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Abstract: Different livestock behaviors have distinct effects on grassland degradation. However,
because direct observation of livestock behavior is time- and labor-intensive, an automated
methodology to classify livestock behavior according to animal position and posture is necessary.
We applied the Random Forest algorithm to predict livestock behaviors in the Horqin Sand Land
by using Global Positioning System (GPS) and tri-axis accelerometer data and then confirmed the
results through field observations. The overall accuracy of GPS models was 85% to 90% when
the time interval was greater than 300–800 s, which was approximated to the tri-axis model (96%)
and GPS-tri models (96%). In the GPS model, the linear backward or forward distance were the
most important determinants of behavior classification, and nongrazing was less than 30% when
livestock travelled more than 30–50 m over a 5-min interval. For the tri-axis accelerometer model,
the anteroposterior acceleration (–3 m/s2) of neck movement was the most accurate determinant of
livestock behavior classification. Using instantaneous acceleration of livestock body movement more
precisely classified livestock behaviors than did GPS location-based distance metrics. When a tri-axis
model is unavailable, GPS models will yield sufficiently reliable classification accuracy when an
appropriate time interval is defined.

Keywords: livestock; behavior classification; GPS; accelerometer; Random Forest; Kappa
coefficient; dryland

1. Introduction

Drylands cover more than 41% of the Earth’s land area, and desertification directly affects more
than 250 million people [1]. Overgrazing is considered to be the primary cause of land degradation [2].
Previous studies examining overgrazing of rangeland generally used the number of livestock in a
given area as the grazing intensity; this practice assumes that livestock foraging is spatially distributed
evenly and that all livestock behaviors have the same influence on the rangeland [3]. However,
the livestock always shows patchy and selective grazing even in homogenous rangeland to minimize
their activity range and to maximize energy use efficiency [4]. In fact, vegetation typically shows a
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mosaic distribution, whether induced by abiotic factors, such as elevation and slope, or by selective
grazing, which aggravates the overuse of some areas of the grassland [5].

The spatial distribution of different behavioral activities was critical for understanding the effects
of grazing on ecosystem function, growth, reproduction and survival, how to make efficient use of
resources [6], and mechanisms for coping with environmental conditions [6]. In the grazing areas,
the vegetation was significantly reduced by the selective foraging of livestock. Moreover, concentrated
grazing depletes the soil of nutrients [7], thus promoting further degradation of grassland [8], whereas
light grazing can improve plant diversity by restraining inherent inter and intra-specific competition [9].
In comparison, nongrazing behaviors, including resting and walking, trample plants and compact
the soil surface in overused areas, and the cumulative deposition of excreta alters various physical
properties of soil, including soil bulk density, aggregate stability, aggregate size distribution, and surface
microrelief. Recovering rangeland from degradation due to nongrazing behaviors is considered more
difficult than remediating the effects of concentrated grazing [10].

Accurately classifying different behaviors of livestock is necessary to understand rangeland
degradation and to devise effective interventions to restore the degraded land. One such method
involves applying several statistical [11] and deep-learning [12] models to collected data from
accelerometers for classifying livestock behaviors, which have been developed by using large data sets
placed on animals in managed grassland [13,14]. These accelerometers measure the instantaneous and
independent local movement of animals’ legs, heads, or bodies, thus ensuring high accuracy of behavior
classification [15–18]. However, accelerometers cannot provide information regarding the location
of the livestock, which is crucial for identifying the spatial distribution of animals and grassland
management. Another method is to use Global Positioning System (GPS) data and machine-learning
algorithms to classify livestock behaviors [19]. Using the location records, the GPS data-based method
can project the spatial distribution of various behaviors, which is crucial for herd management and
the prevention of rangeland degradation. However, GPS data-based methods require an optimal
time interval, during which metrics such as linear distance (d), cumulative distance (d), and turning
angle (t) are calculated to predict behaviors [12]. To build models for predicting livestock movement,
the time intervals for metric calculation have previously been selected empirically [19,20]. The optimal
time interval for GPS data-based methods varies with the ecosystem, livestock species, topography,
and spatial distribution of available resources to evaluate [21].

The Horqin Sandy Land in northern China has been seriously degraded since the mid-1980s,
and various restoration countermeasures (e.g., fencing) have been introduced to restore the degraded
land [22]. In Horqin Sandy Land, the average area of the fenced rangeland per household is
approximately 15–30 ha [23]. Fencing limits the space, and thus the forage, available to animals and
consequently might aggravate mosaic grazing in areas; in addition, dense walking along the fence
might lead to mosaic degradation. The objectives of our study were to develop a method for classifying
livestock behavior by using location information and to define the optimal time interval for a GPS
data-based model for fenced rangeland.

2. Materials and Methods

The study was conducted in a fenced household pasture, which is located in the southwestern
part (42◦55′N, 120◦42′E; altitude, ~360 m) of Horqin Sandy Land, China. The climate is temperate,
semi-arid, continental, and monsoonal. Average annual precipitation is 360 mm, with an annual mean
temperature of 6.4 ◦C. The minimal and maximal monthly mean temperatures are −13.1 ◦C in January
and 23.7 ◦C in July, respectively.

The pasture was grazed by Simmental cattle from 1 July through 1 October, 2018 (three months).
During our study, the rangeland area was 20.1 ha, and herd size was 13 cattle. The stocking rate
was calculated in terms of the common method [24], which the value was 0.51 Animal Unit Months
per hectare. The total grazing time was approximately 3 months yearly due to the implement of
‘suspending grazing’ policy by the local government, which was for preventing grassland degradation.
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The availability of forage in our study area was about 53 g/m2 in July and 243 g/m2 in August for
enclosure rangeland [25]. The vegetation was composed mainly of herbage belonging to arid grassland
types (Pennisetum centrasiaticum, Cleistogenes squarrosa), with some dwarf shrubs (Artemisia oxycephala,
Artemisia halodendron).

2.1. Equipment and Animals

All 13 cattle in the pastured herd were fitted with GPS devices (catalog no. GT-600, i-gotU, Mobile
Action Technology, Taipei, Taiwan) and tri-axis accelerometers (catalog no. UA-004-64, Hobo model,
Onset, Bourne, MA, USA). GPS devices were attached on the neck only, whereas tri-axis accelerometers
were placed on the neck, one leg, and the tail of each animal. The GPS device recorded cattle
location at 50 s intervals throughout two consecutive days, after which the GPS devices were removed,
recharged, and re-attached to the cattle; this process continued throughout the 10-d study period.
The three-dimensional accelerometers recorded the anterior–posterior, transverse, and superior-inferior
acceleration of livestock movement. The batteries of the tri-axis devices were able to record acceleration
at 50 s resolution throughout the 10-day study period without needing to be recharged.

2.2. Observation of Livestock Behaviors

Classification and criteria for animal behavior followed the method of Ganskopp and Bohnert [12].
In the experiment period, one observer observed one cattle at two days. According to our observation,
a herd of cattle behaved similarly in a group. Thus, the observed behavior can represent the behavior
of the cattle. In each day, the observer kept tracking one randomly selected cattle. The direct
visual behavioral observation was recorded continuously by one observer following one cattle at
approximately 20 meters away from the cattle in consecutive two days (23 and 24 September 2018).
The observer held a timer which is synchronized with the time of the GPS. The field observation of
behaviors started from 9:00 local time. The time interval of the GPS to record each location is 50 s.
The GPS will flash when recording the location of the cattle. When the GPS flashes, the observer will
read the timing from the timer and record the cattle behavior. If the cattle were foraging with head
down when the GPS recording the location, it is considered as grazing behavior. If the cattle were
standing still, chewing, or walking it is considered as nongrazing behavior. In total, 9 hours and 539
behaviors were recorded; approximately 80% of activities were grazing behaviors, and the remaining
20% was the nongrazing activity. Detailed information regarding the behavior classification is given
in Table 1.

Table 1. Descriptions of the observed behaviors (modified from Ganskopp and Bohnert [12]).

Behavior category Definition Explanation

Grazing Foraging, Foraging–walking
Foraging: foraging continuously (head lowered)

Foraging–walking: foraging while walking (head
raised and lowered)

Nongrazing Standing, Lying down,
Rumination

Standing: the animal stands on all four legs, with
head erect and without swinging its head from side

to side
Lying down: the cattle lies on the ground in any

position (except flat on its side) without ruminating
Ruminating: the cattle lies in a stall masticating

regurgitated feed, swallowing masticated feed, or
regurgitating feed with head erect

2.3. Movement Metrics Derived from GPS and Tri-Axis Accelerometer Data

Coordinates of GPS device were converted from latitude/longitude form to a Universal Transverse
Mercator (UTM) format to facilitate metrics of distances and turning angle [20]. Metrics related to
distances cattle moved and the turning angle were derived to classify the animal behaviors at the
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GPS-determined locations (Figure 1). In the first step, we calculated the basic two metrics over two
recording positions (100 s), then we extended the time interval and recalculated the metrics from 100 to
800 s. The distance moved included the cumulative distance travelled and linear distances between
focal locations. Distances that occurred temporally before a considered location are called backward
distances, and those after a focal location are called forward distances. The linear distance d(b3, a1)
between b3 and a1 was calculated by Equation (1), and the d(b1, b2), d(b2, b3), d(a3, a4), d(a2, a3), d(a1, a2),
d1, d2, d3 and d4 were used the same equation. The backward accumulative distance d(b3, a1) and the
forward accumulative distance d(a1, a2) was the same as linear distance. For extending time intervals
of GPS positions, the backward accumulative distance between a1 and b2 was the sum of d(b2, b3)
and d(b3, a1) in Equation (2) and forward accumulative distance between a1 and a3 was the sum of
d(a1, a2) and d(a2, a3) in Equation (3). For further processing of accumulative distance, the backward
accumulative distance between a1 and b1 was the sum of d(b3, a1), d(b2, b3) and d(b1, b2) in Equation (4)
and forward accumulative distance between a1 and a4 was the sum of d(a1, a2), d(a2, a3) and d(a3, a4) in
Equation (5) (Figure 1). Calculation of distances metrics in other time intervals followed the same
procedure. Metrics used and their meaning at time intervals of 100–800s were illustrated in Figure 2.

d1 =

√
(b3x − a1x)

2 + (b3y − a1y)
2 (1)

d(b1, a1) =
∣∣∣d(b2, b3)

∣∣∣+ ∣∣∣d(b3, a1)

∣∣∣ (2)

d(a1, a3) =
∣∣∣d(b2, b3)

∣∣∣+ ∣∣∣d(b3, a1)

∣∣∣ (3)

d(a1, b1) =
∣∣∣d(b3, a1)

∣∣∣+ ∣∣∣d(b2, b3)

∣∣∣+ ∣∣∣d(b1, b2)

∣∣∣ (4)

d(a1, a4) =
∣∣∣d(a1, a2)

∣∣∣+ ∣∣∣d(a2, a3)

∣∣∣+ ∣∣∣d(a3, a4)

∣∣∣ (5)

Figure 1. Schematic representation of movement metrics used as predictive metric in the classification.
Movement metrics include backward accumulative distance (d(b2, a1), d(a1, b1)), forward accumulative
distance (d(a1, a3), d(a1, a4)), backward linear distance (d1, d2), forward linear distance (d3, d4), and turning
angle between Global Positioning System (GPS) positions (c).
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Figure 2. Metrics of distance extracted from GPS device were used to classify livestock behaviors from
100 to 800s time intervals in Random Forest model. a1 is the focal point, a2-17 and b1-16 were forward
and backward locations at time interval from 100 to 800s. d1-d62 were the forward and backward linear
distance metrics of distance from 100 to 800s time interval. Accumulative distances were calculated
by Equations (2)–(5). d62-d92 were the accumulative distances metrics used in the model. Forward
accumulative distance: d63 = d2 + d3; d64 = d63 + d8; d65 = d64 + d12; d66 = d65 + d14; d67 = d66 + d16;
d68 = d67 + d23; d69 = d68 + d34; d70 = d69 + d35; d71 = d70 + d36; d72 = d71 + d37; d73 = d72 + d38; d74
= d73 + d39; d75 = d74 + d39; d76 = d75 + d41; d77 = d76 + d42. Backward accumulative distance: d78 =

d1 + d4; d79 = d78 + d7; d80 = d79 + d11; d81 = d80 + d13; d82 = d81 + d15; d83 = d82 + d23; d84 = d83 +

d24; d85 = d84 + d25; d86 = d85 + d26; d87 = d86 + d27; d88 = d87 + d28; d89 = d88 + d29; d90 = d89 + d30;
d91 = d90 + d31; d92 = d91 + d32. The meaning and time interval of a specific accumulative distance
can be read from Figure 2. For example, d63 = d2 + d3, thus d63 is the forward accumulative distance
at 100s.

Metrics of tri-axis accelerometer were calculated at 50 s intervals across the dataset of cattle,
including accelerations along three orthogonal axes (

..
dx,

..
dy, and

..
dz), which was defined as three

dimensional Cartesian system in neck (
..
dxneck,

..
dyneck, and

..
dzneck), leg (

..
dxleg,

..
dyleg, and

..
dzleg), and tail

(
..
dxtail,

..
dytail, and

..
dztail).

..
dx is acceleration (m/s2) in the superiorinferior axis,

..
dy is acceleration (m/s2) in

the anteroposterior axis and
..

dz is acceleration (m/s2) in transverse axis; Magnitude of acceleration in the
neck (Mneck)was calculated by Equation (6) and Mleg and Mtail were calucalated by the same equation;

(SDx) standard deviation of the
..

dx were standard deviation of
..

dx at neck, leg, and tail calculated by

Equation (7). The calculation of SDy and SDz used the same equation,
..

dx is average of
..

dx at the neck,
leg, and tail in the x-direction at the same time;

Mneck =

√
(

..
dxneck)2 + (

..
dyneck)2 + (

..
dzneck)2 (6)

SDx =

√∑
(

..
dx −

..
dx)2

n
(7)

The raw acceleration is divided into static and dynamic acceleration. The static acceleration
for a focal point is average of 7 accelerations at 2.5 min. before (3 accelerations) and 2.5 min.
after (3 accelerations). The dynamic acceleration was the difference between the instantaneous
acceleration and the running-mean derived static acceleration [26]. Overall dynamic body acceleration
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(ODBA) at the neck, leg, or tail was the sum of absolute value of dynamic acceleration at x, y, z at
the neck, leg, and tail [27]. For example, the ODBA at neck was calculated by Equation (8) where
AXneck, AYneck, AZneck are the dynamic acceleration at

..
dxneck,

..
dyneck, and

..
dzneck at the neck. AXneck, AYneck,

and AZneck were calculated by Equation (9). The ODBA in neck (ODBAhead) was the sum of the absolute
values of the dynamic accelerations from all three axes by Equation (8) and the ODBAneck and ODBAtail
used the same equation. The calculation of ODBA for leg and tail was the same as for neck.

ODBAneck= |AXneck|+|AYneck|+|AZneck| (8)

AXneck=
..
dxneck −

..
dxneck (9)

Using the various metrics derived at intervals of 100–800 s, we built three types of models:
one using GPS data-based metrics only (GPS model); another from the tri-axis accelerometer data
only (tri-axis model); and a model combining the tri-axis accelerometer and GPS data-based metrics
(GPS-tri model).

2.4. Livestock Behavior Modelling

The Random Forest algorithm classification model was used to categorize livestock behavior,
with movement metrics as dependent variables and observed behaviors as independent variables [20].
Random Forest is a machine-learning algorithm that especially suits data sets with many dependent
variables. Random Forest provides well-supported predictions from large numbers of dependent
variables and has the ability to identify the important variables of the model [28]. The modelling
process of Random Forest can be summarized as consisting of many decision trees [29]:

1. Construct bootstrap data set (bag data set) from approximate 2/3 of the original data set;
the remaining 1/3 of the data set is recognized as ‘out of bag’ (OOB).

2. Randomly select several predictor variables to calculate nodes in the bootstrap dataset.
3. At each decision tree node, test a random subset of predictor variables, to partition the bootstrap

data into increasingly homogeneous subsets. The node-splitting variable selected from the
variable subset is that which results in the greatest increase in data purity (Gini) before and after
the tree node split.

4. The trees are fully grown, and each tree is used to predict OOB data, compute accuracy, and average
error rates over all predictions.

5. The predictions are calculated by means of the majority vote of OOB predictions of the tree,
and all predictions are averaged together to determine the class for the observation.

Three training parameters need to be defined in the Random Forest algorithm; these parameters
then determine the model prediction power:

Our analysis is carried out with the caret package in R Studio (R Development Core Team 2011) by
using the Random Forest, caret, and plotmo packages. When building Random Forest models within
this package there are two main user-controlled parameters: the number of variables to try at each
node (the ‘mtry’ argument), and the number of trees in the forest (the ‘ntree’ argument). We used the
train() function from the caret package to get an optimal combination of ‘mtry’ and ‘ntree’. The train()
function was run for 10 (‘mtry’ from 1 to 10) times. To determine the optimal number of trees for our
data, the approach was to create many ‘caret’ models for our algorithm and pass in a different value
of ‘ntree’ while holding ‘mtry’ constant at the default value above. We tested models with varying
numbers of trees as a function of tree number of tress approaches a flat line between 500 and 2000 trees.

Mean decrease in Gini is used to determine the importance of variables in the classification model;
this parameter is based on the Gini impurity index used for the calculation of splits during training [20].
When a tree is built, the decision regarding which variable to split at each node uses the Gini parameter.
For each variable, the sum of the Gini decrease across every tree of the forest is accumulated every
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time that variable is chosen to split a node. The sum is divided by the number of trees in the forest to
give the mean decrease in Gini.

2.5. Performance of the Random Forest Classifier

The performance of Random Forest classification models was evaluated by using two indices:
overall accuracy and the κ coefficient [30]. Overall accuracy represents the proportion of the total
number of correctly classified observations. The κ coefficient, which considers the agreement occurring
by chance, is a statistical measure of inter-rater agreement for categorical items [30].

To evaluate the performance of the Random Forest model, we used 10-fold (i.e., performed 5 times)
cross-validation to separate the data set into different, smaller data sets as training data sets and testing
data sets. This process enabled us to more precisely control the number of samples compared with the
inherent bootstrap sample in the Random Forest model [31].

3. Results

3.1. Performance of GPS, Tri-Axis, and GPS-Tri Axis Models

Overall classification accuracy increased as the time interval increased: 84.4%, 84.5%, 86.44%,
and 87.6% at time intervals of 100, 150, 200, and 250 s. For all GPS models, accuracy began to plateau
around 0.89–0.91, when the time interval was greater than 300–800 s. For both the GPS-tri and tri-axis
models, overall classification accuracy was approximately 96% at all time intervals (Figure 2).

Compared with the relatively small change in overall classification accuracy with different time
intervals, the κ coefficient for GPS models increased dramatically from 7% to 42% as the time interval
increased from 100 to 250 s. The κ coefficient stabilized at 57% to 65% when the time interval exceeded
300 s (Figure 2). The GPS-tri and tri-axis models yielded approximately the same κ coefficient (91% to
92%, 92%) at all time intervals (Figure 3).

Figure 3. (a) Overall accuracy and (b) κ coefficients of the GPS (gray bars) and GPS-tri (white bars)
with time intervals of 100–800 s and of the tri-axis model (black bars).

3.2. Cross-Validation

For GPS models with time intervals of 100 to 800 s, the accuracy for grazing behavior was
92% to 98%, whereas the accuracy for nongrazing behavior increased from 20% to 47% as the time
interval increased from 100 to 250 s and from 58% to 66% with time intervals of 300–800 s (Table 2).
The performances of tri-axis were showed accuracy for grazing behaviors (98%) and nongrazing (92%)
(Table 3).
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Table 2. The confusion matrix for livestock behaviors classification as categorized by using GPS models
with time intervals of 100–800 s.

Observed
Behaviors

Predicted Behaviors

Grazing Nongrazing Percent
Accuracy Grazing Nongrazing Percent

Accuracy Grazing Nongrazing Percent
Accuracy

100 s 150 s 200 s

Grazing 421 35 0.92 428 28 0.94 428 28 0.94
Nongrazing 66 17 0.20 63 20 0.24 51 32 0.39

250 s 300 s 350 s

Grazing 427 29 0.94 430 26 0.94 433 23 0.95
Nongrazing 44 39 0.47 30 53 0.64 34 49 0.59

400 s 450s 500 s

Grazing 447 9 0.98 440 16 0.96 446 10 0.98
Nongrazing 33 50 0.60 31 52 52 35 48 0.58

550 s 600 s 650 s

Grazing 446 10 0.98 444 12 0.97 445 11 0.98
Nongrazing 35 48 0.59 33 50 0.6 32 51 0.61

700 s 750 s 800 s

Grazing 442 14 0.97 440 15 0.96 435 21 0.95
Nongrazing 32 51 0.61 28 55 0.66 29 56 0.66

For each row, accuracy was calculated as the proportion of the observed class relative to the total number of behaviors.

Table 3. The confusion matrix for livestock behaviors classification as categorized by using the
tri-axis model.

Observed Behaviors
Predicted Behaviors

Grazing Nongrazing Accuracy

Grazing 447 9 0.98
Nongrazing 7 76 0.92

For each row, accuracy was calculated as the proportion of the observed class relative to the total number of behaviors.

3.3. Relative Importance of Variables

The first four metrics in order of importance (as indicated by the mean decrease in Gini) for the
GPS model with time intervals from 100 to 800 s are shown in Figure 3 and Figure S1. In most of the
models, either linear or accumulated distance, rather than turning angle, was the important metric
in the modelling. The time lag until the important distance metric occurred increased with the time
interval from 100 to 800 s (Figure 4). Among all of the important metrics at different time intervals,
d19 (the backward linear distance at a time interval of 300 s) and d43 (backward linear distance at a
time interval of 350 s) were the most frequently used metrics in the classification of livestock behaviors.
The variable d19 was the most important for the GPS models when the time interval was 300–600 s,
and d43 was most important for time intervals from 350 to 700 s.
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Figure 4. Variable importance plot generated by using the Random Forest algorithm with GPS models.
The plot shows the first four important metrics of each GPS model (1, 2, 3, 4) according to the mean
decrease in Gini; as this parameter increases, the variable is more important and a more accurate
predictor of behavior classification. See Figure 2 and equation (Equations (1)–(6)) for the meaning
of metrics.

In the tri-axis model, the variable
..
dyneck(acceleration of anterior–posterior movement in the neck)

had the highest mean decrease in Gini, and Mtail (square root mean of the sum of acceleration in the neck,
leg, and tail) the second largest. The mean decrease in Gini gradually declined from

..
dyleg (acceleration

of anterior–posterior movement in the foot) to
..
dxleg (acceleration of superior-inferior movement in the

foot) but then dramatically decreased from
..
dxleg to

..
dzneck (acceleration of transverse movement in the

neck) (Figure 5).

Figure 5. Variable importance plot generated by using the Random Forest algorithm with the tri-axis
model. The plot shows the importance of each variable according to the mean decrease in Gini; as
this parameter increases, the variable is more important and a more accurate predictor of behavior
classification. See Equations (6)–(9).
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3.4. Marginal Effect of the Variable on Livestock Behavior Classification

We used partial dependence plots to show the marginal effect of the metrics used in the behavior
classification. For all GPS models, we generated partial dependence plots for the first four most
important variables determined according to the mean decrease in Gini (Figure 2).

Although d19 and d43 had important roles in behavior modeling, the marginal probability of
classifying a behavior as nongrazing decreased as the time interval increased. The probability of
nongrazing showed a sharp decrease when d19 and d43 were greater than approximately 35–50 m.
In the GPS model at the 300 s time interval, the marginal probability to classify a behavior as nongrazing
was around 0.4 when d19, d18 (the backward linear distance at a time interval of 250 s), d17 (the
backward linear distance at a time interval of 200 s), and d20 (the backward accumulative distance at
a time interval of 200 s) were less than 35–50 m (Figure 6A), thus accounting for more than 80% of
the total behavior in this range of distance (Figure 6B). The utility power of these four distances in
classifying a behavior as nongrazing gradually decreased and then stabilized around 0.22 when they
were greater than 50 m (Figure 6A).

Figure 6. Partial dependence plots of nongrazing (A) and the proportion of behaviors corresponding
to threshold in the GPS model (B). Partial plots represent the marginal effect of a single metric (d19, d18,
d17, d20) of 300 s time-interval included in the Random Forest model on the probability of nongrazing
behavior, when the effects of all other metrics are averaged out. The criteria of threshold distance of
each partial plot are recognized that the nongrazing behaviors remain same probability. See Figure 2
and Equations (6)–(9) for the meaning of metrics.

In the tri-axis model, when
..
dyneck was less than −3 m/s2, the behavior was never classified as

nongrazing, whereas the probability of a behavior being classified as nongrazing was around 0.8 when
..
dyneck was greater than −3 m/s2. For the variable Mtail, the probability of a behavior being classified as
nongrazing was 0.5 when Mtail was 0 m/s2 and dropped dramatically to 0.3 when Mtail was 7 m/s2.
The behavior being classified as nongrazing was 0.3 when

..
dyleg was from −20 to 0 m/s2, dropped to 0.22

when
..
dyleg was 8 m/s2, increased to 0.25 when

..
dyleg was more than 11 m/s2. By using

..
dxleg, the highest

marginal probability of determining a behavior as nongrazing was 0.31 and dropped to 0 when
..
dxleg

was 11 m/s2 (Figure 7).
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Figure 7. Partial dependence plots of nongrazing (A) and the proportion of behaviors corresponding
to threshold in the tri-axis model (B). Partial plots represent the marginal effect of a single metric
(

..
dyneck, Mtail,

..
dyleg,

..
dxleg) included in the Random Forest model on the probability of nongrazing

behavior, when the effects of all other metrics are averaged out. The criteria of threshold distance of
each partial plot are recognized that the nongrazing behaviors remain same probability. See Equations
(6)–(9) for the meaning of metrics.

4. Discussion

4.1. Optimal Time Interval for GPS Models

GPS location data can be used to infer latent states of behavior from within individual movement
trajectories [19]. The duration to complete a specific behavioral activity depends on the type of livestock
and the condition of the pasture [6]. Distance and turning angle metrics extracted from GPS data
over specific time intervals can be used to classify livestock behaviors, such as 1 min for beef cows on
desert grassland [6], 3 min for Brown Swiss cows in a cow shed [11], and 5 min (i.e., 300 s) for dairy
cows on upland grassland [19]. In our study, the optimal time interval for behavior classification was
approximately 300 s because the κ coefficient at this time interval was higher than for shorter time
intervals and was nearly stable afterward (Figure 3). In addition, the most frequently used metric (d19)
was the backward linear distance at the 300 s time interval (Figure 4).

Although overall accuracy did not vary over time intervals from 100 to 800 s, it may be a
poor measure for assessing model performance, given that overall accuracy can happen just due to
coincidence, especially when the data are imbalanced [6]. In contrast, the κ coefficient, which estimates
accuracy beyond expectation, can correctly assess the accuracy of imbalanced data [32]. For imbalanced
data, the observed and predicted accuracies and their agreement in regard to minor behaviors determine
the κ coefficient. In reality, foraging occurs more often than other behaviors. During the cross-validation,
given that the accuracies for grazing behavior were relatively high and stable, the critical determinants
of the κ coefficient were the accuracies for nongrazing behaviors. For the GPS models, the low
accuracies of the nongrazing behaviors during cross-validation (Table 2) explain the low κ coefficients
for the time intervals from 100 to 250 s (Figure 3). At time intervals of 300 s and greater, the κ coefficient
stabilized around 0.5–0.6 because of the increase in the accuracies of nongrazing behavior (Table 2).
In addition, the d19 (backward linear distance at 300 s) was the most frequent metric in other models
when the time interval was greater than 300 s (Figure 4). Therefore, the optimal time interval for using
the GPS location data to classify the livestock behavior in the study area was 300 s.
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4.2. Model Performance

Predicting the accuracy of models by using GPS data depends on the livestock type and the
pasture condition [21], but when using tri-axis accelerometer data it depends only on the instantaneous
body posture of the animal [15]. With the same time step to log the GPS position and the body posture
by tri-axis accelerometer, models using tri-axis accelerometer data-based metrics only or combined
tri-axis and GPS data-based metrics showed higher overall accuracies and κ coefficients than the
models that used only GPS data-based metrics (Figure 3).

The distance moved by a livestock over a given time interval is expected to be an indicator of its
activity. Short distances are likely to indicate static behavior (standing, ruminating), and long distances
typically are associated with foraging [33]. In the current study, distance variables were the first four
most important variables in most of the GPS models (Figure 4), thus supporting the power of using
distance to classify cattle behavior.

The GPS models demonstrated several critical distances for classifying grazing and nongrazing
behaviors (Figure 4). But, the marginal probabilities of the important variables to distinguish between
grazing and nongrazing behaviors were lower for the GPS models than for the tri-axis models (Figure
S1 and Figure 7). Moreover, the distances tended to be within the range that ambiguously classified the
two behaviors (Figure S1). Therefore, distinguishing between grazing and nongrazing was particularly
challenging and relied on the use of multiple movement metrics, including backward and forward
linear and accumulative distances (Figure 4). For example, for the 300 s time interval, d19 was the
first most important metric to determine the two behaviors. The marginal probability for nongrazing
was approximately 40%, meaning unclear differentiation between grazing and nongrazing when
d19 was less than 35 m. However, the probability of nongrazing was around 20%, indicating that
the two behaviors were clearly differentiated when d19 exceeded 35 m. Unclear classification at
shorter distances than this critical distance (35 m) might reflect the condition of the specific habitat.
For example, the presence of woody vegetation might have made it more difficult to distinguish
between grazing and nongrazing, because the consumption of shrubs slows movement and can blur
the graze signature in terms of the motion sensor counts. In addition, 89% of the d19 data were less
than 35 m. Hence, the lower probability of the distance metrics to classify the two behaviors under the
threshold value and the skewed distribution of these metrics could be responsible for the relatively
low accuracy of the GPS models.

The tri-axis accelerometer model was based on the body posture that was simultaneously
associated with a specific behavior and did not need to account for any time interval, which might lead
to uncertainty regarding behavior classification [34]. Unlike the GPS model, the tri-axis model can
measure the instantaneous and independent local movement of the legs, heads, or entire bodies of
animals, thus ensuring high accuracy of behavior classification [15–18]. Our findings showed that the
anteroposterior movement of the neck was critical for distinguishing livestock behaviors (Figure 5), in
agreement with the results of another study, which used x-axis sensor counts [14].

Livestock behaviors were influenced by the available forage and stocking density. With increasing
stocking density, the average intake of each livestock will reduce due to the given availability forage
in the rangeland [35]. Livestock preferred to spend less time on grazing behaviors when consuming
of energy was more than grain [35]. More available forage in August (243 g/m2) than that in July (53
g/m2) in Horqin Sandy Land might lead to the livestock spending more time on grazing with sufficient
energy of forage in August. For the behavior’s classification, livestock may spend less time over a
given distance for finishing grazing behavior. So, the optimal time-interval of the GPS method for
classifying behaviors will decrease. Our GSP model was built over 100–800 s to cover various situations
corresponding with the change of rangeland pasture, thus the method can be applied in other sites.

5. Conclusions

Our current study demonstrates that data from both GPS devices and tri-axis accelerometer can
be applied to build reliable models for livestock behavior classification.
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To achieve the high and stable performance of the GPS model, we selected the optimal time
interval from 300 to 800s, which is sufficient for most livestock activities associated with behaviors
to be displayed. Metrics of linear distance had the most important effects on behavior classification.
In addition, the marginal effects of linear distance indicated a distance of 35–50 m was the threshold
for differentiating behaviors. At longer distances, grazing was more likely than nongrazing behavior.

Because it is based on the instantaneous acceleration of livestock body movement, the tri-axis
model achieves higher performance regarding livestock behavior classification than does the GPS
model. The anteroposterior movement of the animal’s neck was the most important metric for
the tri-axis model. The marginal effects showed that acceleration of −3 m/s2 was the threshold for
differentiation of behaviors; at greater values, nongrazing was more likely than grazing.

In summary, compared with GPS models, a tri-axis model can better support livestock behavior
classification, which is advantageous for assessing the detailed activities associated with investigating
livestock physiology. But the main disadvantage of a tri-axis model is its lack of location information.
A GPS model is sufficient for livestock behaviors classification and provides information regarding an
animal’s location; this feature is associated with the interaction between livestock activities and the
rangeland ecosystem. These findings may improve our understanding of how the selection of the time
interval influences the process of distinguishing livestock activities in a GPS model and provide insight
into selecting an optimal time interval when using GPS data only to classify livestock behaviors.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/23/5334/s1.
Figure S1. Partial dependence plots of nongrazing according to the four most important variables for time intervals
of 250–800 s in the GPS model.
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