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Triple-negative breast cancer (TNBC) represents the most aggressive breast cancer
subtype. Poor prognosis in TNBC is partly due to lack of efficacious targeted therapy and
high propensity to metastasize. Dysregulation of alternative splicing has recently emerged
as a trait of TNBC, suggesting that unveiling the molecular mechanisms underlying its
regulation could uncover new druggable cancer vulnerabilities. The oncogenic kinase
NEK2 is significantly upregulated in TNBC and contributes to shaping their unique splicing
profile. Herein, we found that NEK2 interacts with the RNA binding protein Sam68 in
TNBC cells and that NEK2-mediated phosphorylation of Sam68 enhances its splicing
activity. Genome-wide transcriptome analyses identified the splicing targets of Sam68 in
TNBC cells and revealed a common set of exons that are co-regulated by NEK2.
Functional annotation of splicing-regulated genes highlighted cell migration and
spreading as biological processes regulated by Sam68. Accordingly, Sam68 depletion
reduces TNBC cell migration and invasion, and these effects are potentiated by the
concomitant inhibition of NEK2 activity. Our findings indicate that Sam68 and NEK2
functionally cooperate in the regulation of a splicing program that sustains the pro-
metastatic features of TNBC cells.

Keywords: triple-negative breast cancer, alternative splicing, transcriptomics, NEK2, SAM68
INTRODUCTION

Alternative splicing is the molecular process that generates multiple mRNA variants from single
eukaryotic genes through variable assortment of their exons (1, 2). This process amplifies the coding
potential of genomes and represents a plastic device for the regulation of gene expression. However,
errors in alternative splicing regulation are implicated in the pathogenesis of various human
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diseases, including cancer (3, 4). Integration of transcriptomic
analyses with clinical data have documented that genome-wide
alterations in splicing occur in many human cancers, as well
as the utility of splice variants as diagnostic or prognostic
biomarkers (5–7). In this regard, splicing signatures were
shown to distinguish breast cancers (BCs) from normal tissue
(7) and to clearly segregate the more aggressive triple-negative
BC subtype (TNBC) from the other BCs (8–10).

Oncogenic splicing dysregulation mainly relies on the aberrant
expression of specific splicing factors (2, 11). For instance, the
oncogenic transcription factor MYC directly induces transcription
of several genes encoding for splicing factors (12, 13), including
SRSF1 (14). Importantly, overexpression of the SRSF1 protein was
sufficient to induce transformation ofmammary epithelial cells and
such oncogenic activity was shown to rely, at least in part, on the
promotion of splice variants that enhance cell survival,
proliferation, and migration (15). Another important layer of
splicing regulation relies on the control of the activity of splicing
factors through their reversible phosphorylation (16, 17). Splicing-
specific kinases, such as the serine arginine protein kinase (SRPK)
and the CDC-like kinase (CLK) families, and cell-signaling kinases
were reported to regulate both splicing factor expression and
activity (16, 17). For instance, phosphorylation by the SRPK1,
AURKA, and NEK2 kinases was shown to enhance the splicing
activity of SRSF1 in multiple cancer cell types (18–20). Thus,
deregulated expression of protein kinases represents another
important source of pro-oncogenic splicing alterations.

NEK2 is a mitotic kinase that is frequently upregulated in
human cancers, where it contributes to malignancy and drug
resistance (21–23). Accordingly, high NEK2 expression was
correlated with rapid relapse and poor outcome in multiple
cancers (21), including BC (24). In this regard, NEK2 is
particularly upregulated in TNBC (25), the BC subtype
displaying the poorest prognosis due to high metastatic rate
and lack of targeted therapies (26, 27). Although NEK2
oncogenic activity in cancer has been primarily associated to
the promotion of genome instability and aneuploidy (22, 28–30),
mounting evidence suggests its implication in the pro-tumoral
regulation of alternative splicing. Indeed, NEK2 was shown to
accumulate in the nucleus of cancer cells (18, 21, 31) and to
modulate the activity of splicing factors (18, 32). We recently
reported that NEK2 localizes in the nucleus of TNBC cells and
exerts a widespread impact on the TNBC-specific transcriptome
(25). Part of the splicing changes elicited by NEK2 were mediated
by regulation of the expression of the splicing factor RBFOX2,
which drives a pro-mesenchymal splicing program in TNBC
cells (25). However, a substantial fraction of NEK2-regulated
exons and introns were devoid of RBFOX2 binding motifs,
suggesting that additional molecular mechanisms contribute to
NEK2-mediated splicing regulation in TNBC.

In this study, by searching for additional mediators of NEK2-
dependent splicing regulation, we found that NEK2 interacts
with and phosphorylates the multifunctional RNA binding
protein (RBP) Sam68, thus modulating its splicing activity.
Transcriptome analysis of TNBC cells transiently silenced for
Sam68 identified the splicing targets of this protein in TNBC
Frontiers in Oncology | www.frontiersin.org 2
cells and revealed a common set of exons that are co-regulated by
NEK2, which are enriched in genes related to cell migration.
Sam68 depletion in TNBC cells reduces migration and matrix
invasion and these effects are enhanced by concomitant
inhibition of NEK2 kinase activity. Thus, our study suggests
that Sam68 and NEK2 functionally cooperate in the regulation of
a splicing program that sustains pro-metastatic features of
TNBC cells.
MATERIALS AND METHODS

Cell Culture, Treatment, and Transfection
MDA-MB-231 cells were grown in RPMI 1640 (Lonza), SUM159
cellswere grown inDMEM/F12 (SigmaAldrich), andHEK293Tcells
were grown inDMEM, all supplementedwith 10%FBS, gentamycin,
penicillin, and streptomycin. Plasmid transfection was performed
using Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s instruction. For RNA interference, cells were
transfected with siRNAs (Sigma-Aldrich) using Lipofectamine
RNAiMAX (Invitrogen) according to the manufacturer’s
instructions and harvested 48 h later for protein and RNA analyses.
Sequences of siRNAs are listed in Additional File 1: Supplementary
Table 1. c-MYC targeting siRNAs were previously described (13).

Plasmid Vectors
The expression vector pcDNA3N2Myc-NEK2CWTwas a generous
gift of Prof A. Fry; a catalytically inactive mutant of NEK2C KD
(NEK2K37R) was created by site-directed mutagenesis of
pCDNA3N2myc-NEK2C WT. Mutagenic oligonucleotides were
as follows: forward, 5’AGATATTAGTTTGGAGAGAACTTG
ACTATGGC3’; and reverse, with the underlined codon
corresponding to residue 37 in wild-type NEK2C. Construction of
the pcDNA3N2Myc-NEK2A WT and the kinase-dead inactive
mutant NEK2A KD plasmids was previously described (33). The
sequence of wild-type and mutant NEK2 were confirmed by
sequence analysis. The expression vectors pEGFP NEK2C WT or
KD were sub-cloned from pcDNA3N2Myc into pEGFPc1. pGEX-
3X–NEK2273–444 encoding the regulatory domain of NEK2 fused to
glutathione S-transferase (GST) has been described previously (34).
CD44 minigene was a kind gift of Prof. Matter.

RNA Extraction, Library Preparation,
and RNA-Seq Data Analysis
For RNA-seq analysis, MDA-MB-231 transiently transfected
with control (si-CTRL) or SAM68-targeting (si-SAM68) pool
of siRNA were harvested 48 h after transfection in triplicate and
total RNA was extracted and DNase treated using the RNEasy
mini kit (Qiagen) according to the manufacturer’s instruction.
PolyA plus RNA-seq libraries were constructed according to
Illumina’s protocol and sequenced using a 100-bp single-end
format on an Illumina HiSeq 2000. RNA-Seq data analysis was
performed by GenoSplice technology (www.genosplice.com), as
previously described (25, 35), using Human FAST DB v2016_1
annotations. Results were considered statistically significant for
p-values ≤0.05 and fold-changes ≥1.5.
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Bioinformatic Analysis
Analysis of gene expression of transcriptomic data of TNBC
patients from the “The Cancer Genome Atlas (TCGA)” database
was performed using the UCSC Xena platform (36). Spearman’s
correlation was used to evaluate association between the
expression of NEK2, MYC, and indicated splicing factors. For
gene expression analyses, the patients were divided into two
groups according to the first (NEK2-low) and fourth (NEK2-
high) quartile of NEK2 gene expression. Then, Z-scores of
hnRNPL, PTBP1, and KHDRBS1 gene expression were
calculated in each sample and one-way-ANOVA, with Dunn’s
multiple comparisons test correction, was performed to evaluate
significant differences between the groups (13). Comparison of
enriched motif within NEK2-regulated cassette exons with the
compendium of RNA-binding motif from (37) were performed
using Tomtom Motif comparison tools from the MEME Suite
Collection (RRID:SCR_001783) (38, 39). Gene ontology (GO)
analysis was performed as previously described, using topGO
(RRID:SCR_014798) Bioconductor package, ranking and
analyzing ontologies using the elim method (40).

Extraction of RNA, RT-PCR, and
Real-Time PCR Analysis
RNA extraction, RT-PCR, and real-time PCR analysis were
performed as previously described (25). All primers used are
listed in Additional File 1: Supplementary Table 2.

Protein Extracts, Co-Immunoprecipitation,
and Western Blot Analysis
Total cell extracts were obtained by lysis in 50 mMHEPES, 10mM
MgCl2,100 mM NaCl, 10 mM b-glycerophosphate, 2 mM EGTA,
10% (v/v) glycerol, and 1% (v/v) Triton X-100 for HEK293T and
in RIPA buffer for MDA-MB-231, as described (25, 41). Nuclear
extracts from MDA-MB-231 cells for co-immunoprecipitation
were obtained as described (42). Briefly, cells were lysed in 10
mM Hepes, pH 7.9, 1.5 mM MgCl2, 10 mM KCl, 1 mM DTT,
phosphatase, and protease inhibitors and incubated on ice for
15 min. Next, following addition of NP-40 to a final concentration
of 0.6%, cells were vortexed for 10 s and centrifuged 5 min at
16,000 g at 4°C. Supernatant was collected as cytoplasmic extract,
and the nuclear pellet was lysed in 20 mMHEPES, pH 7.9, 15 mM
MgCl2, 0.42 M KCl, 0.2 mM EDTA, and 25% (v/v) glycerol and
agitated for 30 min at 4°C. After centrifugation for 10 min at
16,000 g at 4°C, supernatant was collected as nuclear fraction.
Lysates were diluted with 20 mM HEPES, pH 7.9, 15 mM MgCl2,
0.2 mM EDTA, and 25% (v/v) glycerol and incubated overnight at
4°C with NEK2 antibody (Santa Cruz, RRID:AB_1126558) or
control mouse IgG. Protein-G magnetic beads (Dynabeads,
Invitrogen) were added and the sample was incubated at 4°C for
3 h. Beads were washed five times with 20 mMHEPES, pH 7.9, 15
mMMgCl2, 120 mM KCl, 0.2 mM EDTA, and 25% (v/v) glycerol,
denatured with SDS-sample buffer, and analyzed by SDS-PAGE.
Western blot was performed as previously described (18, 25, 35).
Nuclear extracts and immunoprecipitation from HEK293T cells
were obtained as previously described (43), using either anti-
FLAG antibody (Sigma Aldrich, RRID:AB_259529) or control
Frontiers in Oncology | www.frontiersin.org 3
mouse IgG. Western blot analysis was carried out using the
following primary antibodies: anti-NEK2 (Santa Cruz, RRID:
AB_1126558), anti-ACTIN (Santa Cruz, RRID:AB_2714189),
anti-MYC epitope (Santa Cruz, RRID:AB_2857941), anti-MYC
(Cell Signaling, RRID:AB_2151827), anti-GAPDH (1:1000 RRID:
AB_627679), anti-HSP90 (Santa Cruz, RRID:AB_675659), anti-
hnRNPL (Sigma Aldrich, RRID: AB_261966), anti-FLAG (Sigma
Aldrich, RRID:AB_259529), rabbit anti-SAM68 (Santa Cruz,
RRID:AB_631869), anti-GFP (Santa Cruz, RRID:AB_627695),
anti-ERK2 (Santa Cruz, RRID:AB_2141292), and goat anti-
PTBP1 (Santa Cruz, RRID:AB_2253470).

Immunokinase Assays
Anti-MYC antibody (1 µg) (Santa Cruz, RRID:AB_2857941) was
incubated for 1 h, with a mixture of protein A/G-Sepharose
beads (Sigma-Aldrich) in PBS/0.05% BSA, under constant
shaking at 4°C. At the end of the incubation, the beads were
washed twice with PBS/0.05% BSA, twice with lysis buffer, and
then incubated for 90 min at 4°C with the HEK293T cell extracts
(0.5 mg of protein) under constant shaking. Sepharose bead-
bound immunocomplexes were rinsed three times with lysis
buffer and washed twice with NEK2-kinase buffer (50 mM
HEPES, pH 7.5, 5 mM glycerophosphate, 5 mM MnCl2, 5 mM
NaF, 0.1 mM sodium orthovanadate, 1 mM DTT, and protease
inhibitors). Kinase reactions were carried out in 50 µl for 20 min
at 30°C in kinase buffer supplemented with 10 µM [32P]-ATP
(0.2 µCi/µl), 4 µM ATP, 1 µg of cAMP-dependent protein kinase
inhibitor, and the appropriate substrate (GST-Sam68 N-term or
C-term). Reactions were stopped by adding SDS-sample buffer
and analyzed by SDS-PAGE and autoradiography.

Wound-Healing and Cell-Invasion Assays
Control or SAM68 silenced MDA-MB-231 were seeded at 100%
of confluence into ibidi Culture inserts to create a cell-free gap on
the dish. Following two washes with PBS and addition of 1% FBS
supplemented medium, inserts were removed and the plate was
photographed immediately and every hour for 12 h. Area
quantification of the gap was performed with ImageJ software
using the MRI Wound Healing tool. For cell invasion assay,
MDA-MB-231 cells were seeded into the IncuCyte Clearview 96-
well inserts (Sartorius; 1,000 cells/well). Insert membrane had
been pre-coated on both sides with 50 mg/ml Matrigel (Corning),
diluted in RPMI 1640. Lower chambers were filled with 200 ml of
either chemotaxis assay medium (RPMI 1640, supplemented
with 10% FBS) or negative control medium (RPMI 1640, without
FBS). Images were acquired with IncuCyte SX5 Live-content
imaging system every hour for 24 h at 10× magnification.
Migrated cells were quantified using the IncuCyte Chemiotaxis
migration software (phase-contrast; top/bottom), starting 2 h
after initial seeding to allow settlement of cells. In both assays,
NEK2-chemical inhibition was achieved by treatment with 3 µM
JH295 (44).

Quantification and Statistical Analysis
Statistical analyses for qPCR, densitometric analysis of PCR, and
migration and invasion assays were performed in GraphPad
Prism (RRID:SCR_002798) according to the statistical tests
April 2022 | Volume 12 | Article 880654
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described in the figure legends. Number of replicates
independently analyzed is indicated by the “n” in each figure
legend. Results were considered significant if p-value ≤ 0.05.
RESULTS

NEK2 Interacts With Splicing Factors in
TNBC Cells
We recently found that NEK2 exerts widespread modulation of
the alternative splicing program of MDA-MB-231 (GSE140803), a
cell line representative of the TNBC subtype (25). A substantial
fraction of the NEK2-regulated splicing events were dependent on
the ability of the kinase to promote the expression of RBFOX2
(25), a splicing factor involved in the regulation of the epithelial-
to-mesenchymal transition (EMT) process (25). However, other
exons regulated by NEK2 lacked binding sites for RBFOX2 and
were likely regulated by other splicing factors in TNBC cells.
Frontiers in Oncology | www.frontiersin.org 4
Moreover, NEK2 shows an increased localization in the
nucleoplasm and chromatin-bound fraction of TNBC cells,
suggesting that it might also physically interact with splicing
factors and regulate their activity. To test this hypothesis, we
searched for splicing factors that can bind the 5 sequence motifs
enriched in the NEK2-regulated cassette exons (25).
Computational analyses using the Tomtom Motif comparison
tool (38, 39) identified 14 splicing factors that might bind to these
sequence motifs (Figure 1A), including the already characterized
RBFOX2 (25). Next, to evaluate which of these factors could
functionally interact with NEK2 in TNBC, we assessed whether
they are co-expressed with NEK2 in primary tumors. Query of
transcriptomics data from TNBC tumors deposited in The Cancer
Genome Atlas (TCGA) database (45) revealed that expression of
hnRNPL, PTBP1 (also known as hnRNP I), and KHDRBS1 (also
known as Sam68) exhibit the highest and most significant positive
correlation with NEK2 expression (Figure 1B). Expression of
A1CF, KHDRSB3, and hnRNPLL was also positively correlated
A B

DC

FIGURE 1 | NEK2 is co-expressed and interacts with select splicing factors in TNBC. (A) Table showing motifs enriched in sequences of NEK2-regulated cassette
exons in MDA-MB-231 cells (GSE140803) and their putative cognate RNA-binding proteins (RBP), identified by the Tomtom motif comparison tool. Only significant results
retrieved by the tool are shown (p-value ≤ 0.05). (B) Heatmap showing expression levels of NEK2 and indicated RBP in primary triple-negative breast cancer (TNBC),
according to analysis of transcriptomic data of TCGA project using the UCSC Xena platform. Spearman correlation factors and p-value between the expression levels of
NEK2 and every RBP are indicated in the table below the heatmap. (C) Expression profile for indicated RBP according to TCGA transcriptomic data of TNBC patients,
classified according to Z-score normalization in NEK2-low (blue points) and NEK2-high (red points) expressing groups. Mean and ± SD are shown in the dot plot.
Statistical significance was calculated by one-way ANOVA, with Dunn’s multiple comparisons test, ***p < 0.001, ****p < 0.0001. (D) Western blot analysis for indicated
RBPs for co-immunoprecipitation assay of NEK2 and control IgG in nuclear extracts from MDA-MB-231 cells. * marks IgG used for immunoprecipitation.
April 2022 | Volume 12 | Article 880654
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with that of NEK2, albeit to a lesser extent, whereas RBMS3
expression was negatively correlated (Figure 1B). On the other
hand, expression of MBNL1, QKI, RBM24, KHDRSB2, RBM42,
and RBM6 was not correlated with that of NEK2 (Figure 1B).
Furthermore, Z-score classification of patients for low and high
expression of NEK2 confirmed that hnRNPL, PTBP1, and
KHDRBS1 levels are significantly higher in the NEK2-high
group compared to the NEK2-low group (Figure 1C).
Importantly, co-immunoprecipitation experiments using nuclear
extracts from MDA-MB-231 revealed that NEK2 physically
interacts with hnRNPL, PTBP1, and KHDRBS1 proteins
(Figure 1D), whereas no interaction was detected for an
uncorrelated factor like QKI (Supplementary Figure 1A). These
findings indicate that the interaction of NEK2 with specific
splicing factors could be functionally relevant to modulate the
splicing signature of TNBC cells.

Oncogenic Transcription Factor MYC
Drives NEK2 Expression in TNBC
Increased nuclear localization of NEK2 in TNBC is driven by its
higher expression levels compared to other BC subtypes (25).
Since we identified splicing factors that are co-expressed and
interact with NEK2 in this tumor subtype, we asked if a common
transcription factor could promote their expression. In
particular, we focused our attention on the proto-oncogenic
transcription factor c-MYC, which is overexpressed in TNBC
compared to other BC subtypes (Supplementary Figure 1B)
(46) and was shown to drive transcription of bothNEK2 (32) and
its putative cofactors PTBP1 (12) and KHDRBS1 (13) in other
tumoral context. Analysis of expression data in the TCGA
database revealed a significant upregulation of hnRNPL,
PTBP1, and KHDRBS1 expression in TNBC compared to other
BC subtypes (Figure 2A) as previously reported for NEK2 (25).
In addition, we observed that MYC expression was positively
correlated with the expression of NEK2 (Figure 2B) and of its
putative co-factors hnRNPL, PTBP1, and KHDRBS1 (Figure 2C).
By contrast, no significant correlation was observed between
MYC and QKI expression (Supplementary Figure 1C), whose
expression is not correlated with NEK2 (Figure 1B). These
observations suggest that c-MYC could coordinate the
expression of NEK2 and its interacting splicing factors in
TNBC. To test this hypothesis, we asked whether c-MYC
silencing affects the expression of these proteins in TNBC cells.
Western blot analyses of extracts from MDA-MB-231 and
SUM159 transiently transfected with two different c-MYC
siRNAs revealed that c-MYC depletion reduced the expression
of NEK2, hnRNPL, PTBP1, and KHDRBS1 in both TNBC cell
lines (Figure 2D). Collectively, these observations suggest that c-
MYC overexpression sustains the concomitant expression of
NEK2 and select splicing factors in TNBC cells, thereby
favoring their interaction.

Sam68 Is a Direct Substrate of
NEK2 Kinase
To functionally test the interaction between NEK2 and splicing
factors in TNBC, we focused on KHDRBS1, hereafter named
Frontiers in Oncology | www.frontiersin.org 5
Sam68 (Figure 3A), because its activity is extensively modulated
by phosphorylation (43, 47–50). Moreover, Sam68 was more
dependent on MYC expression than hnRNPL and PTBP1 in
both TNBC cell lines tested (Figure 2D). First, we confirmed
the physical interaction between the proteins by co-
immunoprecipitation of transiently transfected FLAG-Sam68
and GFP-NEK2 in HEK293T cells (Supplementary Figure 2).
Next, we performed in vitro kinase assays in the presence of
labeled ATP ([g-32P]ATP) using purified recombinant NEK2
and GST-Sam68. NEK2 readily phosphorylated GST-Sam68, to a
similar extent of its known substrate GST-SRSF1 (18), whereas
GST alone was not phosphorylated under the assay conditions
(Figure 3B). Sam68 comprises an hnRNP K homology (KH)
RNA binding motif flanked by the QUA1 and QUA2 motifs,
which form the GRP33/Sam68/GLD1 (GSG) domain required
for dimerization and high affinity RNA binding, and regulatory
regions at the N and C terminus that contain sites for protein–
protein interactions and post-translational modifications
(Figure 3A) (47, 48, 51). NEK2 phosphorylates with high
efficiency the N-terminal and C-terminal regulatory regions of
Sam68, whereas the GSG domain was barely phosphorylated
(Figure 3C). Moreover, in vitro kinase assays using wild type
(WT) or kinase-dead (KD) NEK2 immunoprecipitated from
transfected HEK293T cells confirmed that the enzymatic
activity of NEK2 was directly responsible for phosphorylation
of the regulatory regions of Sam68 (Figures 3D, E).

Next, we asked if NEK2 phosphorylates Sam68 also in live
cells. To this end, HEK293T cells were transfected with plasmids
encoding MYC-Sam68 and either WT or KD versions of MYC-
tagged NEK2A and GFP-tagged NEK2C, a splice variant of the
kinase that is predominantly localized in the nucleus like Sam68
(52). Upon treatment with the protein phosphatase 1 (PP1) and
2A (PP2A) inhibitor Okadaic Acid (OA) to elicit NEK2
activation (33), NEK2 induced a shift in the electrophoretic
mobility of Sam68 (Figure 3F), which is a hallmark of its
phosphorylation in serine/threonine residues (49). Notably, the
slower migrating form of Sam68 was observed only in cells co-
transfected withWTNEK2, but not with the catalytically inactive
KD mutant. Furthermore, NEK2C displayed higher ability to
induce Sam68 phosphorylation, further supporting a functional
interaction in the nucleus between the proteins. These results
identify Sam68 as a novel substrate of NEK2.
NEK2-Mediated Phosphorylation
Modulates Sam68 Splicing Activity
Serine/threonine phosphorylation by the mitogen activated
protein kinases (MAPKs) was shown to regulate the splicing
activity of Sam68 (16, 49, 50, 53). To investigate whether NEK2-
dependent phosphorylation also affects Sam68 activity, we
employed a reporter minigene that recapitulates the splicing
regulation of the CD44 v5 exon (pET-V5 minigene) (Figure 4A),
which is a target of Sam68 and is sensitive to its activation by
serine/threonine phosphorylation (49, 54). HEK293T cells were
co-transfected with plasmids encoding the pET-V5 minigene,
MYC-Sam68, and GFP-NEK2C. As expected, sub-optimal
April 2022 | Volume 12 | Article 880654
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amounts of MYC-Sam68 promoted the inclusion of CD44
variable exon v5 (Figure 4B; lane 2). Co-expression of NEK2C
significantly enhanced this effect, leading to an almost doubled
inclusion of the v5 exon with respect to cells transfected with
Sam68 alone (Figure 4B; lane 3). Furthermore, upregulation of
NEK2C alone, but not of its cognate KDmutant, was sufficient to
promote exon v5 inclusion (Figure 4C), suggesting that it might
affect the splicing activity of the endogenous Sam68 protein.
These results indicate that NEK2-dependent phosphorylation of
Frontiers in Oncology | www.frontiersin.org 6
Sam68 modulates its splicing activity and that their physical
interaction might be functionally relevant in TNBC cells.

Sam68 Modulates TNBC Cell
Transcriptome
Sam68 is upregulated in breast tumors compared to normal
tissue and promotes BC cell proliferation (55). However,
although the oncogenic function of Sam68 has been often
related to its splicing activity (47, 50, 53), genome-wide
A B

C

D

FIGURE 2 | C-MYC regulates the expression of NEK2 in TNBC cells. (A) Dot-blot showing expression levels of indicated RNA-binding proteins (RBP) in primary
triple-negative breast cancer (TNBC) and other breast cancer (Other BC) subtypes, according to analysis of transcriptomic data of TCGA project using the UCSC
Xena platform. Mean and ± SD are shown in the dot plot. Statistical significance was calculated by Welch’s t-test. (B, C) Scatter plots of RNA expression levels of
MYC and NEK2 (B) or MYC and hnRNPL, PTBP1, and KHDRBS1 (C) in primary TNBC according to TCGA data. Spearman’s correlation coefficient (r) and
associated p-value are shown. (D) Representative Western blot analysis for MYC, NEK2, hnRNPL, PTBP1, and KHDRBS1 expression levels in MDA-MB-231 (left
panel) and SUM159 (right panel) cells, transiently transfected with indicated siRNAs. ACTIN was evaluated as loading control.
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characterization of its splicing targets in BCs or other cancer
types is still lacking. To elucidate the splicing signature regulated
by Sam68 in TNBC cells, we carried out RNA-sequencing (RNA-
seq) analyses of MDA-MB-231 cells that were transiently
depleted of Sam68 (Figure 5A). Bioinformatics analyses using
the reference FAST-DB database (25, 35, 41), revealed a large
modulation of the TNBC cell transcriptome by Sam68, with 443
genes regulated at splicing level and 474 at gene expression level
upon its depletion (Figure 5B; Supplementary Figure 3A;
Frontiers in Oncology | www.frontiersin.org 7
Additional File 2: Supplementary Tables 1, 2). More than half
of the 597 regulated exons (54,7%) are upregulated in Sam68-
depleted cells, suggesting that Sam68 preferentially functions as a
splicing repressor in TNBC cells. Classification of the regulated
splicing events revealed that exon cassettes (18.4%) and
alternative terminal exons (16.1%) are the most regulated
patterns (Figure 5C). Importantly, RT-PCR analysis of 16 of
these splicing events using an independent set of control and
Sam68-depleted MDA-MB-231 cells confirmed the RNA-seq
A

B D
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F

C

FIGURE 3 | NEK2 phosphorylates SAM68 in vitro. (A) Schematic representation of protein domain in human full-length SAM68 protein. (B) Representative
autoradiography for NEK2 kinase assay, performed by incubating an active purified-NEK2 protein with recombinant GST and a full-length SAM68 and SRSF1 as
substrates. Coomassie staining was performed as loading control. Rounded tip arrows indicate auto-phosphorylated NEK2. (C) Representative autoradiography and
Coomassie staining for a kinase assay performed by incubating an active purified-NEK2 recombinant GST N-terminal, GSG domain or C-terminal of SAM68 as
substrates. (D, E) Representative Western blot analysis (D) and autoradiography (E) for immunokinase assay, performed by incubating immunoprecipitated wild-type
NEK2 (WT) or kinase-dead NEK2 (KD) with recombinant N-terminal or C-terminal GST-Sam68 as substrate. (F) Western blot analysis for MYC-Sam68 protein in total
extracts from HEK293T cells transfected with expression vectors for GFP-tagged NEK2C wild-type (WT) or kinase-dead (KD), or with MYC-tagged NEK2A variant
WT or KD. Tag-specific antibodies were used for recombinant NEK2 detection. ERK2 was evaluated as loading control. Activation of NEK2 was obtained by treating
cells with 0.1 mM OA for the last 3 h before collection. * marks the molecular weight shift in SAM68 protein elicited by OA-mediated activation of WT NEK2C (left
panel) and WT NEK2A (right panel).
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results (Figure 5D; Supplementary Figure 3B), thus validating
the reliability of the bioinformatics analyses. These results show
that Sam68 significantly contributes to the splicing signature of
TNBC cells.

Sam68 and NEK2 Co-Regulate Alternative
Splicing Events in TNBC Cells
Next, we asked whether NEK2 modulates the splicing activity of
the endogenous Sam68 in TNBC cells. To this end, we compared
the splicing signatures of Sam68-silenced (Figures 5B, C) and
NEK2-silenced MDA-MB-231 cells (25). We found a significant
overlap between the two datasets, with 95 alternative splicing
events that are commonly regulated by Sam68 and NEK2
depletion (Figure 6A). Annotation of these events revealed that
most of themwere modulated in the same direction by silencing of
Frontiers in Oncology | www.frontiersin.org 8
either Sam68 or NEK2 (Figure 6B). Nearly half of the splice
variants commonly regulated by Sam68 and NEK2 were novel
transcripts originating from either unannotated splicing events or
selection of an alternative transcription start site, while alternative
last exon and exon cassette were the predominant splicing patterns
among the remaining events (Figure 6C). RT-PCR analysis using
RNA from an independent set of samples confirmed that
depletion of Sam68 or NEK2 regulated a common pattern of
splicing in three of these genes (ASPH,MAPK9, and TBC1D23) in
MDA-MB-231 cells (Figures 6D, E). Furthermore, RT-PCR
analyses revealed that additional Sam68 target exons, like those
in ALCAM, CD44, GULP1, and UGGT2 genes, were also sensitive
to NEK2 depletion in MDA-MB-231 (Figure 6F), even though
they were not highlighted by the bioinformatics analysis (25).
These results indicate that Sam68 and NEK2 share common
A

B C

FIGURE 4 | NEK2 phosphorylates Sam68 in vivo and modulates its splicing activity. (A) Schematic representation of the CD44 pETV5 minigene. Alternative exon v5
of the CD44 gene was cloned between two constitutive cassette exons insulin exons 2 and 3. (B, C) Representative PCR and Western blot analysis for HEK293T
cells transfected with the CD44 pETV5 minigene and expression vectors for MYC-tagged SAM68 and GFP-tagged NEK2C wild-type (WT) or kinase-dead (KD).
Western blot analysis for ERK2 was used as loading control. Densitometric analyses for all experiment were performed and ratio between CD44 (+V5) and CD44
(-V5) is represented by histogram bars (mean ± SD, n = 3; t-test *p < 0.05, **p < 0.01).
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splicing targets in TNBC cells and further suggest their functional
interaction in splicing regulation in this tumor type.

Sam68 and NEK2 Cooperate in the
Regulation of TNBC Cell Migration and
Matrix Invasion
GO analysis of the Sam68 splicing-regulated genes highlighted a
significant enrichment for terms related to biological processes
involved in cell adhesion and migration (Figure 7A). Moreover,
genes related to the wound-healing process were enriched among
the common targets of Sam68 and NEK2 (Supplementary
Figure 4). These process are frequently deregulated in TNBC
and contribute to their aggressive and metastatic phenotype (27,
56). Thus, we asked if Sam68 ablation could affect these pro-
metastatic functions. Wound-healing and matrigel-invasion
Frontiers in Oncology | www.frontiersin.org 9
assays revealed that Sam68 depletion caused a significant
impairment of the migratory and invasive properties of MDA-
MB-231 cells (Figures 7B–D). Notably, we also found that the
effects elicited by Sam68 knockdown were worsened by
concomitant treatment of MDA-MB-231 cells with JH295, an
irreversible inhibitor of NEK2-kinase activity (Figures 7B–D)
(44). Collectively, these observations indicate that the functional
interaction with NEK2 potentiates the splicing activity of Sam68
and enhances the motility and invasive properties of TNBC cells.
DISCUSSION

Alternative splicing dysregulation is a common trait of human
cancers, which affects multiple cellular processes in the course of
A B

D

C

FIGURE 5 | Sam68 regulates alternative splicing in TNBC cells. (A) Representative Western blot analysis assessing SAM68 silencing efficiency expression in MDA-
MB-231 cells transiently transfected with indicated pool of siRNAs. ACTIN was evaluated as loading control. (B) Pie chart showing percentage of upregulated (red)
and downregulated (green) exons in the si-SAM68 vs. si-CTRL comparison. (C) Pie chart showing percentages of indicated different splicing pattern among
regulated splicing events in the si-SAM68 vs. si-CTRL comparison. (D) Representative PCR analysis for indicated alternative splicing events in si-SAM68 vs. si-CTRL
MDA-MB-231 cells. Schematic representation for each event analyzed is depicted below relative agarose gels. Green and red boxes indicate down- and upregulated
exons in si-SAM68 vs. si-CTRL cells. Percentage of splicing inclusion (PSI) of indicated exons was evaluated by densitometric analysis, and results are shown below
agarose gels (mean ± SD, n = 3, t-test).
April 2022 | Volume 12 | Article 880654

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Naro et al. Sam68 and NEK2 in TNBC
tumorigenesis (2, 3, 17). Thus, characterization of the molecular
mechanisms underlying aberrant splicing offers the opportunity
to identify new targets for cancer therapy. This issue is
particularly interesting for TNBC, as these tumors currently
lack targeted and efficacious therapies, but features a specific
splicing signature (8, 10, 25). In this regard, targeting either the
expression of specific splicing factors or inhibiting the
spliceosome activity was shown to selectively halt TNBC cell
proliferation (57). We have previously reported that the mitotic
Frontiers in Oncology | www.frontiersin.org 10
kinase NEK2 is upregulated in TNBC with respect to other BC
types and promotes a specific pro-mesenchymal splicing program
that confers metastatic features to TNBC (25). Herein, we found
that NEK2 interacts with select splicing factors in TNBC cells and,
as indicated by its functional interaction with Sam68, could
enhance their splicing activity and oncogenic functions.

NEK2 is highly expressed in primary TNBC along with
Sam68, hnRNPL, and PTPBP1, whose cognate binding motifs
are enriched in NEK2-sensitive cassette exons and physically
A B

D

E

F

C

FIGURE 6 | Sam68 and NEK2 co-regulates AS in TNBC cells. (A) Venn diagram showing the overlap between regulated alternative exons in MDA-MB-231 cell
silenced for either SAM68 (this study) or NEK2 (GSE140803). (B) Bar graph showing the number of splicing events either divergently (gray bar) or commonly
upregulated (red bar) or downregulated (green bar) in si-SAM68 and si-NEK2 MDA-MB-231 cells compared to control. (C) Pie chart showing percentages of
indicated splicing patterns among the common splicing events regulated in the si-SAM68/si-NEK2 vs. si-CTRL comparison. (D) Representative Western blot analysis
assessing SAM68 and NEK2 silencing efficiency in MDA-MB-231 cells transiently transfected with indicated pool of siRNAs. HSP90 was evaluated as loading
control. (E, F) Representative PCR analysis for indicated alternative splicing events in si-CTRL, si-SAM68, and si-NEK2 MDA-MB-231 cells. Schematic representation
for each event analyzed is depicted besides relative agarose gels. Green and red boxes indicate commonly down- and upregulated exons in si-SAM68/si-NEK2 vs.
si-CTRL cells. Bar graphs below each agarose gel represent percentage of splicing inclusion (PSI), evaluated by densitometric analysis (mean ± SD, n = 3, one-way
ANOVA, *p < 0.05, **p < 0.01).
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interact with this kinase. Moreover, knockdown of Sam68 (this
study) and hnRNPL (25) partially recapitulated the splicing
changes observed in TNBC cells depleted of NEK2, suggesting
that this kinase modulates splicing through functional
Frontiers in Oncology | www.frontiersin.org 11
interaction with splicing factors in TNBC cells. We also found
that expression of NEK2 and its interacting splicing factors in
primary TNBC correlates with that of MYC, suggesting that this
transcription factor coordinates a splicing network that
A

B

DC

FIGURE 7 | Sam68 and NEK2 co-regulate cell migration in TNBC cells. (A) Gene ontology analysis of biological process of AS regulated genes in the comparison
between control and Sam68 silenced MDA-MB-231 cells (p-value ≤ 0.05). (B) Representative micrograph images, at the initial time point (t0) and 12 h later (t12) of the
wound-healing assay performed on control (si-CTRL) or SAM68 silenced (si-SAM68) MDA-MB-231 cells, treated or not with the NEK2 inhibitor (NEK2i) JH295 [3 µM]. (C)
Line graph showing the percentage of wound closure of si-CTRL and si-SAM68 MDA-MB-231 cells, treated or not with NEK2i (mean ± SD, n = 6, *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001, ns = not significant, two-way ANOVA, colors indicate the growth condition to whom si-CTRL cells were compared in the statistical analysis).
(D) Line graph showing the number of si-CTRL and si-SAM68 MDA-MB-231 cells, treated or not with NEK2i, invading Matrigel-coated transwell of the IncuCyte
Clearview 96-well insert system. Number of invading cells on the bottom side of the insert at every hour was normalized to the initial number of cells on the top of the
insert at initial seeding (mean ± SD, n = 6, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns= not significant, two-way ANOVA, colors indicate the growth condition
to whom si-CTRL cells were compared in the statistical analysis).
April 2022 | Volume 12 | Article 880654

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Naro et al. Sam68 and NEK2 in TNBC
contributes to the TNBC-specific splicing signature. In support of
this hypothesis, MYC depletion in representative TNBC cell lines
caused reduced expression of NEK2, Sam68, hnRNPL, and PTBP1
proteins. MYC is a powerful oncogene and is highly expressed in
TNBC compared to other BCs (46). Moreover, MYC upregulation
was shown to impose a transcriptional stress to cancer cells that
increases their dependency on the proper functionality of the
splicing machinery (58). Thus, it is tempting to speculate that
coordination of the expression of NEK2 and its interacting splicing
factors represents a pro-survival mechanism that is selected in
MYC-driven TNBC to cope with such transcriptional/splicing
stress. In this view, targeting NEK2 expression and/or activity
could represent a therapeutic vulnerability for MYC-driven
TNBC, as previously shown for inhibition of the spliceosome
(58). Remarkably, MYC regulates transcription of other splicing
factors (SRSF1 and hnRNPA1) that interact with and are regulated
by NEK2 in other tumoral contexts (12, 14, 18, 32). Thus, NEK2
inhibition could represent an exploitable vulnerability also for
other types of MYC-driven tumors.

Sam68 is a multifunctional RBP, whose splicing activity exerts a
pivotal role for the proper differentiation of neuronal and germ cells
(35, 59, 60). Notably, although several studies have shown the
oncogenic activity of Sam68 in different human cancers (47, 48), a
global analysis of the regulation exerted by this protein on the
human transcriptome was still lacking. Herein, genome-wide RNA-
seq analysis identified hundreds of splicing events modulated by
Sam68 depletion in TNBC cells. Similarly to previous observations
in Sam68 knockout mice (35, 59), exon cassettes and alternative
terminal exons were the most affected splicing patterns in MDA-
MB-231 cells. Of note, functional annotation of the splicing-
regulated genes revealed enrichment for terms relative to
neuronal and muscular development, as well as to meiosis, all
biological processes that are impaired in Sam68 knockout mice (35,
59–62). These observations are suggestive of an evolutionary
conserved splicing program regulated by Sam68, which is
hijacked by cancer cells to sustain oncogenic transformation.

Serine/threonine phosphorylation is one of the major post-
translational modifications shown to promote the pro-oncogenic
splicing activity of Sam68 (49, 50, 53, 63). Most of these studies
identified the MAPK/ERK pathway as responsible for Sam68
phosphorylation and activation (49, 50, 53, 63). By identifying
Sam68 as a binding partner and direct substrate of NEK2, we
provide evidence for an additional cellular pathway modulating
Sam68 phosphorylation and oncogenic splicing activity.
Interestingly, activation of the MAPK pathway was shown to
promote NEK2 activity in male germ cells (34), suggesting the
possible synergy between these kinases in the regulation of Sam68
activity. Given the ubiquitous expression of Sam68 and NEK2 and
their frequent upregulation in different cancer types (48, 64), their
interaction is likely functional also in other tumors. Thus, our
study reveals a new regulatory mechanism of Sam68 function,
which adds to the various post-translational modifications, such as
tyrosine phosphorylation (43) and acetylation (65), and
interactions with regulatory partners, such as the transcriptional
cofactors SND1 (54) and FBI-1 (66), that modulate its splicing
activity in cancer cells, including TNBC cells.
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Our studies have also identified a large number of splice variants
regulated by Sam68 and NEK2 that are possibly implicated in the
regulation of cancer cell motility and invasiveness. Moreover,
combined inhibition of Sam68 expression and NEK2 activity
cooperated to suppress TNBC cell migration and matrix invasion,
suggesting that modulation of the identified splicing program is
functionally relevant. Collectively, these results support the key
oncogenic role of NEK2 and suggest that NEK2 targeting
approaches represent promising therapeutic tools for TNBC
treatment, whose efficacy could be amplified by co-targeting the
vulnerability induced by splicing dysregulation in cancer cells.
DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in the online
repository: GEO database. accession number: GSE140754.
AUTHOR CONTRIBUTIONS

CN, FB, MP, and CS contributed to conception and design of the
study. CN and CS wrote the manuscript. CN, FB, CC, MM, VP,
SA, and MP performed the experiments, and analyzed and
interpreted data. All authors contributed to manuscript
revision, read, and approved the submitted version.
FUNDING

VP was supported by a fellowship from the Associazione Italiana
Ricerca sul Cancro (23938). This work was supported by grants
from the Associazione Italiana Ricerca sul Cancro (IG23416 and
MFAG21899) and Breast Cancer Now (Catalyst Grant n.
2018NovPCC1283). Università Cattolica del Sacro Cuore
contributed to the funding of this research project and
its publication.
ACKNOWLEDGMENTS

We thank all current and past members of our laboratory for
fruitful discussion and helpful suggestions throughout this work
and Dr. Diletta Schito for technical assistance. We gratefully
acknowledge Professor J. Stevenin for the purification of SR
proteins. We wish to thank Dr. Pierre de la Grange (Genosplice,
Paris) for RNA-seq analyses and bioinformatics support.
SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fonc.2022.880654/
full#supplementary-material
April 2022 | Volume 12 | Article 880654

https://www.frontiersin.org/articles/10.3389/fonc.2022.880654/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.880654/full#supplementary-material
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Naro et al. Sam68 and NEK2 in TNBC
REFERENCES

1. Ule J, Blencowe BJ. Alternative Splicing Regulatory Networks: Functions,
Mechanisms, and Evolution. Mol Cell (2019) 76:329–45. doi: 10.1016/
j.molcel.2019.09.017
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