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Abstract

SU5416 was originally designed as a potent and selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-
2) for cancer therapy. In this study, we have found for the first time that SU5416 unexpectedly prevented 1-methyl-4-
phenylpyridinium ion (MPP+)-induced neuronal apoptosis in cerebellar granule neurons, and decreased 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons and impairment of swimming behavior in
zebrafish in a concentration-dependent manner. However, VEGFR-2 kinase inhibitor II, another specific VEGFR-2 inhibitor,
failed to reverse neurotoxicity at the concentration exhibiting anti-angiogenic activity, strongly suggesting that the
neuroprotective effect of SU5416 is independent from its anti-angiogenic action. SU5416 potently reversed MPP+-increased
intracellular nitric oxide level with an efficacy similar to 7-nitroindazole, a specific neuronal nitric oxide synthase (nNOS)
inhibitor. Western blotting analysis showed that SU5416 reduced the elevation of nNOS protein expression induced by
MPP+. Furthermore, SU5416 directly inhibited the enzyme activity of rat cerebellum nNOS with an IC50 value of 22.7 mM. In
addition, knock-down of nNOS expression using short hairpin RNA (shRNA) abolished the neuroprotective effects of SU5416
against MPP+-induced neuronal loss. Our results strongly demonstrate that SU5416 might exert its unexpected
neuroprotective effects by concurrently reducing nNOS protein expression and directly inhibiting nNOS enzyme activity.
In view of the capability of SU5416 to cross the blood-brain barrier and the safety for human use, our findings further
indicate that SU5416 might be a novel drug candidate for neurodegenerative disorders, particularly those associated with
NO-mediated neurotoxicity.
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Introduction

SU5416 (Semaxanib) was originally designed as a potent and

selective inhibitor of vascular endothelial growth factor receptor-2

(VEGFR-2) for cancer therapy [1]. It occupies the ATP binding

site of VEGFR-2, and thereby abolishes vascular endothelial

growth factor (VEGF) signaling [1]. In the pre-clinical studies,

SU5416 inhibits VEGF-dependent angiogenesis both in vitro and in

vivo [2]. As the first VEGFR-2 inhibitor evaluated in clinical trial,

SU5416 is well tolerated even at the concentration of 145 mg/m2

in patients with advanced malignancies in phase I clinical study

[3]. It was found that SU5416 and 5-fluorouracil-leucovorin in

combination showed better efficacy than standard 5-fluorouracil-

leucovorin therapy in the pilot phase I/II study [4]. Nevertheless,

test on this drug was discontinued for there were no significant

clinical benefits in a randomized phase III trial [5]. Notably,

SU5416 could be rapidly distributed to all organs, and accumu-

lated in orthotopically implanted central nerve system (CNS)

tumor model and in patients with refractory pediatric CNS

tumors, suggesting that SU5416 could be delivered to the CNS by

passing through the blood-brain barrier [6].

Parkinson’s disease (PD) is the second most common

neurodegenerative disorder among the elderly worldwide

[7,8,9]. Although the etiology of PD remains largely unknown,

overproduction of nitric oxide (NO) is considered as a causative

factor for the loss of dopaminergic neurons [10]. High levels of

neuronal nitric oxide synthase (nNOS) are found in the

nigrostriatal regions and basal ganglia of post-mortem PD

brains and animals treated with 1-methyl-4-phenyl-1,2,3,6-
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tetrahydropyridine (MPTP), a PD-inducing neurotoxin [11]. On

the other hand, transgenic mice that lack the nNOS gene are

more resistant to MPTP than wild-type mice [12]. Selective

nNOS inhibitors produce neuroprotective effects against MPTP

both in vitro and in vivo. These results suggest that nNOS

inhibitors might have therapeutic potential in the treatment of

PD [10,13,14,15].

Zebrafish serves as a good animal model to screen neuropro-

tective drugs [16,17]. MPTP could induce the loss of dopaminer-

gic neurons, decrease tyrosine hydroxylase expression in the

posterior tuberculum of the ventral diencephalon, and subse-

quently impair motor behavior in zebrafish [17]. In this study, we

first evaluated the neuroprotective activity of SU5416 against 1-

methyl-4-phenylpyridinium ion (MPP+), the active metabolite of

MPTP, induced neuronal death in primary cerebellar granule

neurons (CGNs) and MPTP-induced dopaminergic neuronal loss

and locomotion behavior impairment in zebrafish. We further

demonstrated that SU5416 might exhibit neuroprotective effects

by reducing nNOS expression and directly inhibiting nNOS

activity rather than by suppressing angiogenesis as previously

reported. The neuroprotective effect of SU5416 was also

confirmed by experiments using short hairpin RNA (shRNA)

knock-down of the NOS proteins in PC12 cells.

Materials and Methods

Ethics Statement of Animal Experiments
All rodent experiments were conducted according to the ethical

guidelines of Animal Subjects Ethics Sub-committee (ASESC), the

Hong Kong Polytechnic University; and the protocol was

approved by ASESC, the Hong Kong Polytechnic University

(permit number: 10/15). All surgeries were performed under

sodium pentobarbital anesthesia, and all efforts were made to

minimize animal suffering.

All zebrafish experiments were conducted according to the

ethical guidelines of Institute of Chinese Medical Sciences (ICMS),

University of Macau; and the protocol was approved by ICMS,

University of Macau.

Primary Cerebellar Granule Neuron Cultures
Rat CGNs were prepared from 8-day-old Sprague-Dawley rats

(The Animal Care Facility, The Hong Kong Polytechnic

University) as described in our previous publication [18]. Briefly,

neurons were seeded at a density of 2.76105 cells/ml in basal

modified Eagle’s medium (Invitrogen) containing 10% fetal bovine

serum, 25 mM KCl, 2 mM glutamine, and penicillin (100 units/

ml)/streptomycin (100 mg/ml). Cytosine arabinoside (10 mM) was

added to the culture medium 24 hours after plating to limit the

growth of non-neuronal cells. With the use of this protocol, more

than 95% of the cultured cells were granule neurons.

Measurement of Neurotoxicity
The percentage of surviving neurons in the presence of SU5416

and/or MPP+ was estimated by determining the activity of

mitochondrial dehydrogenases with 3(4,5-dimethylthiazol-2-yl)-

2.5-diphenyltetrazolium bromide (MTT) assay [13]. The assay

was performed according to the specifications of the manufacturer

(MTT kit I; Roche Applied Science). Briefly, the neurons were

cultured in 96-well plates, 10 ml of 5 mg/ml MTT labeling

reagent was added to each well containing cells in 100 ml of

medium, and the plates were incubated at 37uC for 4 hours in a

humidified incubator. After the incubation, 100 ml of the solvating

solution (0.01 N HCl in 10% SDS solution) was added to each well

for 16–20 hours. The absorbance of the samples was measured at

Figure 1. SU5416 prevents MPP+-induced apoptosis in a
concentration-dependent manner. (A) SU5416, but not VRI,
prevented MPP+-induced cell death in a concentration-dependent
manner. CGNs were treated with SU5416, VRI, EPTU, 7-nitroindazole (7-
NI), 1400 W or DMSO (vehicle control) at the indicated concentrations
for 2 hours and then exposed to 35 mM MPP+. Cell viability was
measured by MTT assay at 24 hours after MPP+ challenge. (B) SU5416
blocked neuronal loss induced by MPP+. CGNs were pre-incubated with
or without 20 mM SU5416 and exposed to 35 mM MPP+2 hours later. At
24 hour after MPP+ challenge, CGNs were assayed with FDA/PI double
staining. (C) SU5416 reversed the morphological alteration induced by
MPP+. CGNs were pre-incubated with or without 20 mM SU5416 and
exposed to 35 mM MPP+2 hours later. At 24 hour after MPP+ challenge,
CGNs were assayed with nNOS and Hoechst double staining. (D) The
number of apoptotic nuclei with condensed chromatin was counted
from representative Hoechst staining photomicrographs and repre-
sented as a percentage of the total number of nuclei counted. Data,

Neuroprotection of SU5416 against MPP+
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a wavelength of 570 nm with 655 nm as a reference wavelength.

Unless otherwise indicated, the extent of MTT conversion in cells

exposed to MPP+ is expressed as a percentage of the control.

Cytotoxicity was determined by measuring the release of lactate

dehydrogenase (LDH). Briefly, cells were precipitated by centri-

fugation at 500 g for 5 min at room temperature, 50 ml of the

supernatants was transferred into new wells, and LDH was

determined using the in vitro toxicology assay kit (Roche). The

absorbance of the samples was measured at a wavelength of

490 nm with 655 nm as a reference wavelength.

FDA/PI Double Staining Assay
Viable granule neurons were stained with fluorescein formed

from fluorescein diacetate (FDA) by esterase in viable cells.

Propidium iodide (PI) can penetrate cell membranes of dead cells

to intercalate into double-stranded nucleic acids. Briefly, after

incubation with 10 mg/ml of FDA and 5 mg/ml of PI for 15 min,

the neurons were examined and images were acquired using UV

light microscopy for comparison with photos taken under phase

contrast microscopy.

Hoechst Staining and Immunostaining
Chromatin condensation was detected by staining the cell

nucleus with Hoechst 33342 as described in our previous

publication [18]. CGNs (2.76106 cells) grown in a 35-mm dish

were washed with ice-cold phosphate-buffered saline (PBS), fixed

with 4% formaldehyde in PBS, membrane-permeabilized in 0.1%

Triton X-100 and blocked in 1% BSA. Cells were then exposed to

a primary nNOS antibody (Santa Cruz) overnight at 4uC followed

by incubation at room temperature with an Alexa Fluor 488-

conjugated secondary antibody. After immunostaining, cells were

then stained with Hoechst 33342 (5 mg/ml) at 4uC for 5 min.

Images were acquired using a fluorescence microscope at 6100

magnification.

To quantify the percentage of apoptotic nuclei in each group,

photos of each dish (n = 3 dishes in each group for three

independent experiments) were taken at five random fields and

the numbers of apoptotic nuclei and total nuclei (n = 300) were

counted, and the percentage of apoptotic nuclei was averaged.

Measurement of Intracellular NO
Intracellular NO was monitored with (4-amino-5-methylamino-

29,79-difluorofluorescein) DAF-FM diacetate, a pH-insensitive

fluorescent dye that emits increased fluorescence after reaction

with an active intermediate of NO formed during the spontaneous

oxidation of NO to NO2 [19]. DAF-FM solution was added to the

culture medium (final concentration: 5 mM). After incubation for

30 min in a CO2 incubator, cultures were washed twice with PBS

and incubated for another 30 min to allow complete de-

esterification of the intracellular diacetate for strong fluorescence.

The DAF-FM fluorescence in CGNs was quantified by a multi-

detection microplate reader using excitation and emission

wavelengths of 495 nm and 515 nm, respectively. The measured

fluorescence values were expressed as a percentage of the

fluorescence in the control cells.

Western Blotting Analysis
Briefly, neurons were harvested in a cell lysis buffer. Protein was

separated on SDS–polyacrylamide gel and transferred onto

polyvinyldifluoride membranes. After membrane blocking, pro-

teins were detected using primary antibodies. After incubation at

4uC overnight, signals were obtained after binding to chemilumi-

nescent secondary antibodies. Blots were developed using an ECL

plus kit (Amersham Bioscience, Aylesbury, UK) and exposed to

Kodak autoradiographic films. All data were from three indepen-

dent experiments and were expressed as the ratio to optical density

(OD) values of the corresponding controls for statistical analyses.

Maintenance of Zebrafish and Drug Treatment
Wild-type zebrafish (AB strain) and Tg(fli-1:EGFP) transgenic

zebrafish were maintained as described in the Zebrafish Hand-

book [20]. Zebrafish embryos were generated by natural pair-wise

mating (3–12 months old) and were raised at 28.5uC in embryo

medium (13.7 mM NaCl, 540 mM KCl, pH 7.4, 25 mM

Na2HPO4, 44 mM KH2PO, 300 mM CaCl2, 100 mM MgSO4,

420 mM NaHCO3, pH 7.4). Drugs were dissolved in DMSO and

directly added into zebrafish embryo medium to treat fish without

refreshing in 2–3 days (Final concentration of DMSO was always

less than 0.5%, and showed no toxicity to zebrafish). Equal

concentration of DMSO in embryo medium was used as vehicle

control in each experiment.

Exposure of Zebrafish to MPTP
Healthy zebrafish embryos were picked and dechorionated

manually at 1 day post fertilization (dpf) then distributed into a 12-

well plate with 20 fish embryos or a 6-well microplate with 30 fish

embryos in each well. In pilot experiments, several doses of MPTP

were added to embryo medium (final concentration from 50 to

800 mM) and 1 dpf fish embryo were treated for 48 hours, The

optimal dose used (200 mM) induced a significant decrease in brain

diencephalic dopaminergic neurons without any detectable

systematic toxicity (data not shown). Thus subsequent studies

were performed with 200 mM MPTP for whole-mount immuno-

staining and gene expression experiments.

Normally as late as 3 dpf, zebrafish larvae show very little

spontaneous swimming, but by 5 dpf they spontaneously swim

longer distances and independently search for food. The MPTP

exposure therefore needs to last 5 days from 1 dpf. In pilot

locomotion behavioral test, 3-day treatment starting from 1 dpf

with 200 mM MPTP in embryo medium killed all the fish larvae,

however, after 2-day treatment at 1 dpf with 200 mM MPTP then

withdraw 3 days, and the deficit behavior recovered at 6 dpf.

Finally, the optimal MPTP exposure was after 2-day treatment

starting from 1 dpf with 200 mM MPTP, zebrafish larvae were

maintained in embryo medium containing 10 mM MPTP for

another 3 days, the swimming distance significantly decreased and

without any detectable systematic toxicities. Thus subsequent

locomotion behavioral studies were performed with 200 mM

MPTP for 2-day treatment at 1 dpf then replacing with media

containing 10 mM MPTP for another 3-day incubation.

Whole-mount Zebrafish Immunostaining with Antibody
against Tyrosine Hydroxylase

Whole-mount immunostaining in zebrafish was performed as

before [21]. Briefly, zebrafish were fixed in 4% paraformaldehyde

(wt/vol in PBS) for 5 h at room temperature or overnight at 4uC,

washed with PBS 3 times, then kept in absolute ethanol at 220uC
to dehydrate for at least 2 h or up to 1 week. Fixed samples were

bleached in 10% H2O2 then blocked (2% lamb serum and 0.1%

expressed as percentage of control, were the mean 6 SEM of three
separate experiments; *p,0.05 and **p,0.01 versus MPP+ group in (A)
or versus control in (D); ##p,0.01 versus MPP+ group in (D) (Turkey’s
test).
doi:10.1371/journal.pone.0046253.g001

Neuroprotection of SU5416 against MPP+
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BSA in PBST) for 1 h at room temperature. A mouse anti-tyrosine

hydroxylase (TH) monoclonal antibody (Millipore, USA) was used

as the primary antibody and incubated with the sample overnight

at 4uC. On the next day, samples were washed 6 times with PBST

(30 min each wash), followed by incubation with secondary

antibody according to the method provided by the Vectastain

ABC kit (Vector Laboratories, USA). After staining, zebrafish were

flat-mounted with 3.5% methylcellulose and photographed. Semi-

quantification of area of TH+ region was assessed by an

investigator blinded to the drug treatment history of zebrafish

using Image-Pro Plus 6.0 software (Media Cybernetics, Silver

Spring, MD, USA). Results were expressed as percentage of area

of TH+ region in untreated control group.

Paraffin-embedding, Serial Sectioning and
Immunostaining of Zebrafish Larval

After drug treatment, fixation of zebrafish larval was performed

as the procedure in whole-mount immunostaining. We then

mounted fixed specimens on 1% agarose blocks in a common

linear plane to ensure that the microtome blade passes through

each specimen simultaneously. The specimen-containing agarose

Figure 2. SU5416 protects against MPTP-induced TH+ region area decrease in zebrafish. One dpf zebrafish embryos were co-incubated
with 200 mM MPTP and SU5416, VRI or 0.3% DMSO (vehicle control) at the indicated concentrations for 2 days. After treatment, zebrafish were
collected to perform whole-mount immunohistochemistry. (A) Representative pictures of whole-mount immunostaining of zebrafish brain from
different treatment groups. (B) Magnification of diencephalic area of zebrafish larval (indicated by red bracket in Fig. 2A). (C) Statistical analysis of TH+

region area in each treatment group (20 fish embryos per group). Data, expressed as percentage of control, were the mean 6 SEM of three separate
experiments; ##p,0.01 versus control; *p,0.05 and **p,0.01 versus MPTP group (Turkey’s test).
doi:10.1371/journal.pone.0046253.g002

Neuroprotection of SU5416 against MPP+
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was converted into a sectionable paraffin wax block and conducted

processes as described by Sabaliauskas et al. [22]. Consecutive

coronal sections were cut 5 mM thick using a rotary microtome

(Leica RM2235, Germany) and mounted on microscope slides.

Immunostaining of zebrafish larval sections was performed as

previously described [23] with minor modifications. Paraffin

sections were deparaffinized in xylene, hydrated in graduated

alcohol solutions and incubated for 30 min in 3% H2O2 in PBS to

inactivate endogenous peroxidases. Following antigen retrieval in

citrate buffer for 15 min in a microwave oven, sections were

blocked at room temperature with 10% horse serum for 1 hour.

Sections were reacted overnight at 4uC with rabbit anti-mouse TH

polyclonal antibody (Millipore, USA) at 1:400 dilutions in

immunostaining primary antibody dilution buffer (Beyotime,

China). For detection of primary antibody, the EnVision

Detection kit (Gene Tech., Shanghai, China) was used. Detection

was done by the appropriate second antibody with peroxidase

conjugate and DAB substrate. Finally, sections were coverslipped

with neutral balsam. The results were analyzed by counting the

numbers of TH-positive cells at 620 magnifications on a

stereomicroscope (BX51, Olympus Corp. Japan). TH-positive

cells in 3 matched sections of each zebrafish were counted and

averaged. 12 fish per treatment group were employed. The

average number of TH-positive cells per section was used to

represent dopaminergic neuron livability.

Figure 3. SU5416 increases the number of dopaminergic neurons in MPTP-treated zebrafish larval. One dpf zebrafish embryos were co-
incubated with 200 mM MPTP and 1 mM SU5416 or 0.3% DMSO (vehicle control) for 2 days. After treatment, zebrafish were collected to perform
paraffin-embedding, sectioning and immunostaining. (A) Representative picture of immunostaining of zebrafish section. (B) Statistical analysis of the
number of TH-positive neurons in each treatment group (n = 12 fish/group). *p,0.05 versus MPTP group (Turkey’s test).
doi:10.1371/journal.pone.0046253.g003

Figure 4. SU5416 attenuates the deficit of locomotion behavior on zebrafish larval induced by MPTP. One dpf zebrafish embryos were
treated with 200 mM MPTP for 2 days, and then co-incubated with 10 mM MPTP and SU5416 or VRI at the indicated concentrations for 72 hours, and
zebrafish larval co-treated with MPTP and 150 mM L-dopa or 20 mM L-deprenyl were used as positive controls. After treatment, zebrafish were
collected to perform locomotion behavior test using Viewpoint Zebrabox system and total distances travelled in 10 min were calculated. Data,
expressed as percentage of control, were the mean 6 SEM of 12 fish larvae per group from 3-time independent experiments. ##p,0.01 versus
control group; **p,0.01 versus MPTP group (Turkey’s test).
doi:10.1371/journal.pone.0046253.g004

Neuroprotection of SU5416 against MPP+
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Locomotion Behavioral Test of Zebrafish
After drug treatment, zebrafish larvae at 6 dpf were transferred

into 96-well plates (1 fish/well and 12 larvae/group). The larvae

were discarded due to excessive stress reaction to the handling and

monitoring of behavior (such as rapid and disorganized swimming

or immobility for 2 min). The experiments were performed in a

calm sealed area. The larvae were allowed to habituate to the new

environment for 30 min. Swimming behavior was monitored by

an automated video tracking system (Viewpoint, ZebraLab,

LifeSciences). The 96-well plates and camera were housed inside

a Zebrabox and the swimming pattern of each fish was recorded

for 10 min and for 3 times, once every other 10 min. The total

distance moved was defined as the distance (in cm) that the fish

had moved during one session (10 min).

Morphological Observation of Zebrafish
After drug treatment, zebrafish were removed from the

microplate and observed for gross morphological changes of

blood vessel under a fluorescence microscope (Olympus IX81

Motorized Inverted Microscope, Japan) equipped with a digital

camera (DP controller, Soft Imaging System, Olympus). Images

were analyzed with Axiovision 4.2 and Adobe Photoshop 7.0.

In vitro nNOS Activity Assay
Rat cerebellum nNOS was from Calbiochem. NOS activity was

determined by monitoring the conversion of L-[3H]arginine to

[3H]citrulline following the instructions provided by the kit

(Calbiochem). The reaction mixture contained a final volume of

40 ml with 25 mM Tris-Cl at pH 7.4, 3 mM tetrahydrobiopterin,

1 mM FAD, 1 mM FMN, 1 mM NADPH, 0.6 mM CaCl2, 0.1 mM

calmodulin, 2.5 mg of pure NOS enzyme, 5 ml L-[3H]arginine

(Perkin Elmer, Waltham, MA, USA), and different concentrations

of the tested reagents. The reaction mixture was incubated at 22uC
for 45 min. The reaction was quenched by adding 400 ml of

stopping buffer (50 mM HEPES, pH 5.5, and 5 mM EDTA).

Unreacted L-[3H]arginine was then trapped by 100 ml of

equilibrated resin in a spin cup followed by centrifugation at

13,200 rpm for 30 s.

Figure 5. Anti-angiogenic effects of SU5416 and VRI in
zebrafish. One dpf Tg(fli-1:EGFP) transgenic zebrafish embryos were
treated with SU5416, VRI or DMSO (vehicle control) at the indicated
concentrations for 2 days. After treatment, intersegmental-vessel
formations were observed under fluorescence microscopy. Deficit of
blood vessels was indicated by yellow asterisks.
doi:10.1371/journal.pone.0046253.g005

Figure 6. SU5416 reverses the elevated intracellular NO induced by MPP+ in CGNs. CGNs were pre-incubated with EPTU, 7-NI or SU5416 at
the indicated concentrations for 2 hours, and exposed to 35 mM MPP+. Intracellular NO level was measured using DAF-FM diacetate as a probe at 8
hour after MPP+ challenge. Data, expressed as percentage of control, were the mean 6 SEM of three separate experiments; **p,0.01 versus MPP+

group (ANOVA and Dunnett’s test).
doi:10.1371/journal.pone.0046253.g006

Neuroprotection of SU5416 against MPP+
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shRNA Design
ShRNA against rat nNOS was designed according to a previous

publication [24]. Briefly, the SiRNA sequence GCACUGGUG-

GAGAUCAACA, which corresponds to exon 10 of the rat nNOS

(GenBank Accession No. NM_052799), was used to generate

shRNA. Oligonucleotides that contained the sense and antisense

sequences of the siRNA target of interest flanking a standard

hairpin loop sequence (TTCAAGAGA) were synthesized. Sense

and antisense oligonucleotides were then annealed and cloned into

pG418-GFP vector to express shRNA directed against nNOS

under the control of the U6 promoter (GenePharma, Shanghai,

China). A negative control shRNA (ShNC) with the same

nucleotide composition but lacks significant sequence homology

to the genome was also used in the experiments.

Cell Transfection
PC12 pheochromocytoma cells were cultured in medium that

consisted of DMEM, 10% heat-inactivated horse serum, 5% fetal

bovine serum, 100 U/ml penicillin, and 100 mg/ml streptomycin

in a 37uC, 5% CO2 incubator. 2.06105 cells were transfected with

3 mg indicated plasmids by using Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s instructions. Selection media that

Figure 7. SU5416 reduces the expression of nNOS protein elevated by MPP+ in CGNs. (A) CGNs were pre-treated with 20 mM SU5416 or
DMSO (vehicle control) for 2 hours, and then treated with 35 mM MPP+ for various durations as indicated. The total proteins were extracted for
Western blot analysis with specific iNOS, nNOS and b-actin antibodies. (B) Statistical analysis of nNOS expression in each treatment group. Data are
expressed as the ratio to OD values of the corresponding controls. Data, expressed as percentage of control, were the mean 6 SEM of five separate
experiments; *p,0.05 versus MPP+ group at the same time (Turkey’s test).
doi:10.1371/journal.pone.0046253.g007

Neuroprotection of SU5416 against MPP+
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contained 100 mg/ml G418 (Sigma) were added to the cells 24

hours after transfection.

Data Analysis and Statistics
Data are expressed as the means 6 SEM, and statistical

significance was determined by analysis of variance with Dunnett’s

test in the case of multiple comparisons with control or Turkey’s

test. Differences were accepted as significant at p,0.05.

Results

SU5416 Prevented MPP+-induced Neuronal Apoptosis in
a Concentration-dependent Manner

After cultured for 8 days in vitro, CGNs were pre-treated with

SU5416 at the concentrations of 3, 10, 20 or 30 mM for 2 hours,

and then treated with 35 mM MPP+ for another 24 hours. Cell

viability was measured using the MTT assay. It was found that

SU5416 prevented 35 mM MPP+-induced cell death in a

concentration-dependent manner (Fig. 1A). However, treatments

with 30 mM SU5416 alone for 26 hours did not produce any cell

proliferative or cytotoxic effects. VEGFR-2 kinase inhibitor II

(VRI), another specific VEGFR-2 inhibitor with an IC50 value of

70 nM, was also tested in this model. Interestingly, VRI at 1 and

3 mM failed to block neuronal loss in vitro (Fig. 1A).

To further characterize the effects of SU5416 on the

neurotoxicity of MPP+, CGNs were pretreated with 20 mM

SU5416 and exposed to 35 mM MPP+ for 2 hours. The neurons

were examined by FDA/PI double staining. It was found that

SU5416 significantly blocked the loss of neurons and reversed the

morphological alteration, including unhealthy bodies and broken

extensive neuritic network, induced by MPP+ (Figs. 1B and 1C).

According to the counts of apoptotic bodies stained by Hoechst

33342, SU5416 significantly reversed neuronal apoptosis induced

by MPP+ (Figs. 1C and 1D).

NO is implicated in the neurotoxicity of MPP+ [12,25]. To

investigate whether NO was involved in our neuronal apoptosis

model, nNOS immunostaining and NOS inhibitors were used to

treat neurons for 2 hours prior to the addition of MPP+. It was

observed that there were nNOS-positive neurons in our CGNs

(Fig. 1C). Moreover, a pan-NOS inhibitor 2-ethyl-2-thiopseu-

dourea (EPTU, IC50 values of 0.017 mM for iNOS. and 0.036 mM

for nNOS) prevented MPP+-induced neuronal death in CGNs

(Fig. 1A). The roles of NOS iso-enzymes were also examined by

using specific inhibitors. We found that the specific nNOS

inhibitor 7-nitroindazole (IC50 values of 0.7 mM for nNOS, and

20 mM for iNOS) protected against neuronal apoptosis in our

model, whereas iNOS inhibitor 1400 W (IC50 values of 0.007 mM

for nNOS, and 2 mM for iNOS) did not show protection (Fig. 1A).

SU5416 Prevented MPTP-induced Neurotoxicity in
Zebrafish

To assess the neuroprotective potential of SU5416 in vivo,

zebrafish embryos at 1 dpf were exposed to 200 mM MPTP for 2

days, and the dopaminergic system in the brain of zebrafish was

then examined by whole-mount immunostaining with specific

antibody against TH. After MPTP treatment, the area of TH-

immunoreactive regions observed in the diencephalons of

zebrafish (indicated by red brackets) were decreased dramatically

(Figs. 2A and 2B). Importantly, SU5416 (0.1–1 mM) significantly

prevented the decrease in the area of TH+ region induced by

MPTP. In contrast, VRI (0.03–0.3 mM) could not prevent MPTP-

induced decrease in TH+ region area in zebrafish (Fig. 2). Both

drugs at higher concentration, SU5416 at 10 mM and VRI at

3 mM, showed toxicity to zebrafish (data not shown).

To further confirm the protective effect of SU5416 against

MPTP-induced dopaminergic neurotoxicity and to accurately

observe changes of dopaminergic neurons in zebrafish, paraffin-

embedding, serial sectioning and immunostaining of zebrafish

larval were performed. TH-positive neuron count showed MPTP

Figure 8. SU5416 directly inhibits nNOS enzyme activity in a concentration-dependent manner. The inhibitory effects of SU5416 on rat
cerebellum nNOS were shown in the graph. The IC50 value was also indicated. Each individual point was an average from three independent
experiments.
doi:10.1371/journal.pone.0046253.g008
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treatment significantly decreased the number of dopaminergic

neurons, and 1 mM SU5416 co-treatment obviously prevented the

loss of dopaminergic neurons (Fig. 3). SU5416 treatment alone did

not notably alter the number of dopaminergic neurons.

As shown in Fig. 4, the total distance travelled by the zebrafish

larvae decreased significantly after exposure to MPTP. SU5416

but not VRI ameliorated the MPTP-induced deficit of swimming

behavior, which was also rescued by treatment with L-dopa and L-

deprenyl (selegiline) as positive controls. Neither SU5416 nor VRI

treatment alone notably altered the swimming behavior of normal

zebrafish larvae (Fig. 4).

The Neuroprotective Effects of SU5416 were not Directly
Correlated with its Anti-angiogenic Action

We further determined if SU5416 at particular concentration

ranges exhibited any anti-angiogenic activities in Tg(fli1:EGFP)

transgenic zebrafish embryos. Owing to the genetic addition of a

GFP gene under the control of the fli-1 promoter, the fli-1

promoter activity in the endothelial cells of such zebrafish model

can be directly observed using fluorescence microscopy. As shown

in Fig. 5, VRI (0.1–0.3 mM) inhibited the formation of interseg-

mental-vessels in zebrafish larvae, whereas SU5416 (0.3–1 mM)

did not show this activity.

SU5416 Prevented MPP+-induced Increase of Intracellular
NO Release

To investigate whether SU5416 protected against MPP+-

induced neurotoxicity from acting on NO release, an intracellular

NO measurement was used in our study. When CGNs were

treated with SU5416 and MPP+ simultaneously, SU5416 antag-

onized the stimulatory effect of MPP+ on the NO production with

an efficacy similar to 7-nitroindazole (15 mM) (Fig. 6). Our results

suggest that the neuroprotection of SU5416 against MPP+-

induced neuronal loss might be mediated by decreasing NO

neurotoxicity, probably by inhibiting nNOS over-activation.

SU5416 Reduced MPP+-increased Expression of nNOS
Protein

To determine the effect of SU5416 on the protein expressions of

nNOS and iNOS in CGNs, Western blotting analysis was used. As

shown in Fig. 7, SU5416 at 20 mM reversed the increased

expression of nNOS by MPP+. However, SU5416 at the same

concentration could not affect the elevated expression of iNOS by

MPP+ (Fig. 7A).

SU5416 Directly Inhibited the Activity of nNOS
Furthermore, to investigate whether SU5416 also affected the

activity of nNOS, an in vitro NOS activity assay was used in this

study. It was found that SU5416 directly inhibited rat cerebellum

nNOS in a concentration-dependent manner with an IC50 value

of 22.7 mM (Fig. 8). These results suggest that SU5416 not only

decreased the expression of nNOS, but also directly inhibited the

activity of nNOS.

nNOS Depletion Abolished the Neuroprotective Effects
of SU5416

To explore if the neuroprotective effects of SU5416 mainly act

through nNOS, we investigated the neuroprotection of SU5416

against MPP+-induced neurotoxicity in ShRNA-mediated nNOS

knockdown PC12 cells. Western blot analysis showed that nNOS

ShRNA (ShnNOS) caused a reduction in nNOS protein level,

whereas the negative control ShRNA (ShNC) had no effect on

nNOS protein level (Fig. 9A). Analyses of cell viability and

Figure 9. nNOS depletion abolishes the neuroprotective effects
of SU5416 against MPP+-induced neuronal death in PC12 cells.
(A) PC12 cells were transfected with pG418-GFP plasmid (vector),
pG418-GFP plasmid encoding nNOS ShRNA (ShnNOS) and pG418-GFP
plasmid encoding negative control ShRNA (ShNC). The levels of nNOS
and b-actin in the cell lysates were analyzed by Western blotting assay
by using specific antibodies. (B, C) nNOS depletion abolished the
neuroprotective effects of SU5416 against MPP+-induced neuronal
death in PC12 cells. PC12 cells transfected with vector, ShnNOS, or ShNC
were treated with 20 mM SU5416 for 2 hours and then exposed to
1 mM MPP+. Cell viability (B) and cytotoxicity (C) were measured at 24
hours after MPP+ challenge by MTT and LDH assays, respectively. Data
were the mean 6 SEM of three separate experiments; **p,0.01 versus
control; ##p,0.01 versus MPP+ group; &p,0.05 and &&p,0.01 versus
MPP+ vector group (Turkey’s test).
doi:10.1371/journal.pone.0046253.g009
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cytotoxicity revealed that nNOS depletion resulted in a significant

decrease in MPP+-induced cell death (Figs. 9B and 9C). We found

that, in contrast to the neuroprotection effects of SU5416 observed

in the vector or in the ShNC treated PC12 cells, SU5416 in nNOS

knockdown PC12 cells was no longer able to inhibit MPP+-

induced cell death (Figs. 9B and 9C). These results provided direct

supporting evidence that the neuroprotective effects of SU5416

mainly act through the nNOS enzyme.

Discussion

SU5416 is the first clinically evaluated VEGFR-2 inhibitor.

Although previous clinical trails did not recommend SU5416 as an

anti-cancer drug, SU5416 appeared to be safe in human use. In

this study, we demonstrated for the first time that SU5416 was a

promising neuroprotectant against MPP+/MPTP-induced neuro-

toxicity both in vitro and in zebrafish. Our results further revealed

that the neuroprotection of SU5416 was not closely correlated

with its anti-angiogenic action, but via attenuating NO-mediated

neurotoxicity, possibly by both decreasing nNOS protein expres-

sion and directly inhibiting nNOS enzyme activity.

SU5416 was originally designed as a potent VEGFR-2 inhibitor

with an IC50 value of 0.39 mM against the cellular VEGFR-2

tyrosine kinase activity [1]. To clarify whether its neuroprotection

was due to the inhibition of VEGFR-2-dependent angiogenesis,

another potent and selective VEGFR-2 inhibitor VRI was assessed

in parallel. Interestingly, SU5416 at its neuroprotective concen-

tration did not inhibit angiogenesis, whereas VRI did not prevent

neuronal loss at the concentration in which it showed potent anti-

angiogenic activity. These results suggest that the neuroprotection

of SU5416 was not closely correlated with its anti-angiogenic

property. Previous studies also showed that the activation of

VEGFR-2 promoted neuronal survival by regulating phosphoino-

sitide 3-kinase (PI3-K)/Akt and extracellular signal-regulated

kinase (ERK) pathways [26]. The PI3-K/Akt signaling pathway

is a pro-survival pathway, whereas the ERK pathway is a pro-

apoptotic pathway in MPP+-induced neuronal apoptosis in CGNs

[27]. To examine whether SU5416 acts on down-stream pathways

of VEGFR-2, such as the ERK and Akt pathways, to protect

against MPP+-induced neurotoxicity, we tested the activities of

phospho-Akt (pAkt) and phospho-ERK (pERK) in Western blot

assay (data not shown). Our results show that SU5416 could

neither inhibit the activation of pro-apoptotic ERK pathway, nor

reverse the decrease of pro-survival Akt pathway, suggesting that

the neuroprotective effect of SU5416 is independent from the

regulation of the PI3-K/Akt and ERK pathways.

It is well-known that NO is a central pro-apoptotic factor

mediating the neurotoxicity of MPP+/MPTP both in vitro and in

vivo [25,28]. Intracellular NO could form peroxynitrite by reacting

with superoxide, a kind of reactive oxygen species overproduced in

MPP+-treated neurons. The resulted peroxynitrite could directly

cause neuronal loss by nitrating cellular protein, damaging DNA

and disrupting mitochondria [29]. We found that SU5416

decreased the elevated level of intracellular NO induced by

MPP+, which suggested that SU5416 might exert its neuropro-

tective effects by regulating NO formation. Endogenous NO is

mainly produced by a family of NOS enzymes. Three isoforms of

NOS, namely nNOS (NOS-1), iNOS (NOS-2) and endothelial

NOS (eNOS, NOS-3), have been identified so far. It is noteworthy

that ablation of eNOS has no bearing on MPP+-induced

neurotoxicity [28]. In the present study, we demonstrated that

MPP+ increased the expression of nNOS, but not iNOS in CGNs.

nNOS inhibitor 7-nitroindazole, but not iNOS inhibitor 1400 W,

reduced MPP+-induced neuronal loss. These results suggested that

MPP+-induced neurotoxicity was mainly mediated by the over-

activation of nNOS, and SU5416 prevented neurotoxicity possibly

by targeting nNOS.

According to Western blotting analysis, SU5416 reduced

MPP+-elevated protein expression of nNOS. By assaying in vitro

NOS activity, we further demonstrated that SU5416 directly

inhibited the activity of nNOS with IC50 value of 22.7 mM. Most

importantly, nNOS depletion abolished the neuroprotective effects

of SU5416 against MPP+-induced neuronal death. These results

strongly suggested that SU5416 most likely prevented NO-

mediated neurotoxicity via both inhibiting the activity and

decreasing the expression of nNOS. Although the precise

mechanisms underlying the decrease of nNOS expression induced

by SU5416 is still unclear, a recent study demonstrated that

SU5416 could down-regulate the PI3K/Akt signaling pathway, a

critical mediator in the activation of nNOS gene transcription

induced by retinoic acid [30], suggesting that SU5416 might

reduce the protein expression of nNOS via down-regulating the

Akt pathway.

The production of neurotoxic NO by nNOS is implicated in

many neurodegenerative disorders. Selective nNOS inhibitors

may thus have therapeutic potential in treating neurodegenerative

disorders by preventing neuronal death [31]. In this study, we

have shown for the first time that SU5416 possesses neuroprotec-

tive potential against MPP+/MPTP-induced neurotoxicity both in

vitro and in vivo. We have also demonstrated that SU5416 prevents

neurotoxicity by reducing nNOS protein expression and directly

inhibiting the enzyme activity of nNOS. In view of the capability

of SU5416 to cross the blood-brain barrier and the safety for

human use, our findings further indicate that SU5416 might be a

novel drug candidate for neurodegenerative disorders and CNS

cancers, particularly those associated with NO-mediated neuro-

toxicity.

Acknowledgments

We sincerely thank Ms. Josephine Leung for proofreading our manuscript.

Author Contributions

Conceived and designed the experiments: WC ZZ WL SMYL YH.

Performed the experiments: WC ZZ SM SH HZ SY. Analyzed the data:

WC ZZ WL SMYL YH. Contributed reagents/materials/analysis tools:

N/A. Wrote the paper: WC ZZ WL JR TCC SMYL YH.

References

1. Sun L, Tran N, Tang F, App H, Hirth P, et al. (1998) Synthesis and biological

evaluations of 3-substituted indolin-2-ones: a novel class of tyrosine kinase

inhibitors that exhibit selectivity toward particular receptor tyrosine kinases.

J Med Chem 41: 2588–2603.

2. Fong TA, Shawver LK, Sun L, Tang C, App H, et al. (1999) SU5416 is a potent

and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/

KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth

of multiple tumor types. Cancer Res 59: 99–106.

3. Stopeck A, Sheldon M, Vahedian M, Cropp G, Gosalia R, et al. (2002) Results

of a Phase I dose-escalating study of the antiangiogenic agent, SU5416, in

patients with advanced malignancies. Clin Cancer Res 8: 2798–2805.

4. Ye C, Sweeny D, Sukbuntherng J, Zhang Q, Tan W, et al. (2006) Distribution,

metabolism, and excretion of the anti-angiogenic compound SU5416. Toxicol

In Vitro 20: 154–162.

5. Shawver LK, Slamon D, Ullrich A (2002) Smart drugs: tyrosine kinase inhibitors

in cancer therapy. Cancer Cell 1: 117–123.

6. Kieran MW, Supko JG, Wallace D, Fruscio R, Poussaint TY, et al. (2009) Phase

I study of SU5416, a small molecule inhibitor of the vascular endothelial growth

Neuroprotection of SU5416 against MPP+

PLOS ONE | www.plosone.org 11 September 2012 | Volume 7 | Issue 9 | e46253



factor receptor (VEGFR) in refractory pediatric central nervous system tumors.

Pediatr Blood Cancer 52: 169–176.
7. Lees AJ, Hardy J, Revesz T (2009) Parkinson’s disease. Lancet 373: 2055–2066.

8. Grayson M (2010) Parkinson’s disease. Nature 466: S1.

9. Shin JH, Dawson VL, Dawson TM (2009) SnapShot: pathogenesis of
Parkinson’s disease. Cell 139: 440 e441–442.

10. Kavya R, Saluja R, Singh S, Dikshit M (2006) Nitric oxide synthase regulation
and diversity: implications in Parkinson’s disease. Nitric Oxide 15: 280–294.

11. Muramatsu Y, Kurosaki R, Watanabe H, Michimata M, Matsubara M, et al.

(2003) Cerebral alterations in a MPTP-mouse model of Parkinson’s disease–an
immunocytochemical study. J Neural Transm 110: 1129–1144.

12. Hantraye P, Brouillet E, Ferrante R, Palfi S, Dolan R, et al. (1996) Inhibition of
neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in

baboons. Nat Med 2: 1017–1021.
13. Li W, Xue J, Niu C, Fu H, Lam CS, et al. (2007) Synergistic neuroprotection by

bis(7)-tacrine via concurrent blockade of N-methyl-D-aspartate receptors and

neuronal nitric-oxide synthase. Mol Pharmacol 71: 1258–1267.
14. Li W, Lee NT, Fu H, Kan KK, Pang Y, et al. (2006) Neuroprotection via

inhibition of nitric oxide synthase by bis(7)-tacrine. Neuroreport 17: 471–474.
15. Choi DY, Liu M, Hunter RL, Cass WA, Pandya JD, et al. (2009) Striatal

neuroinflammation promotes Parkinsonism in rats. PLoS One 4: e5482.

16. Flinn L, Bretaud S, Lo C, Ingham PW, Bandmann O (2008) Zebrafish as a new
animal model for movement disorders. J Neurochem 106: 1991–1997.

17. Schweitzer J, Lohr H, Filippi A, Driever W (2011) Dopaminergic and
noradrenergic circuit development in zebrafish. Dev Neurobiol.

18. Li W, Pi R, Chan HH, Fu H, Lee NT, et al. (2005) Novel dimeric
acetylcholinesterase inhibitor bis7-tacrine, but not donepezil, prevents gluta-

mate-induced neuronal apoptosis by blocking N-methyl-D-aspartate receptors.

J Biol Chem 280: 18179–18188.
19. Sheng JZ, Wang D, Braun AP (2005) DAF-FM (4-amino-5-methylamino-2’,7’-

difluorofluorescein) diacetate detects impairment of agonist-stimulated nitric
oxide synthesis by elevated glucose in human vascular endothelial cells: reversal

by vitamin C and L-sepiapterin. J Pharmacol Exp Ther 315: 931–940.

20. Westerfield M (1993) The Zebrafish book: a guide for the laboratory use of
zebrafish (Brachydanio rerio). Eugene. Or.: University of Oregon Press. 1 v.

(various pagings) p.

21. Zhang ZJ, Cheang LC, Wang MW, Lee SM (2011) Quercetin exerts a

neuroprotective effect through inhibition of the iNOS/NO system and pro-
inflammation gene expression in PC12 cells and in zebrafish. Int J Mol Med 27:

195–203.

22. Sabaliauskas NA, Foutz CA, Mest JR, Budgeon LR, Sidor AT, et al. (2006)
High-throughput zebrafish histology. Methods 39: 246–254.

23. Gal S, Zheng H, Fridkin M, Youdim MB (2010) Restoration of nigrostriatal
dopamine neurons in post-MPTP treatment by the novel multifunctional brain-

permeable iron chelator-monoamine oxidase inhibitor drug, M30. Neurotox Res

17: 15–27.
24. Mahairaki V, Xu L, Farah MH, Hatfield G, Kizana E, et al. (2009) Targeted

knock-down of neuronal nitric oxide synthase expression in basal forebrain with
RNA interference. J Neurosci Methods 179: 292–299.

25. Przedborski S, Jackson-Lewis V, Yokoyama R, Shibata T, Dawson VL, et al.
(1996) Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydro-

pyridine (MPTP)-induced dopaminergic neurotoxicity. Proc Natl Acad Sci U S A

93: 4565–4571.
26. Zhu Y, Jin K, Mao XO, Greenberg DA (2003) Vascular endothelial growth

factor promotes proliferation of cortical neuron precursors by regulating E2F
expression. Faseb J 17: 186–193.

27. Cui W, Li W, Han R, Mak S, Zhang H, et al. (2011) PI3-K/Akt and ERK

pathways activated by VEGF play opposite roles in MPP+-induced neuronal
apoptosis. Neurochem Int 59: 945–953.

28. Gonzalez-Polo RA, Soler G, Fuentes JM (2004) MPP+: mechanism for its
toxicity in cerebellar granule cells. Mol Neurobiol 30: 253–264.

29. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent
hydroxyl radical production by peroxynitrite: implications for endothelial injury

from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87: 1620–1624.

30. Nagl F, Schonhofer K, Seidler B, Mages J, Allescher HD, et al. (2009) Retinoic
acid-induced nNOS expression depends on a novel PI3K/Akt/DAX1 pathway

in human TGW-nu-I neuroblastoma cells. Am J Physiol Cell Physiol 297:
C1146–1156.

31. Thomas B, Saravanan KS, Mohanakumar KP (2008) In vitro and in vivo

evidences that antioxidant action contributes to the neuroprotective effects of the
neuronal nitric oxide synthase and monoamine oxidase-B inhibitor, 7-

nitroindazole. Neurochem Int 52: 990–1001.

Neuroprotection of SU5416 against MPP+

PLOS ONE | www.plosone.org 12 September 2012 | Volume 7 | Issue 9 | e46253


