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The immune system can both promote and suppress cancer. Chronic inflammation and 
proinflammatory cytokines such as interleukin (IL)-1 and IL-6 are considered to be tumour 
promoting. In contrast, the exact nature of protective antitumour immunity remains obscure. 
Here, we quantify locally secreted cytokines during primary immune responses against myeloma 
and B-cell lymphoma in mice. strikingly, successful cancer immunosurveillance mediated 
by tumour-specific CD4 +  T cells is consistently associated with elevated local levels of both 
proinflammatory (IL-1α, IL-1β and IL-6) and T helper 1 (Th1)-associated cytokines (interferon-γ 
(IFn-γ), IL-2 and IL-12). Cancer eradication is achieved by a collaboration between tumour-
specific Th1 cells and tumour-infiltrating, antigen-presenting macrophages. Th1 cells induce 
secretion of IL-1β and IL-6 by macrophages. Th1-derived IFn-γ is shown to render macrophages 
directly cytotoxic to cancer cells, and to induce macrophages to secrete the angiostatic 
chemokines CXCL9/mIG and CXCL10/IP-10. Thus, inflammation, when driven by tumour-
specific Th1 cells, may prevent rather than promote cancer. 
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The immune system can protect against cancer1. Elevated 
numbers of intratumoral T cells predict long-term survival 
for patients with advanced ovarian carcinoma and colorec-

tal cancer2,3. Yet, little is known about the exact nature of protec-
tive antitumour immune responses. On the other hand, it is well  
established that chronic inflammation predisposes to cancer.  
Proinflammatory cytokines such as interleukin (IL)-1 and IL-6 are 
considered to be essential for tumour progression, and anti-inflam-
matory drugs have been suggested to treat cancer4–9. However, 
anti-inflammatory treatments may potentially suppress protective 
antitumour immunity. Strategies to fight malignancies should be 
based on stimulating rather than suppressing the ongoing immune 
response against cancer. Therefore, it is crucial to better understand 
the interplay between immune cells, inflammation and cancer.

Tumour-specific CD4 +  T cells orchestrate the immune response 
against cancer. CD4 +  T cells are required for cytokine-mediated 
activation of tumour-specific cytotoxic CD8 +  T cells, but they can 
also eliminate cancer in the absence of CD8 +  T cells10,11. A recent 
study of patients with breast cancer concluded that high numbers of 
CD4 +  T cells in lymph nodes (LNs) predict disease-free survival12. 
In lung and liver cancer, high CD4:CD8 T-cell ratios were associated 
with good prognosis13,14. However, CD4 +  T cells may also suppress 
antitumour immunity15. To clarify the mechanism of cancer pre-
vention by CD4 +  T cells, we have used idiotype (Id)-specific T-cell 
receptor transgenic (TCR-TG) mice, which were made homozygous 
for the severe combined immunodeficiency (SCID) mutation to 
prevent rearrangement of endogenous TCR chains11. In these mice, 
tumour-specific CD4 +  T cells recognize an Id peptide from the  
variable region of the immunoglobulin light chain of the MOPC315 
myeloma, presented on major histocompatibility complex (MHC) 
class II molecules16. Id-specific TCR-TG SCID mice are resistant 
against subcutaneous (s.c.) inoculation with syngeneic MOPC315 
myeloma cells or with Id-transfected F9 B-lymphoma cells,  
whereas non-transgenic mice develop fatal tumours. Protection is 
Id-specific, CD4 +  T cell-mediated, and does not require the presence  
of B cells and CD8 +  T cells11,17.

To study the mechanisms of cancer rejection by Id-specific  
TCR-TG mice, we have developed a strategy consisting of embed-
ding injected tumour cells in a collagen gel (Matrigel). The Matrigel 
functions as an extracellular matrix in which infiltrating immune 
cells can be analysed at various time points after injection. Using 
this method, we have reported the first characterization of a suc-
cessful primary antitumour immune response initiated by naïve 
CD4 +  T cells18. In brief, we could show that s.c. injected MOPC315  
myeloma cells were surrounded within 3 days by macrophages, 
which captured tumour-specific antigens. Within 6 days, naïve  
Id-specific CD4 +  T cells became activated in draining LN and sub-
sequently migrated to the incipient tumour site. On recognition of 
tumour-derived Id peptides presented on MHC class II molecules 
by macrophages, Id-specific CD4 +  T cells were shown to secrete 
interferon-γ (IFN-γ). Matrigel-infiltrating macrophages became acti-
vated by T cell-derived IFN-γ, and could kill MHC class II-nega-
tive myeloma cells directly18. However, in this previous report the 
exact function of IFN-γ was not fully defined and the involvement 
of other cytokines was not investigated.

In this study, we have further developed the Matrigel assay to 
quantify locally secreted cytokines during primary antitumour 
immune responses. Using this method, we uncovered a common 
core of nine cytokines that were consistently associated with success-
ful cancer immunosurveillance. Strikingly, this core includes both 
proinflammatory (IL-1α, IL-1β and IL-6) and T helper (Th)1-asso-
ciated (IL-2, IL-3, IL-12, IFN-γ, CXCL9 and CXCL10) cytokines. 
Twelve additional cytokines were associated with cancer prevention 
in most, but not all experimental settings investigated. Thus, we 
have identified a total of 21 cytokines, which may serve as a basis to 
develop cytokine-based immunotherapy for cancer. Furthermore, 

we provide evidence for a dual antitumour role of Th1-derived IFN-γ.  
First, IFN-γ triggers tumouricidal activity of tumour-infiltrating  
macrophages. Second, IFN-γ induces macrophages to secrete 
the angiostatic chemokines CXCL9/MIG (monokine induced by  
IFN-γ) and CXCL10/IP-10 (IFN-γ inducible protein 10), which may 
halt tumour progression by inhibiting angiogenesis. Collectively, 
our data suggest a cancer-protective role of inflammation driven by 
tumour-specific Th1 cells.

Results
The Matrigel cytokine assay. We have developed a method to 
quantify locally secreted cytokines during the early stages of an 
immune response against cancer in mice. The method is based on 
s.c. inoculation of cancer cells embedded in a Matrigel collagen gel 
(Fig. 1a). Matrigel is derived from a murine sarcoma and therefore 
represents a genuine tumour cell microenvironment19. Matrigel, 
which is liquid at  + 4 °C, gelifies at body temperature and forms a 
gel plug containing the injected cancer cells18. The gel functions as 
an extracellular matrix and contains the cytokines that are secreted 
locally by cancer cells and by infiltrating immune cells. At various time 
points after injection, the Matrigel plug can be excised and dissolved 
in vitro with collagenase. A cell-free supernatant containing secreted 
cytokines that are present in the Matrigel extracellular matrix is 
obtained by centrifugation (Fig. 1a). Cytokines in the supernatant 
are quantified by multiplex bead assays. An initial experiment to test 
the method revealed that numerous cytokines could be detected in 
the Matrigel at day  + 8, which represents the height of the antitumour 
immune response18 (Supplementary Fig. S1). To identify cytokines 
associated with successful cancer immunosurveillance, we designed 
a series of five experimental situations to compare cytokine levels 
during successful versus failed immune responses against cancer.

Tumour-specific CD4 +  T cells control local cytokine levels. In 
the first experimental situation (myeloma ± specific T cells), we 
compared tumour-specific CD4 +  T cells with CD4 +  T cells that 
recognized an irrelevant antigen, ovalbumin (OVA). Id-specific 
TCR-TG SCID mice, OVA-specific TCR-TG SCID mice and SCID 
mice were injected s.c. with MOPC315 myeloma cells. Id-specific 
TCR-TG SCID mice were protected against MOPC315 (Fig. 1b), as 
previously reported11. Control SCID mice, which lack T and B cells, 
succumbed from cancer within 40 days. OVA-specific TCR-TG 
SCID mice, which have T cells but cannot recognize Id, developed 
tumours as quickly as SCID mice (Fig. 1b). For a cytokine assay,  
Id-specific and OVA-specific TCR-TG SCID mice were injected with 
MOPC315 in Matrigel (Fig. 1c–g). The total numbers of MOPC315 
cells and CD11b +  macrophages in Matrigel at day  + 8 were simi-
lar for both groups (Fig. 1d,e). However, when we used MHC class 
II upregulation as an activation marker for macrophages18, acti-
vated MHC class IIhigh macrophages were only found in Id-specific  
TCR-TG SCID mice (Fig. 1f). Quantification of 33 cytokines in 
Matrigel revealed that the local concentration of 21 cytokines was 
significantly higher in the presence of tumour-specific CD4 +  T cells, 
that is, in tumour-resistant Id-specific TCR-TG SCID mice (Fig. 1g;  
Supplementary Fig. S2). Notably, cytokine levels in serum were  
similar between the groups, underscoring the importance of meas-
uring cytokines locally at the incipient tumour site (Supplementary 
Fig. S2).

Cytokines associated with myeloma immunosurveillance. We 
then investigated the role of tumour-specific antigen using an anti-
gen-loss (Ag-loss) variant of MOPC315 which is not rejected by Id-
specific TCR-TG SCID mice20. In the second experimental situation 
(myeloma ± antigen, one flank), two groups of Id-specific TCR-TG 
SCID mice were injected with Matrigel containing either MOPC315 
or Ag-loss MOPC315 (Fig. 2a,b). Matrigel cytokine quantification 
at day  + 8 revealed that the local concentration of 21 cytokines was 
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significantly higher when cancer immunity was successful, that is, 
in mice injected with antigen-producing myeloma cells (Fig. 2b;  
Supplementary Fig. S3). In the third experimental situation 
(myeloma ± antigen, two flanks), we designed a system in which 
successful and failed immunosurveillance could be investigated in 
the same mouse at different anatomic locations. Id-specific TCR-
TG SCID or SCID mice were injected with MOPC315 in Matrigel 
on the right flank and with Ag-loss MOPC315 in Matrigel on the 
left flank. SCID mice developed tumours with similar kinetics on 
both flanks. In contrast, Id-specific TCR-TG SCID mice efficiently 
suppressed the growth of MOPC315, but failed to reject Ag-loss 
MOPC315 on the contralateral flank, demonstrating the antigen 
specificity of the antitumour immune response within the same 
mouse (Fig. 2c). For a Matrigel cytokine assay, Id-specific TCR-
TG SCID mice were injected on both flanks with either MOPC315 
or Ag-loss MOPC315 (Fig. 2d–g). At day  + 8, activated CD69 +  
tumour-specific CD4 +  T cells were observed in the right-flank LN 
draining the MOPC315 injection site, but not in the contralateral 
LN draining Ag-loss MOPC315 (Fig. 2e). Activated, MHC class IIhigh 
macrophages were only detected in the right-flank Matrigel plugs 
containing MOPC315, but not in the contralateral site (Fig. 2f),  

confirming the importance of antigen presentation in situ for  
T cell-mediated activation of macrophages18. Multiplex bead analy-
sis revealed that local antigen recognition by tumour-specific CD4 +  
T cells resulted in increased levels of 13 cytokines and decreased 
levels of 3 cytokines in Matrigel (Fig. 2g; Supplementary Fig. S4). 
Analysis of all the MOPC315 data revealed that 11 cytokines were 
consistently associated with successful immunosurveillance against 
myeloma (Table 1).

Cytokines consistently associated with cancer prevention. To 
assess the general significance of our findings, we performed an 
experiment with another cancer type, namely the F9 B-cell lym-
phoma. F9 is an A20 BALB/c-derived lymphoma that was trans-
fected with Id, whereas F55 is an Id-negative control lymphoma21. 
As F9 but not F55 cells are rejected by Id-specific TCR-TG mice17, 
this model represents successful versus failed immunosurveil-
lance against lymphoma. An important difference between the 
two cancer types is that MOPC315 cells do not express MHC class 
II molecules, whereas F9 cells express high levels and thus can 
present Id directly to CD4 +  T cells21. Id-specific TCR-TG SCID 
mice were injected with F9 cells in Matrigel on the right flank, and 
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Figure 1 | Role of tumour-specific CD4 +  T cells for myeloma immunosurveillance. (a) The matrigel cytokine assay. Cancer cells are mixed with cold 
liquid matrigel before s.c. injection. matrigel gelifies in vivo and forms a gel plug. The plug contains the injected cancer cells, infiltrating immune cells 
and cytokines that are secreted locally. At various time points after injection, the matrigel plug is excised and dissolved with collagenase. Following 
centrifugation, cytokines in supernatant are quantified by Luminex technology. Cells in the pellet are analysed by various techniques such as flow 
cytometry, Luminex technology and gene expression microarrays. (b) Tumour challenge experiment. Id-specific TCR-TG sCID mice (squares), oVA-
specific TCR-TG sCID mice (triangles) and sCID mice (circles) were injected s.c. with moPC315 myeloma cells in phosphate-buffered saline (PBs). 
Tumour development and survival were followed over time. *P = 0.0004 for difference in survival between Id-specific and oVA-specific TCR-TG sCID mice 
(log-rank test). (c) Design of the first experimental situation for cytokine analysis (myeloma ± specific T cells). Id-specific TCR-TG sCID mice and oVA-
specific TCR-TG sCID mice were injected s.c. with moPC315 myeloma cells in matrigel. The plugs were analysed individually at day  + 8. (d) Total number 
of moPC315 cells per plug. (e) Total number of CD11b +  macrophages per plug. (f) mHC class II levels on matrigel-infiltrating CD11b +  macrophages. mFI, 
mean fluorescence intensity. *P = 0.009, mann–Whitney test. (g) The concentration of 33 cytokines in the extracellular matrix of the matrigel plugs  
was quantified for Id-specific (black bars) and oVA-specific (grey bars) TCR-TG sCID mice. only cytokines with significantly (P < 0.05, mann–Whitney 
test) higher levels in one group compared with the other are included in the bar graph. (b) n = 6–8. (c–g) n = 11. Id-sp, Id-specific TCR-TG sCID mice;  
ns, not significant; oVA-sp, oVA-specific TCR-TG sCID mice. All data are presented as mean ± s.d. G-CsF, granulocyte colony-stimulating factor;  
Gm-CsF, granulocyte-macrophage colony-stimulating factor; TnF-α, tumor necrosis factor α.
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with F55 cells in Matrigel on the left flank. In addition, SCID mice 
were injected with F9 cells in Matrigel (Fig. 3a–c). Activated, MHC 
class IIhigh macrophages were only detected in Matrigel containing Id-
expressing F9 in TCR-TG SCID mice, but not in Matrigel with F55, 
nor in SCID mice (Fig. 3b). Thus, the activation of Matrigel-infil-
trating macrophages required (i) the presence of Id-specific CD4 +   
T cells and (ii) the local production of Id antigen. This observation 
suggests that the antitumour immune response may be very simi-
lar against MOPC315 and F9 cells, although the two cell types differ 
in terms of MHC class II expression. Cytokine quantification of all 
Matrigel plugs allowed two separate analyses of the data. First, cytokine 
levels were compared between each flank of the TCR-TG SCID mice 
(lymphoma ± antigen, two flanks). The local levels of 19 cytokines 
were higher in right-flank Matrigel plugs containing F9, compared 

with left-flank Matrigel plugs containing F55 (Fig. 3c; Supplementary  
Fig. S5). In a second parallel analysis of the data (lymphoma ± specific 
T cells), Matrigel plugs containing F9 were compared between TCR-
TG SCID and SCID mice, revealing increased levels of 20 cytokines 
in the situation in which immunosurveillance against lymphoma  
was successful, that is, in Id-specific TCR-TG mice (Table 1; Supple-
mentary Fig. S5). Analysis of all the F9 data showed that 16 cytokines 
were consistently associated with successful immunosurveillance 
against B-cell lymphoma (Table 1). Further analysis revealed a com-
mon core of nine cytokines that were consistently associated with suc-
cessful cancer immunosurveillance against myeloma and lymphoma: 
IL-1α, IL-1β, IL-2, IL-3, IL-6, IL-12p70, IFN-γ, CXCL9 and CXCL10 
(Table 1). Twelve additional cytokines were associated with cancer 
rejection in most but not all situations investigated (Table 1).
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Figure 2 | Role of antigen for myeloma immunosurveillance. (a) Design of the second experimental situation for cytokine analysis (myeloma ± antigen, 
1 flank). Id-specific TCR-TG sCID mice were injected s.c. with moPC315 or with Ag-loss moPC315 in matrigel. At day  + 8, the concentration of 33 
cytokines in the extracellular matrix of the matrigel plugs was quantified for each mouse. (b) matrigel cytokine levels for mice inoculated with moPC315 
(black bars) or with Ag-loss moPC315 (grey bars) from the experiment described in a. only cytokines with significantly (P < 0.05) higher levels in one 
group compared with the other are included in the bar graph. (c) Double-flank tumour challenge experiment. Id-specific TCR-TG sCID or sCID mice  
were injected with moPC315 in matrigel on the right flank (black diamonds), and with Ag-loss moPC315 in matrigel on the left flank (grey circles). 
Tumour development on each side was followed over time. (d) Design of the third experimental situation for cytokine analysis (myeloma ± antigen,  
2 flanks). Id-specific TCR-TG sCID mice were injected with moPC315 on the right flank, and with Ag-loss moPC315 on the left flank. matrigel plugs and 
draining Lns were analysed at day  + 8. (e) Expression of CD69 on gated tumour-specific (GB113 + ), CD4 +  T cells in the Ln draining the right and left flank 
from a representative mouse. Dotted lines indicate an isotype-matched control monoclonal antibodies (mAb). (f) mHC class II levels on gated CD11b +  
macrophages that had infiltrated the matrigel plugs containing either moPC315 (right flank) or Ag-loss moPC315 (left flank). *P = 0.0002. (g) Cytokines 
levels in matrigel plugs containing either moPC315 (black bars) or Ag-loss moPC315 (grey bars). only cytokines with significantly higher (top) or lower 
(bottom) levels (P < 0.05) in one group compared with the other are included in the graphs. (a, b) n = 6. (c) n = 7–8. (d–g) n = 11. All data are presented as 
mean ± s.d. statistical analysis was performed with the mann–Whitney test. FGF-2, fibroblast growth factor 2; m-CsF, macrophage colony-stimulating 
factor; TGF-β, transforming growth factor-β.
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Role of IFN-. IFN-γ-deficient (IFN-γ − / − ) Id-specific TCR-TG SCID 
mice were unable to reject MOPC315 or F9 cells, demonstrating the 
critical role of IFN-γ for immunosurveillance of both myeloma and 
lymphoma (Fig. 4a). Interestingly, tumour growth was significantly 
delayed in IFN-γ − / −  Id-specific TCR-TG SCID mice as compared 
with SCID mice, suggesting residual, but insufficient antitumour 
immunity in the absence of IFN-γ (Fig. 4a). For a Matrigel cytokine 
assay, IFN-γ + / +  and IFN-γ − / −  Id-specific TCR-TG SCID mice were 
injected with MOPC315 (Fig. 4b–f). At day  + 8, activated CD69 +  
Id-specific T cells were found for both groups of mice in draining 
LNs and in Matrigel plugs (Fig. 4c). Thus, IFN-γ was required nei-
ther for activation of naïve tumour-specific T cells in LNs nor for 
their migration and reactivation at the incipient tumour site. In 
fact, significantly more tumour-specific T cells were found in the 
Matrigel plugs from IFN-γ − / −  mice (Fig. 4d), presumably because  
T-cell proliferation is generally stronger in IFN-γ − / −  mice22. Although 
activated Matrigel-infiltrating tumour-specific T cells were present 
in both groups, activated MHC class IIhigh macrophages were only 
detected in the plugs from IFN-γ + / +  mice (Fig. 4e), confirming the 
importance of IFN-γ for macrophage activation18. Matrigel cytokine 
quantification revealed that the local levels of three cytokines  
(IFN-γ, CXCL9 and CXCL10) were significantly lower, whereas 
one cytokine (IL-1β) was higher, in IFN-γ − / −  compared with IFN-
γ + / +  mice (Fig. 4f; Supplementary Fig. S6). Thus, IFN-γ deficiency  
results in reduced secretion of CXCL9 and CXCL10 at the incipient 
tumour site.

In a previous report, we have shown that Matrigel-infiltrating 
macrophages, isolated from Id-specific TCR-TG SCID mice, were 
cytotoxic to MOPC315 cells in vitro18. Tumouricidal macrophage 
activity was strictly dependent on macrophage activation by CD4 +  

T cells, because macrophages isolated from SCID mice, even in high 
numbers, could not inhibit MOPC315 growth. It was speculated 
that macrophages were rendered tumouricidal by Th1-derived IFN-
γ18. To test this hypothesis, we compared the tumouricidal activity 
of macrophages isolated from either IFN-γ + / +  or IFN-γ − / −  TCR-TG 
SCID mice. The ability of Matrigel-infiltrating macrophages from 
IFN-γ − / −  mice to inhibit the growth of MOPC315 cells in vitro 
was severely reduced, although not completely abolished (Fig. 4g). 
Hence, IFN-γ is required for rendering tumour-infiltrating macro-
phages fully competent to directly kill cancer cells.

Myeloma immunosurveillance is mediated by Th1 cells. IFN-γ is a 
typical product of activated Th1 cells but tumour-specific Th17 cells 
may also secrete IFN-γ 23. Intracellular flow cytometry revealed that 
Matrigel-infiltrating Id-specific T cells produced IFN-γ and tumour 
necrosis factor α (TNF-α), and expressed the transcription factor 
T-bet, which is consistent with a Th1 differentiation. In contrast, 
Id-specific T cells did not express molecular markers for Th2 (IL-4, 
Gata-3), Th17 (IL-17) or regulatory T cells (Foxp3; Fig. 5a). Thus, 
myeloma rejection in Id-specific TCR-TG SCID mice is mediated 
by IFN-γ-producing tumour-specific Th1 cells.

Cytokine production of tumouricidal macrophages. We then 
quantified intracellular cytokines in sorted populations of Matrigel-
infiltrating macrophages. Macrophages involved in tumour rejec-
tion were purified from Id-specific TCR-TG SCID mice injected 
with MOPC315, whereas control macrophages were from SCID 
mice. Successful antitumour immunity was associated with elevated 
levels of nine cytokines in Matrigel-infiltrating macrophages (Fig. 
5b; Supplementary Fig. S7). These data suggest that, among the 

Table 1 | Cytokine profiles of successful cancer immunosurveillance.*

Experiment 
myeloma ± specific 
T cells

Experiment 
myeloma ± antigen 
1 flank

Experiment 
myeloma ± antigen 
2 flanks

Experiment 
lymphoma ± antigen 
2 flanks 

Experiment 
lymphoma ± specific 
T cells

Cytokines  
always  
present†

Cytokines  
often  
present‡

IL-1α IL-1α IL-1α IL-1α IL-1α IL-1α
IL-1β IL-1β IL-1β IL-1β IL-1β IL-1β
IL-2 IL-2 IL-2 IL-2 IL-2 IL-2
IL-3 IL-3 IL-3 IL-3 IL-3 IL-3
IL-6 IL-6 IL-6 IL-6 IL-6 IL-6
IL-12p70 IL-12p70 IL-12p70 IL-12p70 IL-12p70 IL-12p70
IFn-γ IFn-γ IFn-γ IFn-γ IFn-γ IFn-γ
CXCL9 CXCL9 CXCL9 CXCL9 CXCL9 CXCL9
CXCL10 CXCL10 CXCL10 CXCL10 CXCL10 CXCL10
CCL4 CCL4 CCL4 CCL4
IL-9 IL-9 IL-9 IL-9
CCL2 CCL2 CCL2 CCL2 CCL2
CCL5 CCL5 CCL5 CCL5

FGF-2 FGF-2 FGF-2 FGF-2
G-CsF G-CsF G-CsF G-CsF G-CsF
IL-5 IL-5 IL-5 IL-5 IL-5
IL-12p40 IL-12p40 IL-12p40 IL-12p40 IL-12p40

LIF§ LIF
CXCL1 CXCL1

Gm-CsF Gm-CsF Gm-CsF Gm-CsF
IL-10

IL-15 IL-15 IL-15 IL-15
IL-17 IL-17
IL-18 IL-18 IL-18 IL-18

m-CsF m-CsF
TnF-α TnF-α TnF-α TnF-α
*In five different experimental situations, locally secreted cytokines were quantified during successful versus failed immunity against myeloma and B-cell lymphoma. For each situation, cytokines with 
higher levels (P < 0.05) in the group with successful cancer immunosurveillance are listed.
†Cytokines always associated with successful immunosurveillance, that is, in five out of five situations tested.
‡Cytokines often but not always associated with successful immunosurveillance, that is, in 3–4 out of 5 situations tested.
§LIF, leukemia inhibitory factor.
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cytokines consistently associated with successful cancer immuno-
surveillance, CXCL9, CXCL10, IL-1β and IL-6, were produced by 
macrophages on activation by tumour-specific CD4 +  T cells. Two 
additional cytokines (IL-1α and IL-12p70) are also likely to be 
macrophage-derived because they were present in macrophages, 
although their levels were not significantly different between 
TCR-TG SCID and SCID mice (Supplementary Fig. S7). The three 
remaining cytokines in the common core (IL-2, IL-3 and IFN-γ) 
are typical T-cell products, and therefore most likely secreted by 
Matrigel-infiltrating Id-specific Th1 cells.

Production of CXCL10 by macrophages was further investigated 
by immunohistochemistry. CXCL10 was detected in F4/80 +  mac-
rophages that penetrated the Matrigel plugs containing CD138 +  
MOPC315 cells (Fig. 5c,d). Matrigel-infiltrating macrophages 
produced more CXCL10 in tumour-resistant Id-specific TCR-TG 
SCID mice as compared with tumour-prone OVA-specific mice 
(Fig. 5e,f). Strikingly, successful myeloma immunosurveillance in 

Id-specific TCR-TG SCID mice was characterized by the absence 
of angiogenesis, whereas formation of CD31 +  blood vessels around 
tumour islets was readily observable in control mice (Fig. 5g,h). 
This suggests that IFN-γ-activated macrophages use simultaneously  
two strategies to fight cancer: direct killing of cancer cells (Fig. 4g)  
and indirect inhibition of tumour growth through secretion of  
angiostatic chemokines such as CXCL9 and CXCL10 (Fig. 5b–h).

Myeloma immunosurveillance is an inflammatory reaction. His-
tological analysis revealed that myeloma rejection by Id-specific 
TCR-TG SCID mice was characterized by local inflammation with 
oedema and inflammatory cell infiltrate (Fig. 6a). Matrigel-infiltrat-
ing macrophages were further characterized by gene expression 
microarrays (Fig. 6b) and flow cytometry (Fig. 6c). Tumouricidal 
macrophages were isolated from Id-specific TCR-TG SCID mice 
injected with MOPC315-containing Matrigel. Control macro-
phages were obtained from TCR-TG SCID mice injected with 
Matrigel containing Ag-loss MOPC315. The expression of CXCL9 
and CXCL10 was upregulated in tumouricidal macrophages com-
pared with controls, confirming that these angiostatic chemokines 
were produced by T cell-activated macrophages (Fig. 6b, left panel). 
Interestingly, several other chemokines were upregulated, includ-
ing CXCL11/I-TAC (interferon-inducible T-cell α chemokine), 
another IFN-γ-inducible angiostatic chemokine, CCL17/TARC 
(thymus and activation regulated chemokine) and CCL22/MDC 
(macrophage-derived chemokine). The levels of CCL17 and CCL22 
in Matrigel samples from the myeloma experiments were measured 
by enzyme-linked immunosorbent assay, but no association with 
successful immunosurveillance was found (Supplementary Fig. S8). 
Tumouricidal macrophages showed upregulation of genes associ-
ated with antigen processing and presentation (Fig. 6b, right panel), 
and increased levels of MHC class II and co-stimulatory molecules 
such as CD40, CD80, CD86, CD273 and CD274 (Fig. 6c). Hence, 
tumouricidal macrophages have a typical phenotype of activated 
professional antigen-presenting cells.

Gene expression analysis revealed a number of cytotoxicity-asso-
ciated genes, which were upregulated in tumouricidal macrophages 
and which may be involved in the direct killing of cancer cells: pro-
teases (mcpt8, mmp12); granzyme A and B; ass1 and cybb (involved 
in nitric oxide and superoxide production, respectively); and several 
genes known to be expressed by natural killer (NK) cells (CD161/
klrb1b, CD314/NKG2D, Ly49b/klra2 and rnf19b; Fig. 6b, middle 
panel; Supplementary Data S1 and S2). Moderate upregulation of 
NKG2D was confirmed at protein level (Fig. 6c). The presence of 
NK-associated genes in the microarray data is unlikely to originate 
from cell contamination because we could not detect Matrigel-infil-
trating NKp46hi NK cells by flow cytometry. Furthermore, we per-
formed an experiment with beige mutant mice with a functional 
defect in NK-cell lytic functions24. Id-specific TCR-TG SCID beige 
mice were fully protected against challenge with MOPC315, indicat-
ing that NK cells were not involved in myeloma rejection (Supple-
mentary Fig. S9). Bioinformatic analysis of the upregulated genes in 
tumouricidal macrophages showed highly significant overlaps with 
genes or proteins known to be induced in macrophages by IFN-γ 
(Supplementary Data S3). Furthermore, promoter region analysis 
revealed that the upregulated genes were enriched for binding sites 
for inflammation-associated transcription factors such as nuclear 
factor-κB and RelA (Supplementary Data S3). Thus, myeloma 
immunosurveillance is an inflammatory reaction characterized by 
tissue infiltration by IFN-γ-activated macrophages with a typical 
inflammatory phenotype.

Discussion
We have developed a method to quantify locally secreted cytokines 
during primary antitumour immune responses in mice. Using 
this method, we have identified a common core of nine cytokines 
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consistently associated with successful cancer eradication: IL-1α, 
IL-1β, IL-2, IL-3, IL-6, IL-12p70, IFN-γ, CXCL9 and CXCL10. To 
our knowledge, these data represent the first characterization of the 
cytokine profile of successful cancer immunosurveillance. Interest-
ingly, in patients with hepatocellular carcinoma, increased expres-
sion of 17 genes in the liver, including IL-1α, IL-1β, IL-2, IL-12 and 
IFN-γ, was associated with good prognosis25. Thus, the cytokine 
profile of protective immunity against cancer may be very similar 
for mice and humans. The observation that IL-12 and IFN-γ were 
constantly associated with cancer rejection is consistent with a Th1 
polarization of the immune response, which is widely considered to 
be favourable for immunological control of cancer1–3,26. In contrast, 
the presence in the list of the proinflammatory cytokines IL-1α, 
IL-1β and IL-6 may seem more surprising. Chronic inflammation 
predisposes to cancer and cancer-related inflammation is generally 
regarded as being tumour promoting4–9. Elevated IL-1β levels were 

associated with shorter survival and disease progression in patients 
with chronic myelogenous leukaemia and colorectal carcinoma5,27. 
In mice, IL-1 was shown to be required for tumour invasiveness and 
angiogenesis4,28. In several human malignancies, including multiple 
myeloma, lymphoma and lung cancer, high serum levels of IL-6 were 
associated with poor prognosis29–31. Furthermore, IL-6 was shown 
to be required for obesity-induced tumour promotion in a mouse 
model for hepatocellular carcinoma9. Although inflammation is 
generally considered to be tumour promoting, a few histopathologi-
cal studies in colorectal, breast and bladder cancer indicated that 
tumour infiltration by inflammatory cells may be associated with 
better prognosis32–34. To reconcile these opposing views, we propose 
that inflammation, when driven by tumour-specific Th1 cells, may 
prevent cancer (Fig. 7a). In a Th1 environment, proinflammatory 
cytokines (IL-1α, IL-1β and IL-6) may participate in cancer eradica-
tion by recruiting leucocytes from the circulation and by stimulating 
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(b) Experimental design for matrigel cytokine assay. Id-specific TCR-TG sCID IFn-γ + / +  and IFn-γ − / −  mice were injected s.c. with moPC315 in matrigel.  
At day  + 8, matrigel-infiltrating T cells and macrophages were analysed, and locally secreted cytokines were quantified. (c) Expression of CD69 on 
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mice. (a) n = 5–14. (b–f) n = 11. (g) triplicates. *P < 0.05, **P < 0.01, ***P < 0.001. statistical analysis was performed with the log-rank test (a) and the  
mann–Whitney test (d–f). All data are presented as mean ± s.d.
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tumour islets in a tumour-prone sCID mouse. Immunostaining images (c–h) show representative day  + 8 specimens for groups of ≥3 mice. scale bars, 
50 µm. m, edge of matrigel plug.
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CD4 +  T-cell functions35,36. In contrast, other types of inflammation, 
or inflammation that lacks tumour specificity, may not protect and 
may even promote tumour development (Fig. 7b). Hence, caution 
should be taken when considering anti-inflammatory treatments 
against cancer4–7. Drugs that may dampen the tumour-suppressive 
Th1-driven inflammatory immune response should preferably be 
avoided.

The finding that elevated levels of IL-1 (α and β) were consist-
ently associated with successful cancer immunosurveillance is of 
particular interest. IL-1 is a canonical proinflammatory cytokine, 
which exerts a broad range of activities including activation of  
vascular endothelium, stimulation of lymphocyte functions, induc-

tion of acute-phase response and fever. The IL-1 receptor and the 
Toll-like receptors share a common intracellular signalling path-
way, which leads to activation of the nuclear factor-κB and to the 
transcription of several proinflammatory cytokines, including IL-1 
itself. Thus, IL-1 functions as a positive feedback loop in inflamma-
tion. IL-1 was shown to enhance the expansion and differentiation 
of CD4 +  T cells35,36, and to induce macrophage tumouricidal activity 
in vitro37. Importantly, IL-1β secretion by macrophages is dependent 
on activation of the inflammasome, a cytosolic molecular complex 
responsible for generating active IL-1β by cleaving the inactive pre-
cursor. The inflammasome functions as a guardian of the body by 
detecting pathogens and danger38. In cancer immunosurveillance, 
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Psm, proteasome subunit; rnf19b, ring finger protein 19B; Tap, transporter associated with antigen processing. (c) Characterization of matrigel-infiltrating 
macrophages at day  + 8 by flow cytometry. Gated matrigel-infiltrating CD11b +  cells were analysed in Id-specific TCR-TG sCID mice injected s.c. with 
either moPC315 (shaded blue area) or Ag-loss moPC315 (boldface line). Dotted lines indicate isotype-matched control mAb. multiple experiments were 
conducted with similar results.
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the nature of the endogenous danger signals detected by the inflam-
masome remains to be determined, but a role for ATP released by 
necrotic tumour cells has been suggested39.

The importance of IFN-γ for cancer immunosurveillance is well 
documented1,40,41, but its exact function remains poorly understood. 
IFN-γ was originally defined as a cytokine able to render macro-
phages tumouricidal in vitro42. However, the in vivo relevance of 
this finding remained unclear. Our data with IFN-γ-deficient mice 
provide direct evidence for a role of IFN-γ in inducing macrophage 
tumouricidal activity in vivo. Furthermore, we demonstrate another 
function of IFN-γ, namely induction of secretion of MIG/CXCL9 
and IP-10/CXCL10 by tumour-infiltrating macrophages. CXCL10 
selectively attracts Th1 cells43 and may thus function as a positive 
feedback loop in the Th1-driven antitumour immune response. Th1-
induced CXCL9 and CXCL10 may also be important for recruiting 
CD8 +  T cells to the incipient tumour site44. Moreover, neovascu-
larization is required for a solid tumour to grow45. Several endog-
enous angiostatic factors have been described including CXCL9 and 
CXCL10, which both binds to the CXCR3-B receptor on endothelial 
cells, resulting in suppression of endothelial cell proliferation and 
differentiation into capillary structures46–48. Treatment with recom-
binant CXCL9 and CXCL10 was shown to delay tumour growth in 
mice by inducing vascular damage and tumour necrosis49–51. It has 
been previously suggested that tumour-specific CD4 +  T cells may 
mediate tumour rejection by inhibiting angiogenesis through secre-
tion of IFN-γ 41, but the mechanism remained obscure. Our results 
provide direct evidence that IFN-γ, secreted locally by tumour- 
specific Th1 cells, induces tumour-infiltrating macrophages to 
secrete the angiostatic chemokines CXCL9 and CXCL10.

Since the discovery of the antitumour properties of TNF-α 
in 1975 (ref. 52), there has been a considerable interest in using 

cytokines to treat patients with cancer. Significant benefits have 
been demonstrated in the treatment of various malignancies with 
TNF-α, IL-2 and IFN-α53–56. Other candidate molecules such as 
granulocyte-macrophage colony-stimulating factor, IL-7, IL-12p70 
and IL-15 have shown promising antitumour effects57,58. How-
ever, only a few cytokines are being routinely used to treat cancer.  
A major challenge to develop cytokine-based immunotherapy  
is that cytokine networks are based on synergistic interactions59. 
Therefore, coadministration of different cytokines is likely to be 
required to efficiently treat cancer, as suggested by experiments 
with mice59,60. With more than 200 different cytokines described to 
date, the number of combinations to be tested for cancer therapy is 
enormous. Our study identified 9 cytokines that were consistently 
associated with successful antitumour immunity, and 12 additional 
cytokines that were associated with cancer eradication in most  
but not all situations investigated. This list should be helpful for  
the development of combined cytokine-based immunotherapy for 
cancer.

Methods
Mice, cell lines and injection of tumour cells. Heterozygous Id-specific TCR-TG 
SCID mice or SCID littermates were on BALB/c background11. IFN-γ − / −  BALB/c 
mice22 (from The Jackson Laboratory) were crossed with Id-specific TCR-TG SCID 
mice to obtain IFN-γ − / −  Id-specific TCR-TG SCID mice. OVA-specific TCR-
TG SCID mice were generated by introducing the scid mutation into DO11.10 
TCR-TG mice (from Taconic). MOPC315 (IgA, λ2315) is a transplantable BALB/c 
plasmacytoma obtained from the American Type Culture Collection (ATCC) and 
propagated as in vitro growing cells. Ag-loss MOPC315.36 (ref. 20) was kindly 
provided by Alexander Marks, University of Toronto. F9 is an A20 BALB/c-derived 
B-lymphoma cell line that was transfected with Id-containing λ2315 (ref. 21).  
F55 is an Id-negative lymphoma obtained by transfecting A20 cells with pSV2neo 
vector without insert21. Adult mice were injected s.c., in the interscapular region  
or in the flank, with 1–1.6×105 cancer cells suspended either in 100 µl phosphate-
buffered saline (PBS, Gibco), or in 250 µl Growth Factor-Reduced Matrigel  
(BD Biosciences). Tumour growth was followed over time by palpation. Mice  
with tumour a diameter ≥10 mm were killed. The study was approved by the 
National Committee for Animal Experiments (Oslo, Norway).

Matrigel cytokine assay. Cancer cells were mixed with ice-cold Matrigel and 
250 µl of the mixture was carefully injected s.c. into each mouse under anaesthesia. 
Matrigel, which is liquid at  + 4 °C, gelifies at body temperature and forms a gel 
plug containing the injected cancer cells. At day  + 8, mice were sacrificed. The s.c. 
Matrigel plug was excised and treated with 1 ml RPMI 1640 medium (Gibco) sup-
plemented with 1 mg ml − 1 collagenase type IV from Clostridium histolyticum and 
0.3 mg ml − 1 DNase I from bovine pancreas (Sigma), at 37 °C for 30 min. Dissolved 
Matrigel solution was squeezed through a stainless steel sieve (Sigma) and cen-
trifuged 300 g for 7 min. The cell pellet was analysed by flow cytometry. Cell-free 
supernatant was pressed through a 0.45 µm syringe filter (PALL Corporation) and 
kept at  − 70 °C until analysis by Luminex technology. To test the method, tumour-
resistant Id-specific TCR-TG SCID mice were injected s.c. with either Matrigel 
containing MOPC315 cells or with empty Matrigel, as a control. At day  + 8, the 
Matrigel plugs were excised for cytokine analysis. For comparison, a Matrigel 
solution was used to generate in vitro plugs, which were processed similarly. The 
concentration of 33 cytokines in the extracellular matrix of the Matrigel plugs was 
quantified by Luminex technology. This experiment showed that the Matrigel solu-
tion itself (in vitro or ex vivo) only contains very low levels of cytokines, except for 
transforming growth factor-β and vascular endothelial growth factor, which were 
high. In contrast, numerous cytokines were detected in the day  + 8 MOPC315- 
containing Matrigel plugs recovered from s.c. injections (Supplementary Fig. S1).

Preparation of macrophage lysates. TCR-TG SCID mice (n = 12) or SCID mice 
(n = 14) were injected s.c. with 105 MOPC315 cells in 250 µl Matrigel. At day  + 8, 
Matrigel-infiltrating CD11b +  macrophages were sorted by FACSAria (≥ 95% pure) 
and pooled for groups of three to four mice. Sorted macrophages (1.5–3×105 per 
pool) were washed and lysed in a buffer containing 5 mM EDTA, 50 mM Tris-HCL 
pH7.0, 0.5% NP-40 and 150 mM NaCl (all from Sigma). Lysates were pressed 
through a 0.45 µm syringe filter and kept at  − 70 °C until analysis by Luminex 
technology.

Cytokine quantification by Luminex technology. Cytokine levels in Matrigel  
supernatants, cell lysates and serum were measured using single-plex or multiplex 
bead assays from Bio-Rad Laboratories (Bio-Plex 23-plex and 9-plex panels) and 
Biosource Invitrogen (for TGF-β and CXCL-10), according to the manufacturer’s 
instructions. Samples were analysed as singlets and standards in duplicates, using a 
Luminex-100 instrument with Bio-Plex Manager 4.1 software (Bio-Rad Laboratories).
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Figure 7 | A model for how inflammation may either suppress or 
promote cancer. (a) Tumour-suppressive inflammation. successful 
cancer immunosurveillance is mediated by a tumour-specific Th1-driven 
inflammation. In this process, tumour-specific Th1 cells collaborate with 
tumour-infiltrating macrophages, and nine cytokines synergize to prevent 
cancer. Proinflammatory cytokines (IL-1α, IL-1β and IL-6) participate in 
tumour eradication by recruiting immune cells from the circulation and by 
stimulating T-cell functions. (b) Tumour-promoting inflammation. In the 
absence of sufficient numbers of tumour-specific Th1 cells, IL-1α, IL-1β and 
IL-6 may participate in tumour progression by stimulating angiogenesis, 
vascular permeability and tumour invasiveness. mΦ, macrophage; CTL, 
cytotoxic CD8 +  T cells.



ARTICLE   

��

nATuRE CommunICATIons | DoI: 10.1038/ncomms1239

nATuRE CommunICATIons | 2:240 | DoI: 10.1038/ncomms1239 | www.nature.com/naturecommunications

© 2011 Macmillan Publishers Limited. All rights reserved.

Analysis of cells by flow cytometry. Single-cell suspension from draining axillary 
LNs and Matrigel plugs were obtained by use of a stainless steel sieve. Unspecific 
binding was blocked by incubation with heat-inactivated (56 °C, 30 min) 30% 
normal rat serum in PBS and 100 µg ml − 1 anti-FcγRII/III monoclonal antibodies 
(mAb; clone 2.4G2). Cells were stained for 15 min on ice with specific mAbs in PBS 
supplemented with 0.5% bovine serum albumin (Biotest). The following commer-
cially available mAbs were used, conjugated with either fluorescein, phycoerythrin,  
allophycocyanin or biotin: CD4 (RM4.5 or GK1.5), CD11b (M1/70), CD273 
(TY25), CD274 (MIH5), CD314 (CX5), IFN-γ (XMG1.2), IL-4 (11B11), IL-17 
(TC11-18H10), MHC class II I-A/I-E (M5/114.15.2), TCRCβ (H57-597), TNF-α 
(MP6-XT22) (BD Biosciences); CD11b (3A33), CD40 (1C10), CD69 (H1.2F3), 
CD80 (1G10), CD86 (GL1) (Southern Biotechnology); Foxp3 (FJK-16s), Gata-3 
(TWAJ), T-bet (4B10) (eBioscience). The following mAbs were affinity-purified 
and, if needed, biotinylated in our laboratory: anti-Id-specific-TCR-clonotype 
(GB113), anti-FcγRII/III (2.4G2; ATCC). Biotinylated mAbs were detected with 
streptavidin conjugated to peridinin chlorophyll protein (BD Biosciences). For  
intracellular cytokine detection, cells were stimulated with phorbol myristate  
acetate and ionomycin (both from Sigma) in vitro for 4 h in cell culture medium 
supplemented with monensin, before staining with Cytofix/Cytoperm Plus reagents 
(BD Biosciences) and specific mAbs. Quadruple-stained cells were analysed on a 
FACSCalibur instrument with CellquestPro software (BD Biosciences).

Tumour cell growth inhibition assay. Matrigel-infiltrating CD11b +  cells were 
purified by FACSAria at day  + 7 after s.c. injection. Sorted CD11b +  cells (≥95% 
pure) were irradiated (2,000 rad) and added at various effector/target ratios to MOPC315 
cell cultures (104 tumour cells per well) in triplicates. Cultures were pulsed with 
[3H]thymidine after 48 h and collected 12 h later on a TopCount NXT microplate counter.

Tissue preparation. The Matrigel plugs were removed by a wide excision of the 
flank wall, including the skin. Tissue samples were either flash frozen in O.C.T. 
compound (Tissue-Tek) in liquid nitrogen and stored at  − 80 °C, or fixed in 10% 
buffered formaldehyde and paraffin-embedded. Four micrometre tissue sections 
were cut from the tissue blocks. Frozen sections were air-dried overnight and 
subsequently acetone-fixed. Paraffin-embedded sections were deparaffinized with 
xylene, and bathed consecutively in absolute ethanol, 96% ethanol, 70% ethanol 
and PBS. Sections for light microscopy were stained with hematoxylin for 3 min, 
hexamine for 3 min and eosin for 45 s, and subsequently dehydrated with xylene.

Immunohistochemistry. The paired immunostainings for F4/80 + CD138 and 
F4/80 + CXCL10 were performed on frozen sections, whereas the other stainings 
were done on formalin-fixed paraffin-embedded tissue sections. Frozen tissue 
sections were incubated with the primary and secondary antibodies for 1 h each 
at room temperature. To visualize CXCL10, we amplified the signal by means of a 
secondary antibody horseradish peroxidase-conjugated goat anti-rabbit IgG and 
Alexa 488-conjugated tyramide amplification reagent according to manufacturer’s 
instructions (Invitrogen). For paraffin-embedded sections, antigen retrieval was 
performed on deparaffinized, formalin-fixed tissue sections by boiling those for 
20 min in 10 mM Tris-EDTA pH 9. Sections were then incubated with the primary 
antibodies overnight at 4 °C, followed by the secondary antibodies for 1 h at room 
temperature. Hoechst blue nuclear stain was added to the final volume of washing 
buffer after the last incubation. As negative controls, primary irrelevant isotype- 
and concentration-matched antibodies were used. Samples were examined with  
a Nikon Eclipse E-800 fluorescence microscope (Nikon) equipped with Nikon 
Plan-Fluor objective lenses and an F-VIEW digital camera controlled by AnalySIS 
3.2 software (Soft Imaging System GmbH). Antibodies and all working concentra-
tions are listed in Supplementary Tables S1 and S2.

Gene expression analysis. Id-specific TCR-TG SCID mice were injected s.c.  
with Matrigel containing 105 MOPC315 cells. At day  + 8, Matrigel-infiltrating 
CD11b +  tumouricical macrophages were sorted by FACSAria (≥95% pure) in  
three independent experiments. Control macrophages were obtained similarly  
in two independent experiments from Id-specific TCR-TG SCID mice injected 
with Matrigel containing Ag-loss MOPC315 cells. TRIzol (Invitrogen) was used  
to extract mRNA from sorted macrophages. The expression of all known genes  
was quantified by gene microarrays (GeneChip Mouse Genome 430 2.0 Array,  
Affymetrix). Changes in gene expression (≥2) that were consistent for all sample 
comparisons (tumouricidal/control macrophages) were considered to be signifi-
cant. The microarray expression data sets were deposited in Gene Expression 
Omnibus (GEO, www.ncbi.nlm.nih.gov/geo) under accession number GSE26912.

Statistical analysis. For tumour challenge experiments, differences in survival 
were analysed with the log-rank test. Flow cytometry data and cytokine levels were 
analysed with the Mann–Whitney test. Statistical analysis was performed with 
GraphPad Prism 4 software. 
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