mechanistic knowledge, an insufficient classifica-
tion of specific diagnostic sub-groups, and predictive markers. GEP-NEN tumors evade early di-
agnosis because of slow asymptomatic growth behavior and are frequently not detected until 
metastasized. How signaling networks contribute to tumor progression and how these networks 
interact remains unclear in large parts. In this review we summarize the knowledge on the growth 
factor responsive non-angiogenetic pathways in sporadic GEP-NENs, highlight promising mecha-
nistic research approaches, and describe important therapy targets. 

Key words: Gastroenteropancreatic neuroendocrine neoplasms, signal transduction, growth fac-
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Introduction 
GEP-NENs (Gastroenteropancreatic neuroendo-

crine neoplasms) emerge from various neuroendo-
crine cells of the gastroenteropancreatic system and 
represent the largest subgroup of neuroendocrine 
neoplasms. This heterogenic entity of solid tumors, 
formerly termed GEP-NETs or GEP-NECs (gastroen-
teropancreatic neuroendocrine tumors and carcino-
mas) or “carcinoids”, displays a broad spectrum of 
characteristics concerning behavior during growth 
and differentiation, functional aspects, localization 
and prognosis.  

Although they are ranked among rare neoplastic 
diseases in general, their incidence has increased ex-
ponentially throughout the last decade. Currently, 
GEP-NENs state the second most common gastroin-

testinal malignancy after colorectal cancer [1].  
The majority of GEP-NENs is characterized by 

slow proliferating, well differentiated G1 phenotypes 
(WHO/ENETS classification 2010, refer to table 1), 
which are often diagnosed late in the developmental 
course by the occurrence of metastases (NEN G1, 
previously termed WDNET: well differentiated neu-
roendocrine tumor). In contrast, a small G3 subgroup 
of rapidly growing and poorly differentiated 
GEP-NENs display a behavior that is comparable to 
those of prevalent solid carcinoma entities (NEN G3 
or NEC, previously called PDNEC: poorly differenti-
ated neuroendocrine carcinoma). The third group, 
characterized by an intermediate malignancy or un-
clear behavior, NEN G2, approximates the former 
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description of a well differentiated neuroendocrine 
carcinoma. The tumor grade is dependent on the pro-
liferative behavior marked by mitoses and by the 
Ki-67 antigen, which is a proliferation-related antigen 
and is immunohistochemically analyzed during di-
agnosis by default (refer to table 1). In contrast to 
previous classifications or the TNM staging, the dif-
ferentiation of the tumor cells is not involved in 
grading decisions, which still hampers the evaluation 
of slowly growing poorly differentiated or highly 
proliferating well differentiated tumors and does not 
provide insights regarding invasive behavior. How-
ever, the main advantage of the current grading is the 
possibility to predict proliferation behavior and thus 
facilitate decisions regarding surgical resection, 
chemo-, radio- and biotherapy or monitoring.  

 

Table 1. WHO 2010 grading for (neuro-)endocrine tumors. 

Grade Mitotic count (10 HPF)  Ki-67 index (%)  
G1 <2 ≤2 
G2 2–20 3–20 
G3 >20 >20 

 
 
Several signaling cascades influence malignant 

transformation, progression and metastasis in neu-
roendocrine cancers including RTKs (receptor tyro-
sine kinases) and GPCRs (G-protein coupled recep-
tors) downstream signaling, which regulate Ras/Raf, 
MAPK, PI3K-Akt-mTOR and JNK and lead to DNA 
synthesis and cell proliferation. Pancreatic NENs are 
highly vascularized and nourished. Accordingly, they 
exhibit a vast expression of growth factors such as 
VEGF (vascular endothelial growth factor), PDGF 
(platelet-derived growth factor), IGF-1 (insulin-like 
growth factor 1), bFGF (basic fibroblast growth fac-
tor), TGF-α and -β (transforming growth factor) and 
PIGF (placental growth factor). Not surprisingly, ab-
errant receptor activity, including those of the IGF-1R 
(IGF-1 receptor) and FGFR3 (FGF receptor 3), and 
highly activated downstream signaling is frequent in 
pNENs [2-5].  

Analogous to the pancreatic subgroup, gastro-
intestinal NENs overexpress VEGF, bFGF, TGF α and 
-β, PDGF, IGF-1 and its corresponding receptors 
PDGFR (PDGF receptor), IGF-IR, EGFR (epidermal 
growth factor receptor), VEGFR (VEGF receptor), and 
c-kit (stem cell factor receptor). They thus exhibit in-
creased growth factor, pro-angiogenic and typically 
pro-secretory signaling [6-16]. This work will focus on 
the major growth-factor related signaling networks, 
namely the PI3 kinase and the MAP kinase cascades 
and their importance for GEP-NEN therapy and di-
agnosis today and for future therapy approaches.  

Aberrant receptor activity induces sus-
tained growth factor signaling in 
GEP-NENs and activates the PI3K and 
MAPK signaling network. 
IGF receptors 

The IGF-1R is one of the crucial RTKs in gas-
troenteropancreatic neuroendocrine tumor growth 
factor biology. The intrinsic RTK activity of IGF-1R is 
activated upon binding of its respective ligand and 
leading to auto-phosphorylation of intracellular tyro-
sine residues in the juxtamembrane and C-terminal 
domains. Those phosphorylated tyrosines serve as 
docking stations for insulin receptor substrates, such 
as IRS-1 and Src resulting in PI3K signaling via 
Grb2/SOS and Ras and MAPK pathways [17]. 

NEN cells have been shown to secrete high 
amounts of IGF-1. In gastrinomas, increased levels of 
both IGF-1 and the corresponding IGF-1R were asso-
ciated with tumor growth, aggressiveness, and pro-
gression [18]. Furthermore, other studies have dis-
played that the expression of IGF-1R is decreased in 
functionally inactive neuroendocrine tumors of dif-
ferent offspring in relation to their functional ana-
logues. These findings and further in vitro experi-
ments suggest that IGF-1 is not only a major autocrine 
regulator of neuroendocrine tumor growth but also of 
neuroendocrine secretion itself. Inhibition of IGF-1R 
activity, e.g. by direct inhibition or by blocking its 
regulators, such as HSP90 (heat shock protein 90), 
resulted in decreased PI3K and ERK1/2 (extracellular 
signal-regulated kinase) signaling and induction of 
cell cycle arrest and apoptosis [14, 18-26]. Addition-
ally, an alternatively spliced IGF-1R mRNA transcript 
could be detected with a higher abundance in neuro-
endocrine tumors of different offspring, suggesting 
that post-transcriptional mechanisms may cause reg-
ulatory aberrations [19]. 

In addition to aberrant receptor and ligand 
abundance, an important regulator of IGF signaling 
was found to be significantly up-regulated in meta-
static NENs in two gene expression studies: IGFBP3 
(IGF binding protein 3), which is considered to main-
tain the serum level of IGF-1 in a tissue specific pro- or 
antiproliferative manner. IGFBP3 was overexpressed 
in >80% of lymph node or distant metastases versus 
<60% in primary pNEN lesions [27-29]. Those data 
might indicate a stoma or tumor cell-controlled regu-
lation of a distinct IGF-1 homeostasis and allocation 
even in target tissues with a completely different 
composition. Adaptive and cooperative behavior of 
metastasizing NEN cells in the context of circulation 
and homing should be further explored in the future. 

Therefore, IGF-1 and its receptor IGF-R1 are 
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highly expressed in GEP-NENs with an altered 
abundance which depends on IGF binding factors and 
the relative ratio of specific receptor isoforms. IGF-1 
has been shown to be a major autocrine regulator of 
neuroendocrine tumor growth and of neuroendocrine 
secretion. 

EGF receptors and FGF 
The EGFR belongs to the HER receptor family 

that consists of EGFR (HER1 or erbB1), erbB2 (HER2), 
erbB3 (HER3) and erb4 (HER4). Gastrointestinal and 
pancreatic NENs express and activate EGFRs. In im-
munohistochemical analyses of NENs located in dif-
ferent primary locations, 96% of the specimens were 
positive for EGFR expression and 63% were positive 
for phosphorylated EGFR [6]. Another study demon-
strated a significantly higher expression (> 91%) in 
metastatic and non-metastatic gastrointestinal NENs 
in contrast to <25% in primary and metastatic pNEN 
[30]. A third study retrospectively evaluated the ex-
pression of EGFR and one of its ligands, TGF-α 
(transforming growth factor alpha), in pNENs, 
demonstrating that 63% of the tumors were positive 
for TGF-alpha and 65% were positive for the intra-
cellular and/or extracellular domain of EGFR, but 
failed to prove a correlation with size, functional sta-
tus, secretory profile, or biologic behavior [31]. These 
data were confirmed by Nilsson and colleagues, who 
showed that several human neuroendocrine tumors 
express both TGF-alpha and EGF receptors in vivo and 
in vitro, suggesting an autocrine mechanism [9].  

Di Florio and colleagues recently demonstrated 
that gastrointestinal hormones and neurotransmitters 
stimulate the growth of the human BON, QGP-1 and 
the rat Rin-14B-cell lines in an EGFR dependent 
manner through activation of PKC and Src kinases, 
matrix metalloproteinase activation and the genera-
tion of reactive oxygen species [32].  

Although a recent analysis of pancreatic neuro-
endocrine tumors uncovered frequent single nucleo-
tide polymorphisms (SNPs) in PDGFRA and EGFR, no 
druggable EGFR, KIT or PDGFRA mutation could be 
found in these receptors to date. Nevertheless, ele-
vated copy number of the EGFR and HER-2/neu loci 
could be detected in 38% and 33% of the cases and 
high expression of PDGFRA in 65%, respectively [21].  

The non-secretory protein FGF13 has recently 
been described as new progression marker in pNENs. 
Although FGF13 is insufficient to stimulate FGF re-
ceptors, it was demonstrated to be an independent 
predictor of a shorter progression-free survival asso-
ciated with positive Ki-67 staining. Furthermore FGF 
overexpression correlates with the occurrence of liver 
metastases and shortened disease-free survival in 
patients that underwent complete tumor resection 

[33]. FGF13 has recently been identified as microtu-
bule-stabilizing protein in neuronal cells that pro-
motes neuronal migration in the cerebral cortex. The-
se processes might also facilitate dissemination of 
neuroendocrine tumor cells that share at least some 
characteristics with neuronal cells, but the underlying 
mechanisms remain unknown [34]. 

Taken together, these studies have accounted for 
high growth factor abundance in GEP-NENs. Alt-
hough SNPs in several growth factor receptors have 
been demonstrated, no druggable mutation could be 
found to date. Therefore growth factor receptors 
might serve as targets for anti-growth receptor ther-
apy in patients with GEP-NENs, as several IGF-1R 
and EGFR inhibitors are currently under clinical as-
sessment (refer to Supplementary Material: suppl. 1). 
Nevertheless further subgroup-specific genetic and 
post-transcriptional analyses are necessary to clarify 
the role of the distinct receptor aberrations and im-
prove the therapeutic potential of growth factor re-
ceptors as therapeutic targets in GEP-NENs. 

Somatostatin receptors mediate an-
ti-proliferative signals, inhibit PI3K and 
MAPK signaling and are important ther-
apeutic targets in GEP-NENs 
Somatostatin signaling 

The cyclopeptide family of SSTs (somato-
statins), which function as somatotropin-release in-
hibiting factors, is distributed throughout the central 
nervous system and peripheral organs and can be 
found in endocrine, immune and neuronal cells, as 
well as in certain tumors. Its preserved peptide 
structure indicates a fundamental regulatory function 
in vertebrate hormone homeostasis.  

The human genome includes five non-allelic 
genes that encode for five or six distinct transmem-
brane domain G-protein-coupled SSTRs (somatostatin 
receptors). The gene encoding SSTR2 produces two 
splice variants (SSTR2A and SSTR2B) in mouse and 
presumably in humans as well [35-38], whereas the 
other genes are intronless and generate one receptor 
in each case [39-42]. The natural ligands of SSTR1-5 
(SST-14, SST-28 and cortistatin) are bound with a high 
affinity. Nevertheless the majority of (longer acting) 
synthetic peptide analogues, namely MS201-995 (oc-
treotide), RC-160 (vapreotide), BIM 23014 (lanreotide) 
and MK 678 (Seglitide), only interact with the sub-
types SSTR 2, 3 and 5 to a satisfactory extent. Moreo-
ver, Pasireotide (SOM 230) shows higher binding ca-
pacity towards SSTR1 [43, 44]. 

Somatostatin receptor signaling is complex. Its 
activation mediates cell cycle arrest, apoptosis and is 
involved in the regulation of hormone secretion in 
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endocrine target cells. Appropriately, binding of so-
matostatin and its analogues to SSTRs triggers a 
number of intracellular signaling events, initiated by 
specific G-Protein activation. These G-proteins func-
tion as transducers and in turn modulate the activity 
of several key enzymes including adenylyl cyclase, 
phospho-tyrosine phosphatases (PTPs) and MAPKs 
(mitogen activated kinases) [45-47]. Inhibitory effects 
of SST on adenylyl cyclase, cAMP production and 
several distinct ion channels regulate both endocrine 
and exocrine secretion [39, 48, 49]. Intracellular PTPs 
exert anti-proliferative activity by deactivation of in-
tracellular PI3K and MAPK signaling. Phosphatases, 
such as SHP-1 and SHP-2, mediate SST-induced cell 
cycle arrest in many cell lines in vitro. SHP-2 is also 
considered to inactivate insulin and epidermal 
growth factor binding RTKs and to repress C-Raf and 
MAPK signaling, whereas SHP-1 is involved in 
dephosphorylation of the p85 PI3K regulatory subunit 
and IRS-1 and thus, decreased PDK-1 (phosphoinosi-
tide-dependent kinase 1) and Akt activity. It further-
more inhibits S phase entry through the overexpres-
sion of p27kip1 and increase of hypo-phosphorylated 
retinoblastoma gene product (Rb) [47, 50-61]. A third 
PTP is involved in the SST-induced proliferation ar-
rest: DEP-1 (density enhanced phosphatase-1, also 
termed PTPη in rats) is a negative regulator of 
Src-mediated growth factor receptor activity and par-
ticipates in cellular differentiation [62-66].  

The mechanism of SST signaling has been con-
firmed in different cellular models indicating that this 
modular multi-effector pathway, which is induced by 
several SSTRs, transmitted by similar kinases and 
PTPs and resulting in the activation of final effector 
PTPs, is a common mechanism in various cells [67, 
68]. Furthermore the downstream signaling of the 
distinct SSTRs differs in certain subtype specific func-
tions: e.g. whereas both SSTR2 and 5 regulate GH 
secretion, insulin secretion is predominantly con-
trolled by SSTR5. Glucagon secretion and immune 
response are SSTR2 dependent (reviewed in [39]). 

Somatostatin receptors in GEP-NEN therapy 
Gastroenteropancreatic neuroendocrine neo-

plasms express all five subtypes of SSTRs, although at 
a variable extent and in various combinations. The 
most prevalent receptor is SSTR2A, which has been 
immunohistochemically detected in 84% of the 
GEP-NEN specimens in a recent study. SSTR3, 4, 5 
and 1 have been found expressed in 84, 44, 32 and 
32%, respectively [69]. This data agree with previous 
studies in insulinomas where the SSTR2, 1 and 3 have 
been found to be predominantly expressed [70]. In 
midgut NENs SSTR2 is the most prominent as well, 
but followed by SSTR1 and SSTR5, and, with a less 

frequency, by SSTR3 and SSTR4. [70-73]. Comparable 
findings have been recently published in a cohort of 
67 NENs, with an expression of SSTR1, 2a, 3, 4 and 5 
in 42, 63, 6, 32 and 65% of the cases, respectively. In-
terestingly, the SSTR5 immunoreactivity was corre-
lated with the presence of metastases and angioinva-
sion [74]. Other studies have previously demonstrated 
a positive correlation of SSTR2 and SSTR5 expression 
with a better prognosis and higher differentiation 
[75-80].  

Although corresponding data is rare, some 
studies have demonstrated a frequent co-expression 
of SSTRs and the D2R (dopamine D2 receptor) in 
GEP-NENs [38, 77, 81]. Co-expression of SSTR5 and 
D2R is assumed to contribute to a het-
ero-oligomerization and creation of a novel receptor 
with enhanced functional activity [82]. A Co-expression 
of SSTR2 and SSTR5 with D2R and its correlation with 
low tumor grade has been described in mixed NENs 
[77]. The high frequency of SSTR1, SSTR2, and SSTR5 
expression and inverse correlation with COX2, a cy-
tochrome C oxidase and component of the respiratory 
chain, was recently demonstrated. The study also ac-
counted for a better prognosis concomitant with a 
generally high SSTR expression [76]. 

Additionally, one group was also able to 
demonstrate a high expression of the human SSTR2B 
which raises further questions, whether this splice 
variant exists in humans [38]. 

Data concerning the SSTR receptor distribution 
pattern in different subgroups was published for 
SSTR2A, which was present in a high frequency in 
carcinoids and gastrinomas, but detectable in only 
half of the analyzed insulinomas, suggesting one 
reason for the high number of octreotide insensitive 
insulinomas [83, 84]. Another study demonstrated a 
higher SSTR expression in non-pancreatic NENs ver-
sus pancreatic NENs for all receptor isoforms [78]. 

This high heterogeneity of data, beyond the fact 
that SSTR2 exerts to be the most prevalent of the 
generally highly expressed SSTRs in GEP-NENs, is 
summarized in table 2 which highlights the need for 
better defined criteria. For example, a discussion 
about scoring systems as criteria in the use of mono- 
versus polyclonal antibodies is still ongoing [69, 
85-88].  

Furthermore the trafficking of SSTRs has become 
more and more interesting in somatostatin recep-
tor-positive cancer entities and GEP-NENs. Concern-
ing the internalization of SSTRs and its regulation in 
NENs, mainly controversially discussed immuno-
histochemical data is available. The involved agonists, 
phosphorylation sites and phosphatases in NENs are 
almost unknown, but basic neuroscience research has 
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increasingly focused on this fundamental aspect of 
SSTR regulation. [89-95]. 

Throughout two decades, efforts have already 
been made to translate the knowledge of neuroendo-
crine SSTR expression into effective GEP-NEN thera-
pies. During this process a multitude of somatostatin 
peptide agonists and antagonists and non-peptide 
agonists and antagonists have been developed, of 
which the agonists have found their way into clinical 
applications (refer to Supplementary Material: suppl. 
2).  

The clinical use of SST analogues is limited in 
clinical application due to a poor oral bioavailability, 
short half-life and immunogenicity. Non-peptide an-
alogues are considered to be more advantageous as 
synthesis can be directed upon a higher specificity, 
bioavailability and less immunogenicity. Further-
more, somatostatin analogue-conjugated radioligands 
are applied in PRRT (peptide receptor radionuclide 
therapy) and scintigraphy-based diagnosis (Reviewed 
in [96-106]).  

The two octapeptide analogues octreotide and 
lanreotide, which are also available as long-acting 
repeatable (LAR) depot formulation, bind to SSTR2 

with a high and to SSTR5 with a moderate affinity. 
They inhibit the release of neuroendocrine hormones 
and have been shown to prolong disease stability in 
>50% of patients with progressive GEP-NEN disease. 
Although no objective tumor responses were ob-
served in several studies, including the randomized, 
prospective Phase III PROMID trial in patients with 
metastatic neuroendocrine midgut tumors, patients 
profit from prolonged time to progression [107-117]. 
The results of the Phase III CLARINET-study using 
lanreotide in progressive neuroendocrine tumors of 
various sites are awaited later on this year. Further 
SST analogues, binding to the other SSTRs, such as 
Pasireotide, which binds to SSTR1, 2, 3 and 5, have 
been clinically assessed so far and chimeric molecules 
directed towards SSTRs and DRs (dopastatins) are 
under development and preclinical assessment in 
GEP-NENs [45, 118-123].  

In summary, the SSTRs are highly expressed in 
GEP-NENs. They have evolved into establishing 
therapy targets, although to date the individual ex-
pression patterns of the patients have not been related 
to therapeutic outcome.  

 

Table 2. SSTR expression in GEP-NENs. Several studies have been conducted to date, but with very heterogeneous results. SSTR2 is 
presumed to be the most prevalently expressed isoform. 

Reference Tissue Method SSTR1 SSTR2 SSTR3 SSTR4 SSTR5 
Papotti 2002 [73] GEP-NENs RT-PCR 90,1% 84,8% 78,8% 24,2% 42,4% 
  IHC pAb  68,2% 36,4%  63,6% 
Reubi 2003 [70] Midgut NENs receptor auto-radiography 50-60% 90-100% 10-20% < 10% ~ 50% 
Srirajaskanthan 2009 [77] Low grade IHC pAb  100%   100% 
 Interm. gr.    94,4%   94,4% 
 High grade   66,7%   66,7% 
Corleto 2009 [75] functioning NEN RT-PCR 73% 100% 64% 9% 64% 
Zamora 2010 [78] GEP-NENs IHC 46% 86% 26% 24% 62% 
Kim 2011 [76] GEP-NENs IHC m/pAb 84% 72%   55% 
Diakatou 2011 [38] GEP-NENS IHC pAb 39%  62% (2A) 

49% (2B) 
38% 15% 38% 

Kaemmerer 2012 [69] GEP-NENs IHC mAb 32% 84% 84% 44% 32% 
Schmid 2012 [74] GEP-NENs IHC mAb 42% 63% 6% 32% 65% 

 

The PI3K-pathway is frequently deregu-
lated in many human cancers entities in-
cluding neuroendocrine neoplasms of the 
gastroenteropancreatic system  
PI3 Kinases  

The lipid kinase family of PI3Ks (Phosphati-
dylinositol 3-kinases) consists of three classes (I-III) 
that promote the phosphorylation of 
3-hydroxyl-phosphoinositides. Whereas heterodi-
meric class I PI3Ks influence cellular proliferation, 
insulin signaling and inflammation, the monomeric 

class II PI3Ks determine the regulation of membrane 
trafficking. The sole class III member is involved in 
autophagy. The most important subclass in human 
cancers is formed by class IA PI3Ks [124, 125]. 

Extracellular growth factor signaling such as by 
VEGF, PDGF, IGF-1, FGF and TGF- α and -β is 
transmitted by RTKs to PI3Ks and results in their ac-
tivation [2, 3]. Activated class I PI3Ks convert their 
substrate PI(4,5)P2 (phosphatidylinositol 
4,5-biphosphate) into its triple-phosphorylated form 
PI(3,4,5)P3 (phosphatidylinositol (3,4,5)-triphos-
phate). Subsequently, PI(3,4,5)P3 recruits proteins that 
contain a PH-domain (Pleckstrin homology domain) 
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into proximity and thus functions as a docking site for 
Akt and PDK-1, allowing the latter to phosphorylate 
Akt at T308 (Threonin-308) [125, 126]. Phosphoryla-
tion on both, T308 by PDK-1 and on S473 (Serin-473) 
by mTORC2 is required for the full activation of Akt 
kinase activity [127]. 

The PIK3CA gene, which encodes for p110α (the 
catalytic subunit of class I PI3K) and is considered as 
the only relevant catalytic subunit in the context of 
cancer associated mutations, was found mutated in 
only 1.4% and 8% of pNENs, respectively [128, 129]. 
Data about PI3K-p85α subunit mutation nor PI3K 
amplification in NENs have not been published to 
date.  

The regulatory impact of PI3K could be vali-
dated by preclinical studies with PI3K inhibitors. 
LY294002, a quercetin analogue and PI3K inhibitor, 
decreased cell proliferation in non-gastrointestinal 
neuroendocrine cell lines when applied as single 
agent or combined with rapamycin [130, 131]. Studies 
with LY294002 treatment of rat-derived GEP-NEN cell 
lines propose an inhibitory effect of LY294002 on the 
VEGF secretion by neoplastic endocrine cells [132]. 
The mTORC2-PI3K-mediated activation of the ERK 
cascade during mTOR inhibition of NENs was 
demonstrated through stimulation of human neuro-
endocrine BON (pNEN), GOT-1 (ileal NEN), KRJ-I 
(ileal NEN), H-STS (hepatic metastasis of ileal NEN) 
and NCI-H727 (bronchial carcinoid) cell lines with 
single and dual inhibitors [133-135]. Previous studies 
on BON cells have demonstrated that LY294002 
blocks the constitutive activation of PI3K and ERKs, 
respectively. PI3K, but not the ERK cascade, regulates 
expression of cyclin D1 and p27kip1, induced by an 
autocrine IGF-I loop, in BON cells [136]. Not least, 
PI3K signaling is negatively involved in NE secretion, 
as demonstrated by PI3K subunit p110α-inhibition in 
vitro. Li et al. demonstrated that inhibition of p110α 
increases neurotensin granule trafficking by 
up-regulating α-tubulin acetylation and regulating 
Ras-related protein Rab27A in BON and QGP-1 cells 
[137].  

A vast number of agents and inhibitors interfer-
ing with PI3 kinases and upstream receptors have 
been developed so far and are currently in different 
stages of clinical testing (refer to Supplementary Ma-
terial: suppl. 3). The majority have not been assessed 
in GEP-NENs thus far. 

The physiological inhibition and termination of 
PI3K signaling by degradation of PI(3,4,5)P3 is medi-
ated by two major types of phosphatases. The SH2 
domain-containing inositol phosphatases SHIP1 and 
SHIP2 dephosphorylate position 5 of the inositol ring 
and produce PI (3,4)P2. The loss of SHIP2 results in a 
significant increase of insulin sensitivity, indicating 

that this phosphatase is a crucial regulator of PI3K 
signaling downstream of insulin [138].  

In summary, PI3 Kinases show up to be rarely 
mutated in GEP-NENs but contribute to several 
feedback loops as signal transduction mediators. They 
are therefore prominent targets for dual and com-
bined targeting therapy approaches but their im-
portance for GEP-NEN disease remains to be further 
explored in clinical and in vivo contexts.  

The tumor suppressor PTEN  
Another crucial phosphatase and tumor sup-

pressor protein involved in growth factor signaling is 
PTEN (phosphatase and tensin homologue). After 
recruitment from cytosol to plasma membrane, PTEN 
dephosphorylates position 3 of PI(3,4,5)P3 and pro-
duces PI(4,5)P2. Loss of PTEN is frequently observed 
in a wide variety of human cancers, with the highest 
incidence found in endometrium, central nervous 
system, skin, and prostate cancers [139, 140]. Beyond 
its function as upstream regulator of PI3K signaling, 
loss of PTEN was linked to occurrence of metastases 
and is regarded as critical marker for therapy re-
sistance and sensitivity towards mTOR inhibition 
[139, 141-144]. 

The activity of PTEN is lost through diverse 
mechanisms in many different entities of cancer, but 
the majority of PTEN mutations induce truncations of 
the protein. PTEN is often mutated in tumor-prone 
germ line diseases and in cancer-associated somatic 
mutations [145-147].  

The impact of PTEN towards cellular integrity is 
not limited to its cytoplasm-located lipid phosphatase 
activity. PTEN is localized in the nucleus under vari-
ous conditions, such as cell differentiation and cell 
cycle arrest under stress and apoptotic stimuli, e.g. by 
regulating the APC/C (anaphase-promoting com-
plex/cyclosome) [148-152].  

Nuclear localization has been linked to mainte-
nance of chromosome stability. The absence of nuclear 
PTEN is thus linked to tumor aggression, which sug-
gests that the nuclear localization of PTEN is tu-
mor-suppressive [148, 153-155]. PTEN also influences 
cytoskeletal remodeling processes and thereby con-
trols cell size, cell invasion and migration [156, 157]. 

Interesting work with regard to the sequestration 
of PTEN was published by Putz and colleagues in 
2012. They demonstrated that mono-ubiquitinated 
PTEN can be exosomally trafficked between cells. In 
target cells, internalized PTEN had functional activity, 
which led to a reduction in the abundance of pAkt 
and a decrease in the extent of target cell proliferation 
[158]. These findings disclose new insight into tu-
mor-stroma interactions and highlight the unlimited 
influence of tumor-associated cells on tumor cell sig-
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naling. 
In analogy to many other cancers, PTEN is fre-

quently affected in pancreatic neuroendocrine neo-
plasms (pNENs). PTEN gene mutations are rare 
events in 7 and 9% of the cases respectively, but re-
duced PTEN expression is a frequently observed 
phenomenon in sporadic pNENs. Allelic loss of het-
erozygosity of PTEN, which is located at 10q23.3, was 
identified in one-third of sporadic pNENs. In 25% of 
pNENs a somatic deletion of 10q occurs [33, 128, 154, 
159-162].  

In nonfunctioning endocrine tumors of the pan-
creas alterations in microRNA expression have been 
related to endocrine and acinar neoplastic transfor-
mation and progression of malignancy. Assuming 
that MicroRNA-21 regulates the expression of PTEN 
in hepatocellular cancer, this scenario is as well dis-
cussed as a potential inhibitory mechanism of PTEN 
down-regulation in pNENs [163-165]. 

In primary pNENs, low expression of PTEN 
correlates with advanced WHO phenotype and high-
er proliferation index. Moreover, hyper-phosphoryla-
tion of mTOR is associated with significantly lower 
5-year overall survival [166].  

Several studies have demonstrated that the sub-
cellular localization of PTEN is altered in both spo-
radic and VHL-associated pNENs, although there are 
contradictory conclusions whether cytoplasmic or 
nuclear localization is sufficient to predict therapy 
outcome or whether an increased or decreased nu-
clear to cytoplasmatic ratio is associated with worse 
prognosis [33, 154, 167, 168].  

In vitro data concerning the response of neuro-
endocrine pancreatic (BON) and insulinoma (CM) cell 
lines towards triciribine inhibition suggest that PTEN 
might also influence the sensitivity of pNENs cells to 
Akt inhibition [169-171]. 

In general, in GEP-NENs the expression of PTEN 
was found to correlate with response to streptozoto-
cin-based cytostatic therapy and to systemic therapy 
with streptozotocin and doxorubicin [168]. As ob-
served in the pNENs subclass study, PTEN expres-
sion in overall GEP-NENs was prevalently effected in 
tumors with lower differentiation in contrast to those 
with well differentiated phenotype [172].  

PTEN might therefore serve as therapy response 
and malignancy marker, especially in combination 
with TSC2 expression analyses (see below). The 
mechanisms that lead to the down regulation of PTEN 
remain almost unexplored. 

The role of Akt 
The Akt family of serine/threonine kinases 

(Akt1/2/3, also known as protein kinase B, 
PKBα/β/γ) is the key mediator of PI3K signaling and 

connector to several interrelated pathways. It is in-
volved in the majority of cellular processes, such as 
protein synthesis and cell growth, survival, prolifera-
tion and metabolism. Presuming that these processes 
constitute the backbone of cancer development and 
progression [173], Akt isoforms represent a highly 
prominent target for GEP-NET therapy research and 
for drug development in general. 

The most prevalent member of the Akt family of 
protein kinases is Akt1, which is implicated in cell 
growth and survival. Akt2 is predominantly ex-
pressed in muscle and adipocytes and is in involved 
in the insulin-mediated regulation of glucose homeo-
stasis. The distribution of Akt3 is almost limited to 
testes and brain [174-178]. 

Full Akt activation depends on the concomitant 
phosphorylation of two distinct sites that can be acti-
vated independently: the PDK-1-catalyzed T308 
phosphorylation inside of the activation loop serves 
as readout of PI3K activation. In contrast, the phos-
phorylation of S473 in the hydrophobic motif of the 
C-terminal tail indicates a mTORC2 to Akt feedback 
signaling activity or is induced by PIKK (PI3 ki-
nase-related kinase) superfamily or DNA-PK. Activity 
of Akt is detected by a fivefold increase upon S473 
phosphorylation [179-184]. Furthermore the role of 
the Akt phosphorylation site is not limited to activa-
tion enhancement, but also required for target speci-
fication. One of the most prevalent downstream tar-
gets of Akt T308 is TSC2 (tuberous sclerosis complex 
2). Akt mediated phosphorylation of the TSC2 subunit 
hinders TSC1/2 complex formation and activates the 
GAP function of TSC2 toward the small GTPase Rheb. 
Hereupon Rheb activates mTORC1 at S2448, leading 
to the phosphorylation of the downstream effectors 
4EBP1 (Eukaryotic translation initiation factor 
4E-binding protein 1) and p70S6K (70 kDa ribosomal 
protein S6 kinase 1, also termed S6K) [185]. Phos-
pho-(T308)-Akt mediated PI3K signaling also deter-
mines cellular metabolism, cell cycle progression and 
insulin signaling by affecting the subcellular localiza-
tion of GSK3 (glycogen synthase kinase 3) [125, 
186-189]. Interestingly, in vitro and in vivo studies on 
deletion of Rictor, mSIN1 (stress-activated map kinase 
interacting protein 1) or mLST8 (mammalian lethal 
with SEC13 protein 8) suggest, that the inhibition of 
mTORC2 mediated S473 phosphorylation selectively 
affects Akt substrates FOXO1 and FOXO3a (O-Family 
Forkheadbox proteins), with little effect on Akt sub-
strates GSK3 and TSC2 [183, 190]. The discrepancy 
between S473 phosphorylation and resulting Akt ac-
tivity indicates that S473 phosphorylation might not 
be the major regulator of Akt activity [191].  

Nevertheless, activated Akt promotes survival 
signaling by inhibition of pro-apoptotic proteins, such 
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as BIM (Bcl-2 interacting mediator of cell death) and 
BAD (BCL2-associated agonist of cell death) by 
phosphorylation, leading to their sequestration and 
degradation. Akt also inhibits the expression of 
pro-apoptotic genes and cell cycle inhibitors such as 
p21cip1 and p27kip1 by targeting their transcription 
factors and stimulates cyclin D1- and 
c-Myc-controlled cell cycle progression by inhibiting 
their negative regulators, e.g. FOXOs and GSK3. 

 Relatively few studies are available on Akt 
phosphorylation and expression in GEP-NENs. Weak 
expression of Akt or presence of the PI3-signaling 
antagonist PTEN was associated with response to 
systemic chemotherapy and Akt overexpression has 
been correlated to shorter median survival rates for 
patients with well-differentiated and poorly differen-
tiated tumors [168]. 

Shah and colleagues demonstrated a phos-
pho-S473 activation of Akt in 76% of 98 differently 
graded NEN-tissue samples, indicating that activation 
of Akt may contribute to GEP-NEN tumorigenesis. 
Unfortunately the data failed to correlate Akt S473 
phosphorylation to tumor grade by multi-variant sta-
tistical analysis [6]. These findings were supported by 
further immunohistochemical analysis of entero-
pancreatic NENs respecting Akt S473 phosphoryla-
tion. In a subsequent study S473-activated Akt was 
found in 61 % of the tissues, but also failed to correlate 
with tumor grade, tumor size or the presence of me-
tastases [192].  

Nevertheless, NEN patients treated with evero-
limus and octreotide in an open-label phase II trial 
(NCT00113360) showed a significant longer PFS in the 
case of T308-phosphorylated Akt in pretreatment and 
on-treatment tumor biopsies. Even partial responders 
were more likely to have an increased Akt T308 
phosphorylation in comparison to non-responders. 
Therefore, although baseline Akt activation is associ-
ated with a more aggressive clinical course, increase 
of Akt activation has been considered a predictor of 
rapamycin response. These data have been supported 
by several preclinical studies on rapamycin treated 
cell lines of various offspring in vitro and xenografted 
[193-195]. In vitro experiments on neuroendocrine cell 
lines have furthermore evaluated an isoform specific 
impact of Akt on NEN cancerogenesis that might be 
important for therapeutic approaches. Only the di-
rected down-regulation of Akt1 and Akt3 decreased 
the phosphorylation of classical Akt downstream 
targets such as GSK3α/β, MDM2 and p70S6K and 
suppressed cell viability. Inhibition and knockdown 
of Akt1 and Akt3 resulted in decreased ERK1/2 
phosphorylation and Akt3 ablation induced apoptosis 
in BON cells, indicating that this isoform is particu-
larly relevant to neuroendocrine cell survival. Akt1 

and Akt3 seem to be important for NEN cell viability 
while Akt2 may have antitumor activity as demon-
strated by pan and isoform-selective knockdown of 
Akt. The data suggest a particular role for these Akt 
isoforms in NEN activity [196].  

Several specific inhibitors of pan-Akt, Akt 
isoforms and PDK-1, an Akt regulator, are commer-
cially available. Only a few of them are already under 
clinical and preclinical investigation in GEP-NENs 
(refer to Supplementary Material: suppl. 4). 

In conclusion, the Akt proteins serve as crucial 
feedback mediators within the growth factor response 
network. Nevertheless, the sole focus on pan-Akt S473 
phosphorylation might not suffice to understand the 
complex interplay between various isoforms, phos-
phorylation sites and scaffold regulators. Akt activa-
tion and subtype distribution has a high potential to 
predict therapy response, but the importance of the 
specific patterns in vitro and in clinical settings re-
mains to be elucidated.  

mTOR complexes and feedback activation 
The most important downstream mediator of 

PI3K-Akt signaling is the serine/threonine kinase 
mTOR mammalian target of rapamycin. It is encod-
ed by the FRAP 1 gene and contributes to a multitude 
of cancer associated cellular processes. It forms two 
distinct protein complexes: mTORC1 and mTORC2. 
Whereas mTORC1 is sensitive to rapalogues such as 
rapamycin, everolimus and temsirolimus, mTORC2 is 
considered resistant to rapamycin and insensitive to 
nutrient signals [197]. 

The mTOR complex 1 is formed by the mTOR 
protein itself, associated with RAPTOR (Regulatory 
associated protein of mTOR), and two negative regu-
lators, PRAS40 (proline rich Akt substrate 40 kDa) and 
DEPTOR (DEP domain containing mTOR interacting 
protein) [198-201]. RAPTOR functions as a scaffold 
and positively modulates the mTOR kinase reaction 
towards the mTORC1 key targets 4EBP1 and p70S6K 
in vivo [198]. The second subunit of the mTORC1 
complex, mLST8, is considered to bind to the kinase 
domain of mTOR and to regulate its kinase activity 
positively. It is also considered to maintain the inter-
action between mTOR and either RAPTOR or 
RICTOR (Rapamycin-insensitive companion of 
mTOR), which is part of the mTORC2 complex, and 
thus, to be important for shuttling mTOR between the 
two complexes and for sustaining the intracellular 
equilibrium of mTORC1 and mTORC2 [183, 202, 203]. 
Whereas PRAS40 inhibits the mTORC1 activity via 
raptor, DEPTOR was identified to interact directly 
with mTOR in both mTORC1 and mTORC2 com-
plexes. However, DEPTOR overexpression leads to 
decreased p70S6K phosphorylation and to 
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mTORC2-mediated signaling back to Akt, monitored 
by S473 phosphorylation [201, 204].  

PI3K-mTORC1 signaling controls the transcrip-
tion of many genes, some of which are involved in 
metabolic pathways and regulate nutrient-responsive 
transcription programs [205-208]. Its major down-
stream effectors, including p70S6K and 4EBP1 are 
regulated by phosphorylation [209]. Subsequently, 
activated p70S6K phosphorylates S6 (40S ribosomal 
protein S6) and other ribosomal proteins and elonga-
tion factors and therefore enhances the translation of 
mRNAs and promotes proteins synthesis [210]. Alt-
hough p70S6K can also be activated by mTOR inde-
pendent pathways such as PDK-1, MAPK and SAPK 
(stress-activated protein kinase), the 
mTORC1-mediated phosphorylation at T389 is re-
quired for its complete activation [211].  

Hypo-phosphorylated 4EBP1 inhibits the initia-
tion of protein translation by binding and inactivating 
eIF4E (eukaryotic translation initiation factor 4E). 
Phosphorylation of 4EBP1 by mTORC1 promotes 
dissociation from eIF4E and thereby facilitates 
eIF4E-dependent translation initiation [212]. 

Furthermore, mTORC1 controls the activity of 
many other proteins, such as ODC (ornithine decar-
boxylase), glycogen synthase, HIF-1α (hypox-
ia-inducible factor 1α), eEF2 kinase (eukaryotic elon-
gation factor 2 kinase), PKCδ and PKCɛ (protein ki-
nases C delta and epsilon), PP2A (protein phospha-
tase 2A), p21cip1 and p27Kip1 cyclin-dependent ki-
nase inhibitors and STAT3 (signal transducer and 
activator of transcription 3) [213-223]. Accordingly, 
the impact of the mTORC1 complex spans a multitude 
of cellular processes that modulate cellular behavior 
in response to local circumstances and links availabil-
ity of growth factors, nutrients and energy to cell 
growth, survival, proliferation, angiogenesis and mo-
tility. 

The rapamycin-insensitive mTOR Complex 2 
consists of mTOR mLST8, mSin1, PROTOR1/PRR5 
and 5 PROTOR2/PRR5L (proline-rich protein), 
HSP70 (heat shock 70 kDa protein) and DEPTOR.  

The mSin1 protein contains a Ras binding do-
main and a PH-domain, which allows localizing the 
protein near the plasma membrane. It is therefore 
considered to be important for the assembly and dy-
namic localization of mTORC2 and to the phosphor-
ylation of Akt at S473. HSP70 assures proper assembly 
of the protein complex under physiological conditions 
and following heat shock [190, 224-227]. HSP70, 
which has various cellular functions beyond main-
taining proper protein structures, has been found to 
exist in a neuroendocrine tumor specific truncated 
isoform in NENs. The authors conclude, that the al-
tered HSP70 isoform equilibrium might contribute to 

apoptosis inhibition or might be based on similarities 
with neuronal cells, as protein folding and protection 
against aggregate formation is of particular im-
portance in the nervous system [228]. 

The mTOR complex 2 is activated by growth 
factors, G protein-coupled receptor ligands and cyto-
kines. It phosphorylates PKC-α and paxillin (a focal 
adhesion-associated adaptor protein) and regulates 
the activity of the small GTPases Rac and Rho which 
control motility, invasion and cytoskeletal assembly. 
Beside motility aspects that play distinct roles in me-
tastasis, the Akt S473 feedback activation, that is me-
diated by mTORC2 following mTORC1 inhibition, is 
one of the crucial mechanisms for PI3K cancer sig-
naling [181, 229-231]. 

In summary, two major feedback loops control 
PI3K-signaling, which could potentially impact ther-
apy approaches, especially with regard to monother-
apy (refer to figure 1): Activation of p70S6K by 
mTORC1 causes feedback inhibition of IGF-1/insulin 
signaling by phosphorylating IRS-1 (insulin receptor 
substrate 1), causing IRS-1 degradation, and leads to 
decreased PI3K signaling and reduced Akt T308 
phosphorylation. Reciprocally, rapalogue-induced 
inhibition of mTORC1 consequently inhibits p70S6K 
phosphorylation, but relieves this feedback and in-
duces Akt T308 re-phosphorylation and thus in-
creased mTORC2 activation. Subsequent Akt S473 
phosphorylation follows in an mTORC2-dependent 
manner, which attenuates the therapeutic effects of 
rapalogues in tumors, in model systems and in pa-
tients as well [204, 232, 233]. This feedback activation 
could be obviated in serum free in vitro conditions, 
due to the known requirement for growth factors for 
mTORC1 to PI3K feedback loops [204]. For some 
cancer entities it is evident that even inhibition of 
both, mTORC1 and mTORC2, e.g. by 
ATP-competitive mTOR kinase inhibitor AZD8055, 
did not result in a persistent inhibition of PI3K sig-
naling: although sustained inhibition of mTORC2 
activity and AKT S473 phosphorylation was detecta-
ble, a distinct activation of RTK signaling occurred, 
which induced PI3K signaling and reinduction of 
T308 phosphorylation [234]. 

Expression and activation level of mTOR in 
GEP-NENs has been analyzed in a vast number of 
studies and experiments but mainly failed to correlate 
to clinical outcome in a clear statistically significant 
matter. Nevertheless, a distinct tendency of high ma-
lignant NEN to show highly activated mTOR expres-
sion was obvious. Catena and colleagues demon-
strated that mTOR was expressed in the majority 
(80%) of poorly differentiated neuroendocrine carci-
noma patients (WHO 2000 classification) however 
with no relationship to tumor origin or proliferation 
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rate determined by MIB-1 (Ki-67 antibody for paraf-
fin-embedded tissue specimens) [235]. Another im-
munhistochemical analysis detected high levels of 
S2448 phosphorylated mTOR in 67% of poorly dif-
ferentiated neuroendocrine carcinomas (including 
positive staining of all large cell neuroendocrine car-
cinomas) in contrast to 27% mTOR activation in 
well-differentiated tumors and carcinomas (WHO 
2000 classification). Further statistical validation failed 
due to the low number of analyzed patients [236].  

 
Figure 1: PI3K signaling feedbacks: PI3K signaling is highly activated and 
de-regulated in GEP-NENs. Several feedback loops contribute to this effect 
[330, 331]. RTK activation by ligand binding triggers a phosphorylation 
cascade onto IRS-1 and PI3K. The latter phosphorylates PIP2 and thereby 
activates PDK-1 and Akt at T308. Akt in turn inhibits TSC2 by phos-
phorylation, which leads to mTOR activation. The mTOR complex 1 
activates translation via eIF4A and p70S6K and cell cycle progression, 
whereas mTORC2 relieves a feedback loop by fully-activating Akt at S273. 
S6K promotes a negative feedback onto IRS-1 and thereby counteracts 
mTORC1 inhibition. The two major negative regulators, PTEN and TSC2 
are frequently down regulated in GEP-NENs which lead to a highly de-
regulated Akt activation [33, 128]. 

 
Significant correlation of mTOR expression with 

primary tumor location and metastatic status in 
GEP-NENs could be demonstrated by Kasajima and 
colleagues. Expression of mTOR, 4EBP4 and phos-
phorylated p70S6K was found to be higher in foregut 
than in midgut tumors. Furthermore, higher prolifer-

ation indices (indicated by Ki-67) were associated 
with significantly higher mTOR and 4EBP1 expres-
sion, as well as with higher activation of the mTOR 
targets 4EBP1, p70S6K and eIF4E (indicated by 
phosphorylation) [237].  

One of the major regulatory proteins of mTOR 
activation, TSC2, is frequently down-regulated in 
pNENs and correlates with worse prognosis con-
cerning overall survival, time to progression and dis-
ease-free survival. Low levels of TSC2 significantly 
correlate with functional tumor status and aggres-
siveness [33]. Although neither TSC2 nor PTEN were 
significant independent prognostic indicators re-
garding occurrence of metastases in a multivariate 
analysis by Missiaglia and colleagues, conjoint low 
levels of PTEN and TSC2 are assumed to be related to 
liver metastasis and might predict response to 
PI3K-pathway inhibitors. While somatic mutation of 
TSC2 and PTEN was found in only less than 10% of 
pNENs, 85% of primary pNENs showed altered pro-
tein levels of TSC2, PTEN or both. [33, 128].  

Germline mutations in TSC1 and TSC2 tumor 
suppressor genes, resulting in the activation of the 
mTORC1 pathway, have been described in patients 
with tuberous sclerosis complex. TSC is an autosomal 
dominant genetic disorder and most of the occurring 
neoplasms are benign with an early onset [238]. A 
study on 219 TSC patients revealed that the incidence 
of pNENs was 1.8% as compared to the rate of 0,002% 
in the general population. Therefore it seems likely 
that pNENs are a dominant pancreatic pathology in 
the setting of TSC and aberrant TSC1 and TSC2 pro-
teins may play a crucial role in the development of 
pancreatic neuroendocrine lesions [238, 239, 114, 
240-242]. 

In summary, several studies have highlighted 
the importance of high mTOR expression and activa-
tion, activation of its targets as well as the functional 
impact of the low expression of its direct negative 
regulator, TSC2. Relevant somatic mutations that in-
fluence the expression of either TSC2 or mTOR have 
not been detected thus far. Additional regulatory 
mechanisms such as transcriptional or 
post-transcriptional gene silencing might be involved 
in their regulation and require further investigation. 

Inhibition of mTOR as therapeutic strategy 
Analyses of mTOR aberrations have furnished 

the rationale for use of inhibitors of mTOR and its 
downstream targets (refer to Supplementary Material: 
suppl. 5) [33, 165]: The mTORC1 inhibitor and rapa-
logue everolimus (RAD001, Afinitor®) is the most 
clinically advanced and the furthest developed target 
directed therapy in GEP-NENs. It was approved by 
the FDA for advanced well-differentiated pNENs in 
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2011.  
Studies on genetic determinants of rapalogue 

response have demonstrated that drug-resistant cells 
(such as HT-29, HCT116, and DLD-1) carried muta-
tions in both PIK3CA and KRAS/BRAF. Everoli-
mus-sensitive cells displayed PI3K pathway altera-
tions but no mutations in the KRAS/BRAF genes, ren-
dering neuroendocrine tumors a favorable target for 
everolimus treatment [239]. This effect is assumed to 
be dependent on mTOR-Ras/Raf crosstalk and its 
outcome depends on Raf mutational status (paradox-
ical activation, see below). 

Nevertheless in preclinical studies of everolimus, 
inhibition of mTORC1 in neuroendocrine cell lines 
was demonstrated to induce growth inhibition and 
induction of apoptosis [240]. However it also led to a 
global upregulation of upstream PI3K signaling and 
to cross-activation of Ras/Raf/Erk signaling via 
mTORC1-p70S6K-IRS-1 mediated negative feedback 
loops. This cross-activation resulted in upregulation 
of VEGF secretion, through a raise of NF-κB (nuclear 
factor-κB)-mediated VEGF expression and HIF-1α 
induction [134, 135, 195]. In vivo, Rapamycin mono-
therapy was notably efficacious in pNEN bearing 
transgenic mice and prolonged survival concomitant 
with stable disease. Nevertheless, the tumors devel-
oped resistance [241]. Preclinical xenograft studies on 
mouse cells that mimic PDNEC revealed a significant 
deduction of tumor mass and Ki-67 in response to 
everolimus treatment, suggesting further exploration 
in poorly differentiated neuroendocrine cancers, that 
particularly lack therapy options to date [242]. 

Three human phase II or III studies have been 
conducted, including 600 patients with advanced 
pNENs [114, 243, 244]. The response rate as assessed 
by conventional Response Evaluation Criteria in Solid 
Tumors (RECIST) criteria has been shown to be very 
low; however, everolimus significantly affected pro-
gression-free survival. The RADIANT-3 clinical 
study, which led to FDA approval, resulted in a stable 
disease of 73% and 51% in the everolimus and placebo 
arms respectively, rather than a partial response with 
5% and 2%.  

Concluding, everolimus delayed tumor progres-
sion without changing the pattern of progression 
among patients with advanced pNENs [244, 245]. 
Recent therapeutic approaches have therefore focused 
on inhibitors of alternative components of the PI3K 
pathway, dual target inhibitors and effective combi-
natory bio/chemotherapies. 

Outlook: PI3 signaling in diagnosis and therapy 
The multiple results of PI3K signaling analyzes 

in GEP-NENs are summarized in table 3. Noticeably, 
with few exceptions, no study detected serious acti-

vating mutations of PI3K-pathway mediators. In con-
trast to other cancer entities, where activating muta-
tions in receptors or the PI3 kinase itself are frequent, 
GEP-NENs thus lack appropriate druggable targets. 
Nevertheless, a high level of deregulation (as indi-
cated by extensive activation of kinases) triggers pro-
liferation, neoangiogenesis and a secretory pheno-
type. The complex interactions within the autoregu-
latory network bypass the current therapeutic ap-
proaches. It is therefore all the more important to 
identify bottle neck factors that might not have been 
recognized as key players to date. Evaluating the role 
of regulator non-coding RNAs might also answer 
some of the questions, why the neuroendocrine 
growth factors pathways are deregulated to that high 
extent although almost no appreciable mutations 
could be detected responsible to date. Furthermore, 
the tumor stroma and tumor-associated cells also 
contribute to a growth factor-saturated microenvi-
ronment in general. Studying their importance for 
GEP-NEN cancerogenesis and metastasis might also 
reveal a high potential of prognostic factors and 
therapeutic interventions.  

Table 3. Summary of studies that analyzed the role of PI3K 
signaling in GEP-NENs. 

Study results Reference  
Expression of multiple growth factors is very high in 
GEP-NENs 

[2-16]. 

Expression of IGF-1 and IGF-1R is elevated in GEP-NENs [14, 18-26] 
Elevated copy number of the EGFR and HER-2/neu loci 
might contribute to high receptor expression  

[21, 246] 

EGFR expression is high in GEP-NENs and correlates 
with metastasis in pNENs 

[6, 9, 30, 31] 

PIK3CA mutations are rare events [128, 129]. 
PI3K signaling stimulates the ERK pathway of NE cells in 
vitro 

[133-135] 

PI3K signaling triggers secretion in vitro  [132, 136, 
137] 

PTEN mutations are rare events, but LOH may contrib-
ute to malignant transformation in  
(pancreatic) NENs 

[33, 128, 154, 
161, 162] 

Low PTEN expression correlates with prognosis and 
response to therapy  

[166, 168, 169, 
172] 

Subcellular localization of PTEN might serve as progno-
sis marker 

[33, 154, 167, 
168] 

Akt overexpression associated with shorter median 
survival in with well- and poorly differentiated tumors 

[168] 

Phospho-T308 Akt might serve as marker of rapamycin 
response 

[193-195] 

Phospho-S473 Akt might not serve as a valuable marker [6, 192] 
Subtype specific activity: Akt1 and Akt3 pro-survival; 
Akt2 pro-apoptotic 

[196] 

Expression and activation of mTOR, 4EBP4 and p70S6K 
is associated with higher proliferation index and might 
correlate with low differentiation  

[235-237] 

Low level of TSC2 is correlated with tumor status and 
aggressiveness  

[33, 128] 
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The MAPK pathways promotes growth 
and cancer progression as well as feed-
back bypasses to PI3K signaling 
The MAPK cascades 

Alteration of the Ras-MAPK cascades has fre-
quently been described in human cancer. These 
pathways comprise several kinases that transmit ex-
tracellular signals from growth factors, chemokines 
and ECM signals and regulate cell growth, differenti-
ation, proliferation, apoptosis and migration. They are 
classified in several interconnected branches con-
structed of functional analogues of MAPKs (mito-
gen-activated kinases), their MAPK kinases and the 
latter’s MAPKK kinases. The four most important 
branches are (1) the ERK/MAPK, (2) the JNK (c-Jun 
amino-terminal kinase)/SAPK pathway, (3) the p38 
pathway and (4) the BMK (big mitogen-activated 
protein kinase)/ERK 5 pathway [247]. We will there-
fore focus on the classical ERK/MAPK cascade and 
glance to other important members. 

The classical cascade is induced by ligand bind-
ing to RTKs, such as VEGFR or EGFR, leading to its 
dimerization and auto-phosphorylation of the intra-
cellular c-terminal region. Thereby binding sites for 
adaptor proteins are generated that in turn recruit 
GEFs (guanine nucleotide exchange factors) to the 
plasma membrane. GEFs facilitate the binding of GTP 
to Ras proteins. GTP-bound Ras recruits Raf kinases 
and activates the latter’s serine/threonine kinase 
function to phosphorylate MEK and induce the 
phosphorylation of ERK effector kinases [248].  

Abnormal activation of receptor tyrosine kinases 
or gain-of-function mutations in the RAS and BRAF 
genes have been frequently identified in a vast num-
ber of cancers. Multiple cross links and feedback loops 
to other mitogen pathways induce therapy resistance 
and bypass inhibitory approaches. The MAPK path-
way contributes to neuroendocrine cancerogenesis, 
although many aspects in GEP-NENs remain to be 
explored. 

The role of Ras 
The Ras superfamily is divided into five main 

families which in total comprise more than 150 
members in humans: Ras, Rho, Rab, Arf, and Ran. The 
Ras family members are the most intensively studied. 
Three human RAS genes encode four Ras protein 
isoforms, designated as H-Ras, N-Ras, K-Ras4A and 
K-Ras4B. Ras proteins exhibit GTPase function and a 
structure that is related to the Gα subunit of hetero-
trimeric G proteins. G proteins are molecular switches 
that oscillate from inactive GDP-bound to active 
GTP-bound states [249]. The cyclic process of 
GDP/GTP is facilitated by GEF and GAP (GTPase 

activating proteins) classes of regulatory proteins that 
build a three-protein-complex with Ras. 

The Ras proteins are anchored in close proximity 
to adaptor proteins such as Grb2 (growth factor re-
ceptor bound protein 2) and GEFs in the plasma 
membrane by farnesylation. The SOS family (son of 
sevenless) of RasGEFs, facilitates the exchange of Ras 
bound GDP with GTP and thereby activates Ras by 
conformational change [250].  

Activating point mutations of the three Ras fam-
ily genes are common in human cancers (30%) with a 
very high incidence in pancreatic adenocarcinoma, 
colorectal and lung cancers. Mutations in other Ras 
superfamily GTPases are rare and thus, their hy-
per-activation requires alternative induction mecha-
nisms [251-255]. Deregulation of their regulators is a 
common event. 

Aberrant signaling from growth factor receptors, 
in particular, RTKs and GPCRs (G protein-coupled 
receptors), or up-regulated gene expression can lead 
to aberrant GEF regulation and thus to enhanced ac-
tivity of small GTPase proteins of the Ras superfami-
ly. 

GAPs, which return the GTPase to its 
GDP-bound inactive state, have been shown to exert 
crucial roles in curtailing GTPase activity in cancer. 
Since activation of Ras superfamily GEFs has been 
frequently described in human cancers, loss of GAP 
activity permits uncontrolled GTPase activity and can 
promote cancer [256-262].  

In contrast to other entities such as pulmonary 
neuroendocrine carcinomas, mutations in the Ras 
genes are uncommon and rarely documented in 
GEP-NENs. Early studies could demonstrate that Ras 
mutations are virtually absent in gastroenteropancre-
atic neuroendocrine neoplasms [21, 263-265]. H-Ras 
and K-Ras expression could be detected in 65% and 
10%, respectively. However, further information re-
garding its activity has not been generated to date 
[266], but much more comprehensive data is available 
for the Ras downstream targets, especially for B-Raf. 

Wild type Raf and the importance of 
paradoxical activation  

Activation of Raf family members (A-Raf, B-Raf 
and C-Raf or Raf-1) is initiated by binding of their Ras 
binding domain to Ras-GTP and release from a 14-3-3 
dimer bound to the N-terminal phosphorylation site. 
Concomitant conformational changes stimulate their 
serine/threonine kinase activity, dimerization and 
trigger sequential phosphorylation and activation of 
their targets MEK and ERK [267, 268].  

B-Raf is the family member most easily activated 
by Ras, since both A-Raf and C-Raf need additional 
steps, such as phosphorylation of activating residues 
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and dephosphorylation of negative regulatory resi-
dues, to reach maximal activation [269, 270]. Fur-
thermore the kinase activity of B-Raf is higher than 
those of the other family members [271].  

Recent studies discovered that besides its in-
volvement in oncogenic Ras signaling, BRAF itself is 
also mutated at a high frequency in human cancers, 
especially in melanoma (30-60%), thyroid cancer 
(30-50%) and ovarian cancer (~30%) [272]. A very 
common BRAF mutation, B-RAFV600E, is involved in 
the expression of hypoxia-inducible factor-1α and 
VEGF and thus contributes to neoangiogenesis in 
those entities [273-275]. 

Overexpression or gain of function mutation of 
full-length Raf (or the truncated catalytic domain) 
leads to the activation of the ERK pathway and in-
creases proliferation and tumor growth. Although 
there is no evidence that Raf activation participates in 
senescence evasion to date, it has been demonstrated 
to retrain apoptosis by regulating the expression 
and/or the activity of Bcl-2 family members [276]. 

Activated Raf is also involved in EMT (epithelial 
to mesenchymal transition), invasion and metastasis 
by promoting the production of TGFβ. Additionally, 
both B-Raf and C-Raf antagonistically control cell 
contractility and migration: B-Raf increases 
Rho-dependent contractility and opposes migration in 
an ERK-dependent manner, whereas C-Raf reduces 
contractility and increases migration by interfering 
with the activity of the cytoskeleton-based Rho effec-
tor ROCK2 (Rok-α) [277-284]. 

The C-Raf protein appears as part of a multi-
protein complex composed of HSP90, p50, and several 
scaffold proteins, such as 14-3-3. This complex is re-
quired for controlling its stability and activation sta-
tus as well as its activity [285-287]. The phosphoryla-
tion state of C-Raf is influenced by multiple further 
protein kinases, including Src, PKC (protein kinase C) 
family members, the p21cip1-activated protein kinase 
PAK, and Akt [288-291]. 

In the case of the ubiquitous C-Raf, other targets 
potentially contributing to tumor progression have 
been identified such as the NF-κB, Rb and BAD 
[292-294]. C-Raf also contributes to genomic instabil-
ity. Loss of RKIP (Raf kinase inhibitor protein) or 
C-Raf overexpression lowers the activity of the Au-
rora-B kinase, allowing cells to bypass the spindle 
assembly checkpoint [295]. 

The serine/threonine phosphorylation of MEK 
proteins as an intermediate step of the MAPK cascade 
features two special objectives: to enhance the coop-
erativity of activation of the MAPK and to allow 
modulation by other signaling events. In the case of 
the ERK1/2 pathway, amplification occurs at the 
Raf-MEK step, because MEK1 is much more abundant 

than Raf. Another controlling feature of this step in 
the MAPK cascade depends on the dual phosphory-
lation of the MAPK by MEK. The tyrosine residues of 
ERK1/2 are phosphorylated with a higher affinity 
than threonine, leading to a nonprocessive phos-
phorylation and to the establishment of a threshold. 
The tyrosine phosphorylated proteins remain in an 
inactive state and accumulate until the threshold is 
reached. Subsequently the kinases are rapidly con-
verted to the active state by threonine phosphoryla-
tion [296-303]. 

MEK mutations are rare events in human cancers 
with an incidence of 3% in melanomas and 2% in co-
lon carcinomas [304].  

The data concerning Raf and MEK downstream 
signaling and the discussion whether raf inhibition is 
reasonable or not is very contradictory and is still in 
the focus of preclinical investigation. Several further 
inhibitors of Raf and MEK are under preclinical as-
sessment in GEP-NENs however with not very 
promising results to date (refer to Supplementary 
Material: suppl. 6). 

Genetic analyses demonstrated that B-Raf muta-
tions are rare in GEP-NENs [263, 305-307], with the 
exception of colorectal NENs, which have been 
demonstrated to harbor ~ 60% KRAS and BRAF muta-
tions, but presumably due to its high content of ade-
noma and/or an adenocarcinoma cells [308]. 

Nevertheless the small GTPase Rap1 and B-Raf 
are highly expressed in GEP-NEN specimens, and 
both contribute to ERK1/2 and E26-like kinase (Elk-1) 
activation in NE cell lines [309]. Disrupting 
Raf–MEK–Erk signaling by the B-Raf inhibitor Raf265 
significantly decreased Bcl-2 level and sensitized to 
TRAIL signaling in neuroendocrine cell lines. Raf265 
inhibited Erk1/2 phosphorylation but in turn induced 
Akt phosphorylation and VEGF secretion, suggesting 
the existence of a compensatory feedback loop onto 
PI3K-Akt signaling [135, 310, 311].  

In vitro experiments demonstrated the crucial 
functional role of another Raf isoform: C-Raf activat-
ing retroviral transduction of BON cells resulted in 
high levels of phosphorylated ERK1/2 as well and 
caused remarkable morphologic and functional 
changes, such as reductions in 5-HT 
(5-hydroxytryptamine, the neurotransmitter seroto-
nin), chromogranin A (marker of large dense core 
vesicles), and synaptophysin (marker of small synap-
tic vesicles) levels, which are strong neuroendo-
crine-related secretion markers. Accordingly, treat-
ment of C-Raf-transducted BON cells with MEK in-
hibitors blocked morphological changes and hormone 
suppression but not ERK1/2 phosphorylation, indi-
cating a dependency of NE dedifferentiation on 
MEK-mediated Raf to ERK signaling. Furthermore, 
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activation of the C-Raf signaling cascade in BON cells 
resulted in significant decrease in cellular adhesion 
and migration in a FAK (focal adhesion kinase) de-
pendent manner [312-314]. Although a reduction of 
NE marker production, especially those of chro-
mogranin A and synaptophysin, might be generally 
referred to worse differentiation in GEP-NENs in vitro 
and in vivo [315-317], cellular adhesion and migration 
are a prerequisite for invasion and metastatic dis-
semination and thus, markers of malignant pheno-
types. Paradoxically, studies with several 
ATP-competitive C-Raf activators could demonstrate, 
that wild type Raf activation can not only suppress 
the expression of chromogranin A, but also the pro-
liferation via p21cip1 upregulation in p21 wild type 
NEN cells [318-321]. These data conform with several 
publications that have proved an insensitivity of wild 
type B-Raf cell lines from several cancer entities to 
ATP-competitive Raf inhibitors. On the other hand, 
the exposure to Raf inhibitors resulted in a 
dose-dependent and sustained paradox activation of 
mitogen-activated protein kinase signaling in cells 
and tumors with wild type B-Raf. These paradoxical 
effects of Raf inhibition were seen in various malig-
nant and normal cells in vitro, xenografted and in vivo, 
leading to entry into the cell cycle, enhanced prolifer-
ation, and significantly stimulated tumor growth in 
vivo (refer to figure 2). Moreover, even in the clinical 

setting this paradoxical ERK-activation by the 
B-raf-Inhibitor Vemurafenib could be observed and 
led to a restriction on use of the drug [322]. The 
mechanism for this paradox activation is assumed to 
depend on an inhibitor-induced C-Raf/C-Raf or 
B-Raf/C-Raf homo- and heterodimerization, respec-
tively, following sustained upstream signaling via Ras 
or enhanced RTK activation such as via IGF-1R or 
HER2 [20, 323-329].  

Assuming that ATP-competitive wild type Raf 
inhibition indeed enhances paradoxical mitogen ERK 
downstream signaling and C-Raf activation in 
GEP-NENs (under the prerequisite of wild type Ras) 
and thus inhibits the neuroendocrine phenotype [318], 
the p70S6K/PI3K/RAS crosstalk under rapamycin 
treatment [330, 331] might emerge as an desirable side 
effect. This might e.g. comprise the reduced secretion 
of the bioactive hormones and thus alleviate the 
symptoms of functional active neuroendocrine tu-
mors, but better understanding requires further 
mechanistic exploration.  

Cross-regulation of Raf by inhibition of the 
PI3K-Akt axis might lead to unexpected and (under 
certain circumstances) harmful therapeutic outcome. 
Although Raf mutations are rare events in GEP-NENs 
tumors, subgroup-specific assessment of Raf and Akt 
inhibitors might improve therapeutic precision. 

 
Figure 2: Paradoxical activation of Raf downstream signaling following treatment with ATP-competitive Raf inhibitors lead to an enhanced proliferation of 
B-Raf wild type cells in vitro and in vivo (adapted from Cichowski et al. [327]): a) mutant B-Raf constitutively activates MAPK signaling in cancer cells; b) 
ATP-competitive inhibition of mutant B-Raf counteracts ERK activation and leads to tumor growth reduction; c) ATP-competitive wild type Raf inhibition 
in normal cells results in increased ERK activation and proliferation in vitro, and in hyperplasia in normal tissues of mice in vivo [323]; d) and e) sustained 
RTK or Ras dependent upstream signaling activates MAPK signaling under ATP-competitive wild type Raf inhibition [323, 324, 330]. 
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The MAP Kinases ERK1/2 and their 
downstream effectors 

ERK1/2 and other MAP kinases target a vast 
number of effector proteins, including membrane 
proteins, such as phospholipase A2, cytoplasmic pro-
teins, such as downstream kinases and cytoskeletal 
proteins, and nuclear proteins, such as transcription 
factors. In response to cytokines, stress and chemo-
tactic factors, the MAPK p38 and ERK2 regulate tran-
scription by phosphorylation of MAPKAP kinase-2, 
which induces phosphorylation of the transcriptions 
factors CREB (c-AMP response element binding Pro-
tein) and ATF-1 (activating transcription factor) in 
cells and thus regulate the transcription of a large 
variety of genes. 

Furthermore a recent publication demonstrated 
that p38-ATF/CREB signal transduction pathway can 
coordinately induce (promote transcription and RNA 
stability) and repress (promote RNA decay) transcript 
levels for distinct sets of genes, without shutting off 
transcription itself. This Stress-Activated RNA decay 
provides a mechanism to reduce the expression of 
target genes as it is required for cellular decisions in 
response to stress and other stimuli [332]. 

Ras responsive genes can be transcriptionally 
activated by ETS/AP-1 transcription factors. Hereby 
AP-1 comprises c-Jun, c-Fos and ATF-2 and controls 
the early transcriptional response to extracellular 
signals [333-340]. The TCFs (ternary complex factors) 
are substrates of the MAPKs ERK1/2, JNK/SAPK and 
p38. These targets, such as Elk-1, mediate transcrip-
tion of genes containing SREs (serum response ele-
ments) in their promoters [341-343].  

ERK2 has been shown to phosphorylate SRC-1 
(steroid receptor coactivator-1), which shows histone 
acetyltransferase activity and is a coactivator of ster-
oid nuclear receptors. SRC-1 also interacts with CREB 
to enhance estrogen and progesterone recep-
tor-mediated gene activation [344-346]. 

Not least, MAP kinase pathways are considered 
to phosphorylate STAT3 (signal transducers and ac-
tivators of transcription) and thus stimulate cytokine 
production, induction of pro-angiogenetic factors and 
invasion in tumor cells [347-353]. 

MAPKs also contribute to chromatin remodel-
ing, for instance by phosphorylating Rsk2 (ribosomal 
protein S6 kinase), which can subsequently phos-
phorylate histone H3, or by interacting with topoi-
somerase II. Further targets, Msk1 and 2 (mitogen and 
stress-activated protein kinase), are able to phos-
phorylate CREB and its co-factors, but also are very 
potent histone H3 and HMG-14 kinases [334, 354-360].  

These mitogen effector functions of MAPK has 
put forward the development of several MAPK in-

hibitors in recent years (refer to Supplementary Ma-
terial: suppl. 7). Few of those are under preclinical 
assessment for GEP-NEN therapy. 

The activation of MAP Kinases in GEP-NENs is 
complex and due to multifunctional effects (such as 
differentiation and proliferation) not yet fully under-
stood. Phosphorylated and thus activated ERK could 
be detected very frequently in an early immuno-
histochemically analysis of the MAPK pathway in 
GEP-NENs [263]. These data were supported by a 
second study where 96% of the analyzed specimens 
were positive for phospho-ERK1/2 and ERK activa-
tion could be related to EGFR and Akt phosphoryla-
tion, suggesting a simultaneous induction of Akt and 
ERK mediated pathways in NENs under EGFR kinase 
activity [6]. Consistently, in vitro treatment of neuro-
endocrine cell lines with EGFR or Raf inhibitors re-
sulted in a time and dose-dependent dephosphoryla-
tion of ERK1/2 [309, 361].  

In summary, analogous to PI3K signaling, the 
MAPK pathway is highly activated but the triggering 
mechanisms remain unclear. It is highly involved in 
the generation of the NE phenotype as inhibition of 
MAPK signaling results in impaired secretion and 
migration (summarized in table 4). 

Table 4. Summary of study results concerning MAPK signaling in 
GEP-NENs. 

Study results Reference  
Ras is expressed in GEP-NENs but mutations are 
rare  

[21, 263-266] 

Raf mutations are rare events [263, 305-307] 
Rap1 and B-Raf are highly expressed in GEP-NEN [309] 
Raf inhibition triggers feedback activation of Akt [135, 310, 311] 
MAPK signaling triggers NE secretion and  
migration in vitro 

[312-314] 

Raf activation induces a paradox inhibition of pro-
liferation and NE secretion 

[318-321] 

ERK activation is frequent in GEP-NENs [6, 263, 309, 361] 

 

PI3K and MAPK signaling are highly in-
terwoven pathways and cooperate in 
therapy resistance in GEP-NENs 

Although both, the PI3K and the MAPK path-
way can be activated by the same RTKs, the agonists 
only partially overlap, since e.g. insulin, and IGF-1 are 
weak Ras-ERK activators, but strong PI3K-mTORC1 
activators. Nevertheless the response of a certain 
pathway to specific growth factors depends on the 
factor’s abundance, the receptor status in relation to 
expression and localization and the expression level 
of pathway mediators as well as of required docking 
and scaffold proteins [362-364]. 

The PI3K pathway can be cross-activated up-
stream by direct Ras-GTP interaction with PI3 Kinases 
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or downstream by ERK and Rsk mediated phosphor-
ylation of TSC2 and RAPTOR. In the latter case, 
phosphorylation inhibits the GAP function of TSC 
and promotes mTORC1 activity [365-369].  

Furthermore, studies have demonstrated that 
also the KSR (kinase suppressor of Ras) scaffold, 
which maintains the co-localization of RAF, MEK, and 
ERK during ERK activation, interacts with mTOR, 
RAPTOR, RICTOR, and the TSC2-activating kinases 
AMPK and GSK3 [366, 370-372]. Consequently both, 
the PI3K and the MAPK pathways frequently con-
verge on the same downstream targets and promote 
cell survival, proliferation, metabolism, and motility 

(refer to figure 3). Prominent proteins that are regu-
lated by both pathways are the FOXOs and the c-Myc 
early transcription factors, as well as BAD and GSK3. 
FOXOs suppress cell survival and proliferation and 
once phosphorylated they undergo nuclear export 
and ubiquitin-proteasome-mediated degradation, 
whereas c-Myc induces pro-survival genes [373-378].  

Furthermore, Rsk, Akt and p70S6K share the 
ability to induce protein translation by regulating 
initiation and elongation factors, such as eIF4B (eu-
karyotic initiation factor 4B), eEF2K (eukaryotic 
elongation factor 2 kinase), RPS6 (ribosomal protein 
S6) and eEF2 [365, 379-381].  

 
Figure 3: Summary of growth factor-induced cellular mechanisms and inhibitory effects of somatostatin signaling in GEP-NENs. The major receptors of 
interest are RTKs, SSTRs and their Co-receptors. Cell adhesion molecules are of minor research interest but might have an interesting potential. Whereas 
RTK activate downstream PI3K and mitogen activated signaling that triggers gene regulation and secretion, SSTRs activate G-protein coupled signaling 
which has a predominant regulatory effect onto growth factor signaling cascades in GEP-NENs. Beside the main questions, which crosstalks are relevant for 
GEP-NEN cancerogenesis and how to inhibit their key mediators, the effect of paradoxical activation has not been clinically evaluated. Trafficking, in-
tercellular and cell-matrix interactions have been analyzed only in a small number of publications [90, 92, 94] but might have a high potential for therapeutic 
and prognostic issues. Ligand binding factors and receptor agonists and antagonists are of high research interest and the focus is on dual receptor targeting 
to develop a more subgroup specific therapy approach [27-29]. Italic: major fields of interest in current research and remaining open questions. 
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Figure 4: Major crosstalks between the PI3K and the MAPK cascades. 
The PI3K and the MAPK pathway are highly interconnected and can be 
activated by the same RTKs, dependent on the triggering ligand. Direct 
Ras-GTP interaction with PI3 Kinases can trigger Ras-activated PI3K 
signaling [365-369]. The KSR scaffold is also a potent regulator of key PI3K 
signaling mediators. Several cross-activations and -inhibitions have been 
assessed to date. For instance, Akt can inhibit Ras function [289, 331, 
382-386] and Rsk can interfere with TSC2 [365-369]. Furthermore, both 
pathways converge on the same downstream targets, such as the FOXO 
proteins, GSK3, Myc or p70S6K [373-378], and thus promote cancer 
associated-phenotypes. 

 
A very important cross-inhibitory mechanism in 

the context of therapy resistance is the crosstalk of 
C-Raf and Akt. Highly activated Akt suppresses Raf 
kinase activity by phosphorylation of S259. Phos-
pho-S259 results in binding of the 14-3-3 protein and 
in Raf inactivation [289, 331, 382-386]. Consequently, 
inhibition of PI3K signaling can activate Raf as 
demonstrated for everolimus in GEP-NETs [204]. This 
mechanism is discussed to be one reason why mTOR 
inhibition has limited impact in GEP-NET therapy. 

Nevertheless the effect of paradoxical MAPK path-
way activation has not been integrated in this debate 
to date and requires further investigation.  

In summary, the PI3K and the MAPK pathways 
share overlapping activation patterns and converge 
on a number of common targets (refer to figure 4), 
although with varying affinities. The role of distinct 
posttranscriptional modification sites and mul-
ti-protein-complex assembly is analyzed in a large 
number of more detailed publications. Inhibiting one 
of those non-specific pathway mediators thus harbors 
the danger of activating other cascades and states the 
rationale for many dual inhibition approaches, unless 
with little success in GEP-NENs so far. 

Conclusion 
In sporadic GEP-NENs, growth factor receptor 

downstream signaling is ensured by large networks of 
triggering kinases, stabilizing scaffold proteins and 
regulating phosphatases, as well as by various tran-
scription factors and co-factors. This network is highly 
upregulated and triggers cell growth, proliferation 
and secretion. Although basic cell-biological research 
has elucidated a vast number of mechanisms and in-
terrelations that might explain observations that have 
been made in GEP-NENs, the majority of molecular 
information still remains to be elucidated. In contrast 
to cancer entities, where the oncogenic input can be 
“translated” in a manageable number of mutated 
proteins which facilitates the development of “tar-
get-directed” therapies, main sources of growth factor 
deregulation in sporadic GEP-NENs have not been 
identified to date. Genomic studies have revealed a 
number of chromosomal alterations but their relation 
to specific genes remains unclear. Subgroup specific 
data is rare due to the already limited number of cas-
es, but might be important to understand differences 
between distinct groups of patients. Moreover, the 
“crosstalk” of different signaling pathways in a NEN 
cell may be much more complex and interactive as it 
is already known and the inhibition of one pathway 
can easily activate others by feedback loops, as de-
scribed for mTOR inhibition.  

In this review we have compiled several studies 
on the molecular basis for growth factor induced mi-
togen downstream-signaling in GEP-NENs. The two 
most promising and approved therapies in 
GEP-NENs are target-directed approaches, namely 
targeting the mTOR protein and somatostatin recep-
tors. Recommendations for the diagnostics and ther-
apy of gastroenteropancreatic neuroendocrine neo-
plasms are given by experts of the European Neuro-
endocrine Tumor Society in consensus conferences 
and are updated regularly [387]. Certainly, somato-
statin analogues have been introduced as an-
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ti-proliferative agents after the positive results of the 
PROMID study [116] and are used in midgut tumors, 
whereas Everolimus and Sunitinib have their indica-
tion in metastatic pNENs [244, 388]. Everolimus might 
possibly also evolve as therapeutic option in midgut 
NENs [389] as results of RADIANT-4 study are 
awaited. 

Nevertheless the therapy outcome depends on 
the abundance and activation pattern of these targets. 
Subgrouping data by therapy predictive biological 
markers, such as the phosphorylation status of Akt or 
the SSTR expression pattern, might improve the 
therapeutic precision for choosing the right therapy. 
Here we provide some evidence that even the most 
advanced therapeutic agent, everolimus, which is 
widely used in GEP-NENs therapy and was approved 
by the FDA two years ago, may still hold some 
drawbacks which may diminish its success.  

In preclinical models Everolimus leads to a 
global upregulation of upstream PI3K signaling and 
cross-activation of Ras/Raf/Erk signaling via nega-
tive feedback loops. Therefore, recent therapeutic ap-
proaches focus on inhibitors of alternative compo-
nents of the PI3K pathway, dual target inhibitors and 
effective combinatory bio/chemotherapies. Another 
example is the crosstalk between B-Raf/C-Raf and 
Ras/MEK/ERK-pathway. In the clinical setting, the 
use of a B-Raf-inhibitor in a melanoma patient led to 
the (paradoxical) activation and progression of a se-
cond malignancy (n-Ras mutated AML) in the same 
patient [322]. This effect was reversed by withdrawing 
the inhibitor – but it impressively demonstrated the 
need for further investigations on the crosstalks and 
the complexity of different pathways.  

There is also a need for entity-specific research 
data concerning processes that trigger 
GEP-NEN-specific cellular behavior, such as intra- 
and intercellular trafficking, tumor-stroma interac-
tions or the regulatory role of scaffold proteins. Alt-
hough a large variety of inhibitors and molecular 
pathway regulator are available to date, their applica-
tion is almost limited to their assessment for clinical 
purposes rather than to identify their mechanisms of 
actions. For instance, the observations that mutations 
in key mediators of growth factor activated pathways 
are rare in GEP-NENs, is an important fact for novel 
therapeutic strategies and, especially in the case of 
Raf, fundamental to define a certain outcome. With-
out understanding the underlying mechanism, inter-
pretation of unexpected study results will remain 
unsatisfying. The importance of molecular markers 
and genetic data to predict therapy outcome before 
starting cost-intensive clinical trials has been in-
creased dramatically due to the enormous rise of 
available substances in the context of growth factor 

signaling. Significant mechanistic knowledge, de-
ducted from generally valid cancerogenetic contexts, 
needs to be analyzed for its validity in GEP-NENs and 
thus to furnish stronger rationales for distinct target 
directed and subtype specific therapeutic trials. 
Therefore the identification and assessment of new 
markers and their evolution throughout neuroendo-
crine cancerogenesis is a promising field of research. 
Detailed pathway analyses are essential to under-
stand the limitations of the current therapies and to 
elucidate new possibilities of molecular imaging and 
targeting in this heterogeneous cancer entity. 
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