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Abstract

Often members of a group benefit from dividing the group’s task into separate compo-

nents, where each member specializes their role so as to accomplish only one of the com-

ponents. While this division of labor phenomenon has been observed with respect to both

manual and cognitive labor, there is no clear understanding of the cognitive mechanisms

allowing for its emergence, especially when there are multiple divisions possible and com-

munication is limited. Indeed, maximization of expected utility often does not differentiate

between alternative ways in which individuals could divide labor. We developed an itera-

tive two-person game in which there are multiple ways of dividing labor, but in which it is

not possible to explicitly negotiate a division. We implemented the game both as a human

experimental task and as a computational model. Our results show that the majority of

human dyads can finish the game with an efficient division of labor. Moreover, we fitted

our computational model to the behavioral data, which allowed us to explain how the per-

ceived similarity between a player’s actions and the task’s focal points guided the players’

choices from one round to the other, thus bridging the group dynamics and its underlying

cognitive process. Potential applications of this model outside cognitive science include

the improvement of cooperation in human groups, multi-agent systems, as well as

human-robot collaboration.

Introduction

An individual can often benefit from participating in a group when they can perform just one

component of the group’s task while other individuals take care of other parts. When this

arrangement occurs, we speak of an efficient division of labor. For instance, one study showed

that the puzzle of assigning categories to the nodes of a network such that no adjacent nodes

have the same category, could be efficiently solved as a collective task if each individual is

assigned to a single node and is only concerned with the acceptability of their local sub-net-

work, compared to a situation in which each individual has access to the entire network’s con-

figuration [1]; see also [2, 3].

In some collective groups, such as ant colonies or beehives, the division of labor occurs as a

genetically designed organization [4–6]. In human groups, on the other hand, the division can
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emerge without leaders or explicit negotiations [7–9]. For example, when a group of individu-

als has to collectively guess a target number, where the collective guess is the sum of their indi-

vidual guesses, and the only feedback they receive is for how much their collective guess is

greater or lesser than the target, individuals spontaneously differentiate their behaviors to

either react or not react to the feedback, and the extent to which role differentiation occurs is

predictive of group performance [10].

The division of labor, being a social action, can be studied in one of several ways. A dis-

tinctive line of research has focused on viewing social action as arising from the principles of

maximization of expected utility [11], which have been formally put together in the game-

theoretic approach to social action [12, 13]. When it comes to the division of labor, a game-

theoretic approach might represent the situation in the following way. For simplicity’s sake,

suppose a two-player game where each players’ possible strategies consist of sets of task

demands and assume only three, say task demands x, y, z. Each particular allocation of task

demands to players determines a particular payoff for each player. Say Player A performing

{x, y} and Player B performing {z} affords both players 1 point; but if Player A only performs

{x} and B only {z} both of them obtain -1 point. By using this approach, a division of labor

arises because it constitutes a Nash equilibrium, that is, a division of task demands in which

no player can obtain a higher payoff by changing only their allocated task demands—fixing

the other players’ strategies. [The pair ({x, y}, {z}) is a Nash equilibrium in our example.]

However, task demands might be allocated in different ways that are irrelevant to the individ-

uals’ payoffs. To come back to our example, it might be irrelevant for A to perform either {x},

{x, y} or {y, z} and it might be irrelevant for B to perform either {y, z}, {z} or {x}, so that the

three pairs ({x}, {y, z}), ({x, y}, {z}) and ({y, z}, {x}) are payoff equivalent. This entails that max-

imization of expected utility often is not sufficient to explain why individuals act in accord

with one particular Nash equilibrium instead of another [14, 15]. Some scholars have sug-

gested that games with multiple non-dominant Nash equilibria are solved on the basis of

rough-and-ready rules of thumb, which require only limited knowledge and time. This

approach is known as ‘bounded rationality’ to emphasize that people frequently have mem-

ory, attention, and calculation limitations that prevent them from employing perfectly ratio-

nal strategies [16, 17].

Probably a combination of both approaches—maximization of expected utility and cogni-

tive limitations—is what hits the mark closer, as suggested by Lieder and Griffiths [18]. To

bring the point home, consider the following two ways to conceive of the role of focal points in

reaching an equilibrium. According to Schelling [19], strategies might be ordered—albeit in a

payoff-irrelevant way—by the labels with which they are represented by the subject. Such label

ordering induces an ordering in the set of all Nash equilibria, which thereby might be reduced

to the highest ranking point in that order. A focal point can be said to guide an individual’s

choice in different ways. On the one hand, a focal point can provide reasons why it would be

rational to choose a focal point: because the individual thinks that the other individual would

think that the other individual would think that . . .that the other individual would be drawn

towards that particular choice [20–22]. On the other hand, a focal point might simply tend to

draw an individual’s attention to go for a particular choice instead of another. The latter

approach suggests a cognitive bias which often helps the individual maximize their expected

utility without performing involved calculations. We believe that this way of conceiving of

focal points—heuristics for optimization with limited cognitive resources—is more appropri-

ate and that there must be fast-and-frugal heuristics that individuals can use to tacitly negotiate

a division of labor through an iterative process [23].

Besides Schelling’s points, another antecedent for a coordinating heuristics in an iterative

scenario is that one individual stays put—repeating their choice every round—while the other
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adapts their action to match that of the former (it has been formally proven that this is the

most efficient way to coordinate actions in an iterative process [24]). However, we still require

an account as to how players tacitly negotiate who is to stay put and who is to adapt their

action to achieve coordination.

We have developed an iterative two-person game in which there are multiple ways of divid-

ing labor, but in which it is not possible to explicitly negotiate a division. Our methodology

consisted in the implementation of this game both as a human experimental task and as a

computational cognitive model. Our results were in accordance with the findings mentioned

earlier, but we were able to go one step further. We found evidence that the perceived similar-
ity between a player’s actions and the task’s focal points guided the players’ choices from one

round to the other. By studying a formal model of this heuristics and fitting it to our behavioral

data, we were able to propose a bridge between the group dynamics and its underlying cogni-

tive process.

Some potential applications of our model outside cognitive science include the improve-

ment of cooperation in human groups [25] and multi-agent systems [26], as well as human-

robot collaboration [27]. Possible suggestions are presented in the Discussion section.

Materials and methods

Participants and procedure

Participants were 90 undergraduate students from the standing human subject pool at Indiana

University in Bloomington. This pool, which does not contain legal minor participants, con-

sists of students from introductory psychology courses (P101 and P102) who could participate

in four experiments in a semester to satisfy their course requirement to engage in hands-on

experiences with contemporary human behavioral experimentation. Participation in our study

satisfied one of these four experiments. All participants in our study had to read an informed

consent form and give their agreement before they could participate in the study. Participants

were run in 10 experimental sessions, each one requiring an even number of participants to be

grouped into dyads. If an odd number of participants turned up to the session, one of them

was randomly chosen and sent home. The numbers of dyads in each session were as follows: 4,

5, 3, 6, 4, 2, 6, 3, 8, and 4. Participants sat in a university computer lab, each at a sound- and

sight-isolated personal computer running a version of the game implemented in the node-

Game platform [28]. The computer randomly paired participants into dyads and each dyad

participated in 60 rounds of the game. Participants were instructed not to talk to each other

and were not informed about who was paired with whom.

The task

The task is a two-player game in which players interact with 64 tiles arranged in an 8 × 8 grid

(see the left panel in Fig 1). The grid can either hide a unicorn beneath one of the tiles or else it

can be absent from the grid. Either event can occur with equal probability. At the beginning of

each round, the computer chooses whether or not there is a unicorn, and if there is one, it ran-

domly chooses a tile—each one having an equal probability of being chosen—and places the

unicorn beneath it. Then, players have to guess whether there is a unicorn or if it is absent

from the grid by uncovering tiles one at a time, with both players uncovering tiles simulta-

neously, in order to see what lies beneath them. What tiles have been uncovered and whether

there is or not a unicorn is only known to the player that uncovers these tiles. However, in the

event that both players uncover the same tile, it changes its color and both players can immedi-

ately see this. At any time during the round, each player can make a guess as to whether the
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unicorn is present or absent from the grid. The other player will know this information and

they can use it to inform their own guess. The round ends when both players announce that

their guess is a final decision, and then they are shown their individual scores from the round

(see the right panel in Fig 1). The score depends on whether the player’s guess is correct (32

points) or incorrect (-64 points), subtracting the number of tiles that were uncovered by both

players. Note that if a player guesses “Absent” while the other guesses “Present”, they will

receive different scores.

There are a number of characteristics of the task that are worth noting. Conveniently for

our purposes, the division of labor is represented as a split of the grid, since each tile represents

a task demand. Needless to say, there are a large number of these and the reason for this com-

plexity is twofold. Earlier pilot runs with a 4 × 4 grid showed that players were not keen to split

it and that they were more than happy to uncover all tiles regardless of the negative payoffs.

We also want to include an incremental way of dividing labor because this is what allows us to

tell whether one player is adapting to the apparent region being selected by the other player or

not. Observe that each player can monitor the other player’s actions, but only to the extent that

they overlap with each other. Therefore, players still have to try and figure out the other play-

er’s strategy, and these strategies evolve over rounds of interaction. Finally, although players

cannot explicitly communicate with each other, their guesses are public knowledge, which is

important for facilitating coordinated action. When a player constrains their search to a partic-

ular area, they still have to rely on the other player’s report on whether there is or not a unicorn

in the complementary area.

To bring the presentation of our task to a close, we would like to mention that it can easily

model collaborative search tasks (cf. [29]) where participants must efficiently divide the visual

field, such as two bodyguards splitting the range of vision to scan for potential threats; or two

kids looking at a picture book (e.g., Where’s Wally?); but it can also accommodate more

abstract division of labor tasks by considering that each tile represents a task demand and each

region in the grid a set of task demands (so called “wicked problems” are obviously outside the

scope of this model since they do not afford a division into separate task demands because of

their complex and interconnected nature).

Fig 1. The experimental task. The left panel shows the grid as displayed to each player. By uncovering a tile, the player

knows whether it is empty or contains the unicorn. Such information is private for the player. Tiles uncovered by both

players have a blue background and both can immediately see this coloration. They also have access to each other’s

guesses about whether the unicorn is present or absent. The yellow column on the right decreases as the number of

overlapping tiles increases. The round ends when both players submit their final decision. In the right panel we show

the screen displaying the score and the score history over the last 20 rounds.

https://doi.org/10.1371/journal.pone.0254532.g001
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Measures

The following measure, which we call the Division of Labor Index (DLINDEX), determines the

extent to which players split the grid into complementary regions:

DLINDEX ¼
Tiles uncovered by one
or both of the players

Overlapping
tiles

Tiles in the grid

This measure instantiates the intuition that it is beneficial if a dyad collectively uncovers all

of the tiles (first term) and does not overlap on any tiles uncovered (second term). Observe

that it ranges from 0 to 1 with 1 being ideal division of labor and 0 being least efficient. Ideal

performance is achieved when both players uncover the entire grid and do not overlap at all.

We also define the similarity between two regions a and b in the grid in the following way:

simða; bÞ ¼
Number of tiles in both a and b
Number of tiles in a or b

ð1Þ

In case both a and b are empty, sim(a, b) = 1. Additionally, we measure how consistently a

player uncovers tiles from one round to the next:

Consistencyn ¼
Overlapping uncovered tiles from

Round n� 1 to Round n

Tiles uncovered in
either of the two rounds

In case a player uncovers no tiles on the two rounds, Consistencyn = 1. Observe that this

measure ranges from 0 to 1 with 1 meaning that the player uncovers the same tiles on both

rounds, and 0 meaning that the player uncovers a completely different set of tiles from one

round to the next.

Results

To begin with, observe that rounds on which the unicorn was present provide us only with par-

tial information as to how players split the grid. On these rounds, players did not have to

uncover every tile because when they found the unicorn, they responded that the unicorn was

present and finished the round. For most of our analysis this represents a problem, since we

are precisely looking at how players split the grid. But one thing that is interesting to look at

with respect to rounds with unicorn present is how they influenced players’ behavior on the

subsequent round (with unicorn absent). We observed that such rounds made players more

active in that they uncovered more tiles on the next round. The average number of uncovered

tiles in a round with unicorn absent is around 34 (SD = 19.3) when the unicorn was present in

the previous round, and only 31 (SD = 18.8) when the unicorn was absent (t(1177) = 3.417;

p< 0.001). For the ensuing analyses, unless explicitly stated otherwise, we will only consider

data obtained during rounds on which the unicorn was absent.
In Fig 2 we show the results of four representative dyads. We measured the dynamics of

dyads in terms of each player’s consistency and score, and a grid with magnitude-coded tiles

(the darker the tile, the more times it was selected by the player throughout the experiment).

We can also observe the dyad’s DLINDEX through the rounds. Three of these dyads (top left, top

right and bottom left quadrants) converged on a split of the grid, which can easily be seen in

the magnitude-coded tiles, as well as in the high values of all measures. The remaining dyad

(bottom right quadrant) exemplifies an unsuccessful dynamics.

As for the overall performance of all dyads, we classified them into eight cluster regions,

which are shown in Fig 3. This classification was obtained on the basis of a visual inspection of
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the magnitude-coded tiles and a semi-automatic classification of regions. Our results show

that there were only four stable, successful pairs of complementary regions in the grid: the

LEFT-RIGHT, TOP-BOTTOM, ALL-NOTHING, and INSIDE-OUTSIDE splits. We call them the focal splits.
Only dyads creating focal splits obtained an above-average DLINDEX, except for one dyad with

no discernible stable region that nevertheless has an average DLINDEX of 0.82 (this dyad deter-

mined the Mix type of split in Fig 3). We conclude that 26 out of 45 dyads successfully split the

grid. This represents over 57% success in self-organizing division of labor.

If our paradigm were a task in which players had to converge on a split of the grid on a sin-

gle round, our data show that the average DLINDEX would be close to 0.36 (SD = 0.32). By com-

parison, in our iterated task, the average DLINDEX rose to 0.738 on Round 60 (SD = 0.34). The

difference between these averages is statistically significant (t(46) = 4.09, p< 0.001; see also

top right panel in Fig 4). Perhaps not surprisingly, since there are many focal splits on which

players could converge, this shows that an efficient division of labor does not occur on the first

round, and that the iterated nature of our task facilitates its emergence. On the first round of

Fig 2. Examples of observed behaviors. Each quadrant contains four (sets of) panels displaying the dynamics through 60 rounds of gameplay for a

dyad. The dynamics is measured by means of consistency (top left, within each quadrant), score (top right), and magnitude-coded tiles—i.e., how often

a particular tile was selected—from each player (bottom right), as well as the dyad’s DLINDEX (bottom left). Only rounds on which the unicorn was

absent were considered. The top-left quadrant presents a dyad that relatively quickly converged on a LEFT-RIGHT split. The top-right quadrant presents

another quickly convergent dyad, but this time on an ALL-NOTHING split. The bottom-left quadrant shows a slowly convergent dyad that negotiated an

INSIDE-OUTSIDE split, and the bottom-right quadrant shows a dyad with unsuccessful division of labor.

https://doi.org/10.1371/journal.pone.0254532.g002
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Fig 3. The eight types of splits of the grid that could be observed from our data. Each panel shows two grids, one

for each player, with the regions uncovered through 60 rounds (on unicorn absent trials). The darker the tile, the more

times it was uncovered by the player across all rounds. For each type we also show the observed frequency and the

average DLINDEX with its standard deviation.

https://doi.org/10.1371/journal.pone.0254532.g003

Fig 4. Convergence on a successful division of labor. Top left panel: percentage of trials on which each type of region was

uncovered (first roundN = 22; all rounds N = 1244). Top right panel: kernel density estimate of DLINDEX (first roundN = 22;

last roundN = 30). Bottom panel: histogram of first round on which DLINDEX reached a stable high value (by considering the

first round on which the rolling mean (window = 2) of the DLINDEX was above 0.995). Only successful dyads were considered

(N = 26).

https://doi.org/10.1371/journal.pone.0254532.g004

PLOS ONE Self-organized division of cognitive labor

PLOS ONE | https://doi.org/10.1371/journal.pone.0254532 July 19, 2021 7 / 22

https://doi.org/10.1371/journal.pone.0254532.g003
https://doi.org/10.1371/journal.pone.0254532.g004
https://doi.org/10.1371/journal.pone.0254532


the game, no player uncovered regions BOTTOM, TOP, LEFT, RIGHT, IN, or OUT (see top left panel in

Fig 4) and it is not until Round 4 that one of these regions can be observed. Moreover, it took

at least 11 rounds for dyads to converge on a stable division of labor and the majority of suc-

cessful dyads converged around the 20th round, as shown in the histogram in the bottom

panel of Fig 4. To obtain this histogram, we inspected the successful dyads and determined the

first round on which the rolling mean (window = 2) of the dyad’s DLINDEX reached a value

above 0.995, which can be interpreted as the moment the dyad converged on a stable division

of labor.

But how did these divisions of labor emerge? We observed that, in general, dyads moved

from lower to higher levels of DLINDEX, and players in a poorly performing dyad tended to

more frequently change their tile selection strategy from one round to the next compared to

players in a well performing dyad. Moreover, we found a positive correlation between a play-

er’s consistency on Round n and their score on Round n − 1 (r(1132) = 0.23, p< 0.001). In

order to take a closer look at this correlation, we cut the score on Round n − 1 into three inter-

vals: low (from -128 to 15), moderate (from 16 to 28), and high (from 29 to 32). The boxplots

of these intervals with respect to consistency on Round n can be seen in the top left panel in

Fig 5. Here we can see that, despite a great deal of outliers, more often than not high scores

have a higher degree of consistent behavior on the next round. We also cut consistency on

Round n into three intervals: inconsistent (from 0 to 0.31), moderately consistent (from 0.31

to 0.86), and consistent (from 0.86 to 1). The cross-frequencies can be found in contingency

Fig 5. Evidence of bounded-rationality heuristics. Top left panel: Boxplot of consistency for three different levels of score on the previous round.

Bottom left panel: Regression of consistency with respect to maximum similarity to a focal region on the previous round. In both panels, each data point

represents a trial (N = 1134). Right panel: Transition from one round to the next, taken from an actual gameplay. In each grid, black tiles represent tiles

uncovered by one player and red tiles were uncovered by both players. Player A’s transition illustrates ‘stubbornness’ and Player B’s illustrates the

attraction exerted by the complement of A’s focal region, which is also a focal region. See details in the text.

https://doi.org/10.1371/journal.pone.0254532.g005
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Table 1, from which we can confirm via a chi-square test that these variables are positively

related (χ2(4, N = 1134) = 429, p< 0.001). We conducted an ordinal logistic regression analysis

to investigate this relation. Low values of the predictor variable, score on Round n − 1, were

found to favor an inverse relationship to consistency on Round n as compared to moderate

scores (orderedlog − odds(Estimate) = −0.54, SE = 0.15, p< 0.001), but they favor a positive

relationship as compared to high scores (orderedlog − odds(Estimate) = 1.98, SE = 0.15,

p< 0.001). The odds increase in consistency from moderate to high scores is about 7 times

larger than the odds increase in consistency from moderate to low scores. This supports the

hypothesis that players used, at least to some extent, a “Win Stay, Lose Shift” heuristic.

However, this does not account for all the characteristics of the dyadic interaction. When

we predict DLINDEX as a function of consistency, we see that, perhaps not surprisingly, dyads

consisting of individuals who are relatively consistent in their tile selection strategies tend to

divide labor better (β� 0.36; p< 0.001). Moreover, we also observed an interaction such that

dyads with players that differ in their consistencies tend to divide labor better than predicted

when players have a large amount of overlap in their selected tiles. That is, if both players over-

lap considerably in their selected tiles, the best division of labor is obtained when one player is

consistent and the other player is not. The evidence for this claim comes from comparing the

linear regression model above with a model that includes the interaction between, on the one

hand, the absolute difference in consistency between players on a given round and, on the

other hand, the number of overlapping tiles on the previous round:

DLINDEXðnÞ � aþ b1 � ConsistencyðnÞ þ b2 � difConsistðnÞ

þb3 � Overlapðn � 1Þ þ b4 � difConsistðnÞ �Overlapðn � 1Þ
ð2Þ

Our data show that this interaction is positive (β4� 0.01; p< 0.001; the interaction is also

positive and significant when the contribution of Consistency(n) is not included). Moreover,

an analysis of variance test (f(2) = 40.6, p < 0.001) confirms that this interaction effect

accounts for significantly more variance in performance compared to the main effects. These

results indicate that dyads eventually tend to most effectively divide labor despite initially over-

lapping in their tiles when one player is consistent/stubborn and the other player is inconsis-

tent/flexible, giving rise to complementary degrees of reactivity to overlap [10].

The relative success of dyads that have complementary levels of stubbornness raises the

question: what predicts whether a player will become stubborn? We found that if a player

tends to select tiles consistent with a focal region (that is, one half of a focal split), they tend to

be more consistent. In other words, the more similar a player’s tile selection strategy is to a

focal region, the more stable their selections become, likely because they believe that they are

forming one half of a viable division of labor. The regression model of consistency with respect

to maximum similarity to a focal region confirms this effect (β = 0.9; p< 0.001; see bottom left

panel in Fig 5). How, then, does the other player determine that they have to select tiles in the

appropriate complementary region, given that a player only has access to their own uncovered

tiles and not the other player’s uncovered tiles? Most likely, this is achieved because players

Table 1. Cross-frequencies of score on round n − 1 and consistency on round n.

Score on Round n − 1 Consistency on Round n
Inconsistent Moderately consistent Consistent

Low 81 144 75

Moderate 117 109 44

High 84 32 448

https://doi.org/10.1371/journal.pone.0254532.t001
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have access to overlapping tiles, from which the other player’s selected tiles can be inferred

with reasonably high validity.

One mechanism that accounts for some players’ shifts in selected tiles is based on a combi-

nation between stubbornness and the similarity between a focal region and the overlapping

tiles. If one player’s overlapping selected tiles are sufficiently close to a focal region, this can be

used as a signal for the other player to select the corresponding, complementary focal region.

In Fig 5, right panel, we take a close look at an actual gameplay from a dyad in which this

mechanism is prominent, as exhibited by Player B’s transition. On Round 23 the overlapping

tiles are similar to the focal region RIGHT, which induces B to select every single tile in the com-

plementary LEFT region. Observe that B not only re-selected the left region’s tiles from the pre-

vious round, but uncovered the entire LEFT region. The revealed overlapping tiles are the same

for both players, so Player A’s attention is also attracted by LEFT. Nevertheless, given that A has

uncovered the focal region RIGHT, they tend to become “stubborn” in the sense of resisting sub-

stantial change to their uncovered tiles. The combination of attraction towards a focal region

by the player close to it and attraction towards its complement by the other player represents a

decision process that we call the Focal Regions as Attractors heuristic (FRA). To be sure, the

process is often more gradual than shown in Fig 5, and there certainly are other factors at play.

However, even the simplest form of this heuristic is evident in our results.

Computational models

Three models for seeking the unicorn

We put our previous explanations to the test by devising computational models instantiating

our heuristics, and then fitting them to our behavioral data. We consider three models. The

first one, MBIASES, instantiates the idea that some regions are more visually salient than others,

so that players randomly choose a region on the basis of biases shared by all participants.

These biases favor focal regions. The second model, WSLS, is an implementation of “Win Stay,

Lose Shift”, which builds upon the former model and also implements the condition that a suf-

ficiently good score leads to a re-selection of the previous region (if it was a focal region). The

third model, FRA, uses the two previous heuristics plus one we call “Focal Regions as

Attractors.”

The rationale behind our models is as follows: A model defines the probability that each

region k be selected as the one to be explored on the next round. We divide the collection of all

regions into nine categories: The eight focal regions plus a type of region, RS (Random Search),

which stands for all other regions in the grid. [If a player chooses RS, then the player chooses a

random region in the grid in which all tiles have equal probability of being chosen.] Further-

more, to determine the probability of k, a model uses an attract(k) function, which represents

the extent to which a player is inclined to choose region k, given the current state of the game

(what this state amounts to and how the attract(k) function is defined depends on the model at

hand). The probability is then determined by the following formula:

PðkÞ ¼
attractðkÞ

P
r2KattractðrÞ

ð3Þ

Starting with MBIASES, the attract(k) function does not depend on the current state of the

game, only incorporating the psychological salience of region k, biask. This term represents

how inclined the player feels toward k, all other things being equal, and is expected to be higher

for pre-experimentally salient regions. We assume that the sum of these biases is 1 and, there-

fore, P(k) = attract(k) = biask.
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As for WSLS, suppose that on round n the player uncovered the region BOTTOM. If the score

on this round was good enough, WSLS increases the attractiveness of BOTTOM. This effect is

achieved by means of a threshold function multiplied by a factor α that increases this region’s

attractiveness for the player.

In this model, we assume that the current state of the game is represented by the vector (i,
s), where i is the region explored on the previous round and s the obtained score. The attract

function is defined in the following way:

attractðk; i; sÞ ¼ biask þ a � threshðs;b; gÞ � Iðk; iÞ ð4Þ

The second term contains the functions thresh and I, defined as follows:

thresh s; b; gð Þ ¼
1

1þ e� b s� gð Þ
; I k; ið Þ ¼

1; if i ¼ k 6¼ RS

0; otherwise

(

Here, s is the score, which takes a value between -128 and 32. The function thresh(s, β, γ) has

an S shape and takes values in the open interval (0,1). It goes from values near 0 when s is

lower than γ to values near 1 when s is higher than γ; the steepness of this transition is deter-

mined by β. The parameter α determines the extent to which the score increases the player’s

tendency to choose k, when the score is higher than γ. For the sake of simplicity, the parameter

β is not taken to be a free parameter in Eq 4. It is assumed to have a constant value determining

a high steepness of the threshold function (we have set β = 30 for our simulations and parame-

ter fit). The effect of I(k, i) in Eq 4 is that the only region that has its bias modified is region i
(i.e., the region explored on the previous round) and only if this region is a focal region. The

value of attract(k) for the remaining regions is equal to biask, because I(k, i) = 0 when i 6¼ k.

As for FRA, this model extends the previous one by considering a combination of two mech-

anisms: how focal regions attract a player’s attention, and how the overlapping region shifts a

player’s attention away from it and towards the complement of the focal region that is similar

to this overlap. By means of example, suppose that on round n Player 1 uncovered tiles as

shown in the top left panel in Fig 6; call this region i. The attraction mechanism considers the

similarity between i and each focal region, increasing the probability of choosing a focal region

on the next round as i increasingly resembles it. In our example, i is most similar to region BOT-

TOM. Now, the repulsion mechanism considers the overlapping region (red tiles in the figure);

call it j. This mechanism measures the similarity between j and the complement of each focal

region. In other words, the more similar j and k are, the more attractive the complement of k
becomes. In our example, the overlapping region is most similar to both BOTTOM and LEFT, so

the repulsion mechanism shifts attention towards TOP and RIGHT. Finally, the FRASim measure

adds up the two previous measures. Observe that, in our example, FRASim with respect to

RIGHT is higher than the rest, and if this value overcomes a given threshold, the attractiveness of

RIGHT increases substantially.

More formally, we assume that the current state of the game is represented by the vector (i,
s, j), where i is the region explored on the previous round, s is the obtained score, and j the

region formed by the overlapping tiles. The attractiveness of k is defined in the following way

(see Fig 6 box (b) for an illustration of the surfaces determined by this equation):

attractðk; i; j; sÞ ¼ biask þ a � threshðsn; b; gÞ � Iðk; iÞ

þd � threshðFRAsimði; j; kÞ; �; zÞ
ð5Þ
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Observe that the first two terms in Eq 5 are the same as in Eq 4. The third one is new. Here,

the function FRAsim(i, j, k) is defined in the following way:

FRAsimði; j; kÞ ¼ simði; kÞ � FocalðkÞ þ simðj; �kÞ � Focal0ðkÞ

The function sim was defined in Eq 1. The FRASim function returns the sum of two terms,

the first is the similarity between region i (the region the player just uncovered) and focal

region k; and the second is the similarity between the overlapping region j and the complement

of region k (�k). This only occurs when k is a focal region and is different from ALL. [The

requirement that k be different from ALL is due to the following reason. When considering a

situation in which there is a high similarity between j and NOTHING, we do not want to increase

the attractiveness of ALL, because an empty overlap could mean that players have converged on

a split of the grid.] The desired effect is obtained by multiplying by Focal(k) and Focal0(k),

which are defined as follows:

Focal kð Þ ¼
1; if k 6¼ RS

0; otherwise

(

Focal0 kð Þ ¼
1; if k 6¼ RS and k 6¼ ALL

0; otherwise

(

The parameter δ in Eq 5 determines the extent to which FRASim(i, j, k) modifies attract(k).

The parameter � determines the steepness of the thresh function and z determines the thresh-

old. For the sake of simplicity, parameters β and � are not taken to be free parameters in Eq 5.

Fig 6. The mechanisms of FRA in action. Box (a) top panels: Regions explored by each of the two players with overlapping tiles in red, drawn over an

actual gameplay. Box (a) second from top panels: Attraction exerted by focal regions in terms of their similarity to the explored region. Box (a) third

from top panels: Attraction towards a focal region in terms of the similarity between the complement of the overlapping region and the focal region.

Box (a) bottom panels: FRASim of each focal region, which adds up the two previous similarities. These panels also display a threshold line which, when

a region surpasses it, triggers considerable attraction towards this region (focal regions IN and OUT are not shown for ease of presentation). Box (b) top

panel: Heatmap of the probability surface representing the probability that a player who has selected a random region on the previous round chooses a

focal region, as a function of score and FRAsim levels. In this case, FRA predicts that the score level does not influence this movement, which can be

reflected by the uniform surface along the score-axis. Box (b) bottom panel: the surface corresponding to the probability of focal re-selection depending

on the previous score and the maximum FRAsim obtained on the previous round. Observe that, in this case, high score levels predict high probability of

re-selection.

https://doi.org/10.1371/journal.pone.0254532.g006
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They are assumed to have a constant value determining a high steepness of both threshold

functions (we have set β = � = 30 for our simulations and parameter fit). Note that the extra

parameters from FRA with respect to WSLS are δ, �, z. Moreover, Eq 4 can be obtained from Eq 5

when δ = � = z = 0. That is, WSLS is a nested, restricted model within FRA. Observe also that

MBIASES is a nested, restricted model within WSLS and FRA.

Simulations

We have simulated a dyad’s behavior in the following way. At the beginning of the game, each

player randomly chooses a region in the grid, in the form of a list of squares. The probability

of choosing the initial region is given by the biases determined by the parameters of the

model. Then, players simultaneously check the first tile in their list. If either player finds the

unicorn, they issue “Present” and declare that their decision is final. The other player has

access to this information and also issues “Present” and declares that their decision is final,

thus ending the round. If not, both players continue to check the next tile on their list until

one of them finds the unicorn or until their respective lists are exhausted. When a player

exhausts their list, they issue “Absent” and declare that their decision is final. If both players

declare that their decision is final, the round ends. At the end of the round, each score is calcu-

lated and players are informed of the overlapping area during the round. With this informa-

tion, each player chooses which region to visit on the next round by means of the probability

function in Eq 3.

Simulations allow us to check that our models display the desired qualitative behavior and,

since they are nested—building one mechanism on top of another—we can see how each set of

extra parameters modifies the individual-level behavior. Additionally, we can see how modifi-

cations at this level affect the behavior at the dyadic level.

For each model, we simulated 150 dyads, each playing 60 rounds of the game. Results are

summarized in Fig 7. In the top left panel we can see the frequency of each focal region, as

they were explored by a player on a given round—we call this a trial. That is, for instance, if

we consider trials from MBIASES, we can observe that in 10% of the cases players chose

region BOTTOM. This corresponds to the parameter biasBOTTOM, which was set to 0.1 (see

Table 2). For the model in question, all frequencies correspond to their respective model

parameter. [It is important to note that we reduced the number of parameters by consider-

ing that biasLEFT=biasRIGHT=biasBOTTOM=biasTOP, and that biasIN=biasOUT. This is justified not

only because we are taking pairs of complementary focal regions, but also because of the

observed frequencies in our human dataset (see Fig 3).] This means that the qualitative

behavior of these parameters is as expected: they determine, all other things being equal, the

probability that a player chooses the respective focal region. Next, consider the contribution

of parameters α, β and γ, which determine the “Win Stay, Lose Shift” mechanism. This can

be appreciated in the top right panel in Fig 7, in which we present the boxplot of the players’

consistency on Round n for three different levels of score obtained on Round n − 1. Observe

that for WSLS and FRA, high scores have a higher degree of consistent behavior on the next

round, which represents the players’ tendency to re-select tiles from rounds on which their

score was higher. This was not so for MBIASES, since it does not implement the mechanism

in question. Furthermore, observe that “Win Stay, Lose Shift” has a clear effect at the dyadic

level, since we can see that players converged on a successful split of the grid, as shown in

the bottom right panel in Fig 7. This panel shows the average over 150 dyads of the DLINDEX

per round. Only WSLS and FRA show a convergence towards high values of DLINDEX. The FRA

model’s better performance on earlier rounds is explained by the extra mechanism it imple-

ments. The mechanism depends on parameters δ, �, z which control the influence of
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FRASim on the attractiveness function, and overall it allows for a faster convergence on a

split of the grid. Finally, we can also see that the interaction between difference in consis-

tency and overlap, as captured by the regression model discussed in Eq 2, behaves as

expected. The interaction coefficient, β4, for MBIASES is only 0.007, for WSLS rises to 0.016,

and goes up to 0.026 for FRA.

Fig 7. Simulations results. Top left: Percentage of trials on which a region was chosen and uncovered. This panel shows that, in MBIASES, the parameter

biask determines the frequency of trials on which region k is selected. Top right: Evidence of “Win Stay, Lose Shift” heuristic, which is present in both

WSLS and FRA but not in MBIASES. The panel shows the boxplot of the players’ consistency on Round n for three different levels of score obtained on

Round n − 1. Bottom left: Evidence of how similarity to focal regions elicits stubbornness. This mechanism is not present in MBIASES, which is reflected

by the almost horizontal line in the plot. The effect of this heuristic is quite clear in FRA and WSLS. Bottom right: Qualitative behavior in terms of DLINDEX

per round, averaged over 150 dyads. We can see that, while MBIASES doesn’t take off, WSLS and FRA can be quite successful in negotiating a split of the

grid. The latter is more efficient than the former, due to the extra heuristic implemented by the players.

https://doi.org/10.1371/journal.pone.0254532.g007

Table 2. Parameters used in simulations shown in Fig 7.

Model Parameters

biasALL biasNOTHING biasLEFT biasIN α β γ δ � z

MBIASES 0.1 0.1 0.1 0.1 0 0 0 0 0 0

WSLS 0.1 0.1 0.1 0.1 100 30 31 0 0 0

FRA 0.1 0.1 0.1 0.1 100 30 31 2 30 0.8

https://doi.org/10.1371/journal.pone.0254532.t002
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Parameter fit and model recovery

To fit the model parameters to the dataset collected from humans, we constructed a likelihood

function on the basis of a multinomial function. The arguments to the latter are the probability

vector (pRS, . . ., pOUT) obtained from the model, as well as the vector of observed frequencies

(nRS, . . ., nOUT) obtained from the dataset. Both vectors depend on the region a player explored

on a round, the score obtained therein, and the area of overlapping tiles with the other

player—this is what we called the current situation of the game. The deviance of the model

with respect to a dataset is obtained by summing the −2�log-likelihoods from every situation

of the game. We found the optimal parameters that minimize the deviance using the simplex

method, implemented in the NMKB function of the DOPTIM package in R.

We performed a model recovery exercise in order to check the accuracy of our parameter

estimation method. The results are shown in Fig 8, where we can observe that the method is

fairly accurate to fit biases in the case of MBIASES and WSLS (see panels in box (a); first row cor-

responds to MBIASES; the second to WSLS, and the third to FRA). Moreover, the estimation of α
and γ (see box (b), top for WSLS and bottom for FRA), is almost completely satisfactory for WSLS.

We should observe that parameter fit is sub-optimal in the case of FRA, probably due to the

interaction between mechanisms (see bottom rows in boxes (a), (b) and (c)).

Modeling a shaky hand

It is not uncommon to find players in a fully coordinated dyad falling out of line with respect

to their previously selected focal region, and making a small deviation of two or three tiles

from this focal region, only to come back to the full region on the next round. The discrepancy

between an internal decision and the overt behavior—commonly known as the shaky-hand

phenomenon—must be incorporated into our model to allow it to fit the observed behavior

from our human subjects. In particular, a shaky hand process allows us to accommodate play-

ers’ overt tile choices falling outside of a focal region to which they subsequently return.

To get an idea about the extent of this phenomenon, we looked at trials on which

DLINDEX�0.99 and counted the number of misplaced tiles with respect to the closest focal

region. We found that the proportion of regions with no misplaced tiles—a proportion we

shall refer to as NON-SHAKY—is approximately 0.88.

To account for the shaky-hand phenomenon when fitting our models’ parameters to the

data, we included an extra layer on top of Eq 3. This additional layer represents the actual

behavior, which is theoretically different from the decision made by the player. In this layer,

the probability of a focal region is lowered by a factor of NON-SHAKY with respect to the original

model according to the following formula:

PNON� SHAKYðkÞ ¼

(
NON � SHAKY � PðkÞ; if k is a focal region

1 � NON � SHAKY � ð1 � PðkÞÞ; if k ¼ RS
ð6Þ

To derive the formula in the case where k = RS, observe that ∑k2Focals P(k) = 1 − P(RS). This

formula determines the probability vector to be used in the procedure explained above with

which we fit the models to the behavioral data.

We also modified simulations to include a shaky hand in the following way. At the end of

each round, players choose a region according to Eq 1. However, at the beginning of the

round, players choose with probability NON-SHAKY whether a small number of randomly chosen

tiles inside and outside the chosen region are flipped (i.e., not visited if in region, or visited if

not in region). In this way, the model’s choice behavior does not always coincide with the cho-

sen focal region in a proportion approximately equal to 1 − NON-SHAKY.
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Behavioral data fit

We fit our models to the behavioral data and found their deviance and AIC, summarized in

Table 3. Using the Likelihood Ratio Test for nested models, we obtained quantitative evidence

Fig 8. Model recovery exercise. All panels plot the value of the parameter that was input to the simulation (x-axis)

against the parameter recovered by the maximum likelihood method (y-axis). Each data point corresponds to one

simulation with a given set of randomly chosen parameters. In a perfect world, all points should fall in the y = x line.

Box (a) shows the results for the first four parameters, corresponding to the biases. Box (b) corresponds to parameters

controlling “Win Stay, Lose Shift.” Box (c) corresponds to parameters controlling FRASim.

https://doi.org/10.1371/journal.pone.0254532.g008
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that FRA provides a better account of the underlying choice process and that this model’s better

fit to the data is not due to over-fitting. Moreover, the AIC shows that there is strong support in

favor of FRA with respect to both WSLS and MBIASES, even if we take into account this model’s

greater complexity, as introduced by the extra parameters.

We simulated 45 dyads playing 60 rounds of the game, for the three models with the fitted

parameters from Table 3. In Fig 9 we can see the behavior of these models. In the left panel we

can see that FRA and WSLS come quite close to the observed behavior at the dyadic level, and

that the former predicts a better coordination than the latter. In the right panel we can see the

kernel density estimate of DLINDEX for observed and simulated data. For humans, values of

Table 3. Best parameters, deviance, and AIC for each model. It also presents the critical value of χ2 for the Likelihood Ratio Test for nested models.

Model Parameters

biasALL biasNOTHING biasLEFT biasIN α β γ δ � z

MBIASES 0.13 0.076 0.058 0.005 0 0 0 0 0 0

WSLS 0.1 0.05 0.018 0.002 38 30 4.6 0 0 0

FRA 0.06 0.05 0.003 0.000 40 30 15 0.5 30 0.954

Model Dev. χ2 vs. MBIASES χ2 vs. WSLS AIC ΔAIC vs. MBIASES ΔAIC vs. WSLS

MBIASES 1612 − − 1620 − −
WSLS 654 958� − 668 952† −
FRA 557 1055�� 97� 577 1043† 91†

Conventions: � signifies that χ2 has 3 d.o.f. and that p < 0.001. Moreover, �� signifies that χ2 has 6 d.o.f. and that p < 0.001. Finally, † signifies strong support that the

winning model is closer to the true generating process over and above the complexity introduced by the extra parameters.

https://doi.org/10.1371/journal.pone.0254532.t003

Fig 9. Behavioral data fit at the dyadic level. Left: DLINDEX per round, averaged over 45 dyads. Right: Kernel density estimate of DLINDEX.

https://doi.org/10.1371/journal.pone.0254532.g009
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DLINDEX between 0.5 and 1 are more frequent, representing the fact that humans show more

intermediate states of coordination between players as compared to our models’ predictions.

However, tendencies for both FRA and WSLS are similar to that of humans, with a significantly

better fit for the former. To sum up, it seems that WSLS predicts a less efficient division of labor

than exhibited by people, whereas FRA and people show a comparable degree of division of

labor.

Discussion

57% of human dyads finished 60 rounds of gameplay with an efficient division of labor. The

results from our experiment and our computational models allow us to explain how most

dyads managed to split the grid without being able to engage in explicit negotiations. First of

all, even though there are 264 ways to split the grid, dyads split it in only four different ways.

In some sense, these splits are focal points because they have a certain psychological salience

[19]. One might have thought that these individual cognitive biases (focal points) would exert

an early (in terms of rounds) influence on choices exactly because they are a priori, so that

agents would have started on Round 1 with strategies of selecting all tiles on the left, top, bot-

tom, or right. If agents understand that these are natural attractors, then through engaging in

many levels of iterated thinking based on common knowledge [21], these would be logical

starting points. However, players do not generally start with strategies that resemble focal

points. Humans are far more idiosyncratic and exploratory in their initial selections of tiles.

It is only through repeated interactions that players manifest their a priori predispositions/

biases toward certain focal points. In other words, a priori biases do not entail that the biases

are manifest at the onset of play. It is only through dyadic interaction that these biases are

revealed [30].

This is an interesting complement to Schelling’s focal points proposal. Schelling’s original

examples were all one-shot tasks, featuring complex problems (e.g., if you and your wife get

lost from one another in the supermarket, in the era prior to cell phones, where will you find

each other?). However, Schelling’s solution only works if there is just one focal point on which

to converge (but can you and your wife think of only one single salient spot in the supermar-

ket?). When there are two or more focal points, further negotiations are required. We propose

that, in an iterative task, this implicit negotiation might take place in the form of focal points

being revealed after some early attempts, which then attract a player’s choices, and the overlap

provides hints to the other player to move towards complementary choices.

As for some potential applications of our model outside cognitive science, consider the fol-

lowing. Suppose that humans and bots are cooperating to monitor for infiltrators into a

group. They may need to adaptively organize themselves to look on different social media

areas for infiltrators. In this case, finding infiltrators is like searching for a unicorn. Taking

into account FRA, a bot might want to assess whether a human is close to covering a focal

region (e.g., a compact set of forums that cohere based on their topical similarity), and if so

move their search to cover complementary regions. Or suppose a situation similar to ‘El Farol

bar problem’ [14], where a group of people is iteratively presented with the choice of taking

advantage of a resource, but only a limited amount of people can profit from it per turn. Col-

laboration may be improved if participants are presented with visual cues about their overlap-

ping turns, which might allow them to move to complementary focal points—i.e., natural and

complementary patterns of turns determining when a person is allowed to reach for the

resource.
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Conclusion

Interacting individuals, both human and algorithmic, can often arrive at efficient coordinating

solutions in a paradigm that incorporates two challenging conditions: Individuals cannot

explicitly communicate, and there are multiple coordinating solutions that are initially equally

salient. The human and computational results indicate that agents solve this coordination task

by beginning with a set of mutually incompatible focal points. Then, via iterated interactions

they adjust their behaviors to move toward focal points when they are not at a focal point, stay

in a focal point once reached, and shift to a complementary focal point relative to the other

player when this other player is close to a focal point. In this way, the coordination that a

group forms results from the interplay over time between their a priori cognitive biases and

the dynamics of their interpersonal interaction [31].

Data and resources availability

We have made freely available our experimental protocols, datasets, videos, and scripts (in

both R and Python) that we used to perform the various statistical tests, plots, model simula-

tion and model checking. We will annotate each of these resources in the following

paragraphs.

Protocols and datasets

Protocol. The description of the “Seeking the unicorn” protocol, described in “Materials

and methods” section, can be found in the protocols repository https://www.protocols.io/

view/seeking-the-unicorn-bts9nnh6. As stated in the main text, we implemented the task

using nodeGame, and the code implementing the game is freely available at https://github.

com/Slendercoder/Seeking_the_unicorn.

Datasets. Using the aforementioned protocol and the nodeGame platform, we obtained

data from our human participants. The datasets can be found at the following Open Science

Foundation link: https://osf.io/3xcqr/?view_only=162a4ed4834b419ea374c605519c0d1f. They

can also be found at the Github repository for the whole project: https://github.com/

EAndrade-Lotero/SODCL. A complete explanation of our datasets can be found as a raw text

file https://github.com/EAndrade-Lotero/SODCL/blob/master/README.rtf or as a jupyter

notebook https://github.com/EAndrade-Lotero/SODCL/blob/master/Dataset_explanation.

ipynb. The raw dataset, which only combines and transforms data from multiple json output

files from nodeGame can be found in https://github.com/EAndrade-Lotero/SODCL/blob/

master/Data/performances.csv. However, the main dataset we used during the analysis, in

which we only maintained rows representing rounds with unicorn absent and which includes

the relevant measures, can be found in https://github.com/EAndrade-Lotero/SODCL/blob/

master/Data/humans_only_absent.csv. The python code used to perform the classification of

regions and to obtain the different measures can be accessed here: https://github.com/

EAndrade-Lotero/SODCL/blob/master/Python/get_measures.py.

Videos and graphics of each dyad’s behavior

Videos. We have reproduced the behavior of each dyad in a video, each frame represent-

ing one round of the experiment. In each frame there are two grids, one per player, where

black tiles represent tiles covered by only one player and red tiles represent tiles covered by

both players. The reproduction of each dyad’s gameplay can be accessed at https://github.com/

EAndrade-Lotero/SODCL/tree/master/Videos. The reader is suggested to consult videos 140-

615, 648-175, and 948-444 for examples of interesting dynamics.
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Graphics with representative measures. In the following pdf, the reader can consult the

representative measures for all dyads, including the score, accumulated score, DLINDEX, consis-

tency and the final magnitude-coded tiles: https://github.com/EAndrade-Lotero/SODCL/

blob/master/graphics.pdf. The document was created with the python code in https://github.

com/EAndrade-Lotero/SODCL/blob/master/Python/get_graphics.py using the second dataset

presented above. This document is an expansion of Fig 2 to all dyads.

Classification of dyads

The classification of dyads into each of the eight focal regions was done with the help of the R

code in https://github.com/EAndrade-Lotero/SODCL/blob/master/R/ClassifyDyads.R. This

information was essential for making Fig 3.

Statistical tests and evidence for qualitative behavior

Influence of unicorn present. The R code used to check the influence of the unicorn

being present on the player’s behavior during the subsequent round with unicorn absent can

be found in https://github.com/EAndrade-Lotero/SODCL/blob/master/R/InfluencePresent.R.

Comparison between one-shot and iterated task. To compare the behavior observed

during the first round to that of all rounds, we used the R code in https://github.com/

EAndrade-Lotero/SODCL/blob/master/R/OneShot-vs-Iterated.R, as well as the following

python code, which we used to produce the histogram of convergence on a successful division

of labor: https://github.com/EAndrade-Lotero/SODCL/blob/master/Python/Histogram.py.

This information was essential in making Fig 4.

Evidence for heuristcs. The first heuristic we checked against the data was that of “Win

Stay, Lose Shift.” To analyze the data we used the R code in https://github.com/EAndrade-

Lotero/SODCL/blob/master/R/WSLS.R. In the main text we mentioned that this heuristic can-

not fully account for an interaction effect between difference in consistency and the amount of

overlapping tiles. The R code we used to find this interaction can be found in https://github.

com/EAndrade-Lotero/SODCL/blob/master/R/InteractionEffect.R. Another heuristic is that

of stubbornness, that is, the tendency of players to reselect tiles when they resemble a focal

region. The R code to check this can be found in https://github.com/EAndrade-Lotero/

SODCL/blob/master/R/Stubbornness.R. Finally, in the main text we presented an example

from an actual gameplay of one of our human dyads to illustrate the FRA heuristic. We have

created a video displaying the FRASim measures for some rounds, which can be viewed here:

https://github.com/EAndrade-Lotero/SODCL/blob/master/Videos/FRA_in_action.mp4. The

gameplay for all rounds can be found in video https://github.com/EAndrade-Lotero/SODCL/

blob/master/Videos/435-261.avi. These videos were essential for making Fig 6.

Simulated data, parameter fit and fitted models

To obtain our simulated data, we implemented the game in a Python code. To run the model,

run >python3 main.py with the desired parameters. The logic of the game is coded in

EmergenceDCL.py, and the functions that properly run the decision process based on the

models are in FRA.py. All these files can be freely accessed at https://github.com/EAndrade-

Lotero/SODCL/tree/master/Python. In the main text we presented the results of simulated

data in Fig 7. The R code used to make this figure can be found in https://github.com/

EAndrade-Lotero/SODCL/blob/master/R/Mechanisms.R. The simulated data for the model

recovery exercise can be found in https://github.com/EAndrade-Lotero/SODCL/tree/master/

Data/Model-Recovery, and the R code to fit the models by means of the maximum likelihood
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estimation technique in https://github.com/EAndrade-Lotero/SODCL/blob/master/R/

ConfusionMatrix.R. We used this information to create Fig 8 by means of the R code in

https://github.com/EAndrade-Lotero/SODCL/blob/master/R/ReadCM.R. To fit the models to

human data we used the R code in https://github.com/EAndrade-Lotero/SODCL/blob/

master/R/fitModel.R and the information obtained was presented in Table 3. To visualize the

models with the parameters fitted to human data, we used the R code in https://github.com/

EAndrade-Lotero/SODCL/blob/master/R/plot_fitted_models.R, which produces Fig 9.
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