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A B S T R A C T

Burkholderia sp. strain SSG is a boxwood endophyte with potent antagonistic activities against a variety of
plant pathogens. Here we present its complete genome sequence that is 8.6 Mb long with a GC content of
66.9%,10,209 predicted protein-coding sequences, and 866 secondary metabolism gene clusters. Many of
these genes and clusters involve antibiosis and other antagonistic activities against plant pathogens and
insect pests as well as plant growth promoting traits but none for the Burkholderia cepacia epidemic
strain marker. This genome sequence supports SSG as a potent biocontrol agent and source of other
biotechnological applications.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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The genus Burkholderia is diverse and widespread in the
environment [1]. Of particular interest is Burkholderia cepacia
complex (Bcc) due to the potential of its members to function as
plant growth promoters, plant disease control agents, and
bioremediators as well as their role as opportunistic human
pathogens causing lung disease in immunocompromised individ-
uals [2–6].

Unlike most plant-associated Bcc members that are most
typically found in the rhizosphere, Burkholderia spp. strain SSG was
isolated from boxwood leaves showing a resistant response to
inoculation with Calonectria pseudonaviculata (Cps); the leaves
initially produced water-soaked lesions at the inoculated sites but
recovered a few days later [7]. Compared to other biocontrol agents
evaluated to date, strain SSG provides superior protection of
boxwood from the blight pathogen, Cps [7–11]. Although SSG
grouped into the Bcc complex, the bacterium clusters separately in
16S and RecA phylogenic comparisons with known B. cepacia
species and exhibits distinct traits from clinical Bcc [7]. Here we
report its complete genome sequence to provide data that could
help resolve the species identity, clear the risk as a human
pathogen, and elucidate the potential modes of action as a
biocontrol agent and plant growth promoter.

SSGgenomeDNAwasextractedfromovernightculturesinnutrient
broth (BD, Sparks, MD) at 28 �C using NucleoSpin1 Microbial DNA-
Macherey Nagel (TaKaRa Bio, Bethlehem, PA) and quantified using
QuantusTM Fluorometer (Promega, Madison, WI). Sequencing was
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performed on a MinION device (Oxford Nanopore Technologies,
Oxford, United Kingdom). The sequencing library was prepared with
the ligation sequencing kit (SQK-LSK109) according to the manufac-
turer’s instructions and run in a FLO-MIN106 (R9.4.1) flow cell.
Sequence basecalling was performed using MinKnow (Oxford Nano-
pore, Oxford, United Kingdom) at Q score of 11 and run option of Fast5
for20 h. Fastq fileswith a total of 9.46 Gb bases from 1.19 million reads
thatpassedtheQ scorewere usedforde novo genome assembly using
Canuversion 1.8[12]with thedefaultparametersfor Nanoporedata.
After read correction and trimming, the final assembly from the
retained single largest high-qualitychunk of sequences resulted in a
sequence with a total length of 8,571,737 bp and an average GC
content of 66.9% arranged in six contigs. The genome coverage is
108.64-fold (N50 = 5,470,797) (Table 1). The assembly was annotat-
ed using Prokka 1.14.1 [13] and Rast 2.0 [14]. Prokka predicted 9039
protein coding sequences (CDS) and 76 tRNA, nine rRNA and one
tmRNA. Rast predicted 10209 CDS, 67 tRNAs, 18 rRNAs and one
tmRNA.

Eight hundred and sixty-six secondary metabolism gene
clusters were detected through Rast analysis. 15 gene clusters
related to antibiotic biosynthesis were detected with antiSMASH 5
[15], which included genes for nonribosomal peptide synthetase
(NRPS), polyketide synthase (PKS), pyrrolnitrinis and bacteriocin
production (Table 2). These clusters accounted for 6% of the
genome assembly. This genome capacity for antibiotic biosynthesis
is more than twice that of other analyzed Bcc species [3]. This
feature of SSG is consistent to its potent antagonism against
oomycete, some bacterial and fungal pathogens (Kong et al,
unpublished data). Interestingly, through manual annotation, we
identified not only gene cluster for biosynthesis of terpene that has
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.btre.2020.e00455&domain=pdf
mailto:pkong@vt.edu
https://doi.org/10.1016/j.btre.2020.e00455
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.btre.2020.e00455
http://www.sciencedirect.com/science/journal/2215017X
www.elsevier.com/locate/btre


Table 1
Genome feature of Burkholderia sp. SSG.

Features Value

Genome size (bp) 8,571,737
GC content (%) 66.9
Secondary metabolism gene clusters 866
Coding sequence 10209
tRNA 67
rRNA 18
tmRNA (transfer messenger RNA) 1
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been used for pesticide (Table 2), but also genes for production of
insecticidal photopexin and presqualene diphosphate synthase
(hpnD) [16,17]. Many genes involving plant growth promoting
traits were also identified (Table 3). These included genes for
nitrogen fixation such as a nitrogenase gene (eg. NifQ) [18] and a
hglE cluster or heterocyst glycolipid synthase-like PKS involving
nitrogen fixation in cyanobacteria heterocyst [19,20] as well as
other genes for nitrogen fixation and regulation including pstN and
glnB [20,21]. There were also genes for phosphate solubilization
(glucose dehydrogenase and pyrroloquinoline quinone (PQQ))
synthesis proteins for organic acid production [22,23], siderophore
production for iron binding and transfer as well as genes for plant
growth hormone production or modulation such as auxin
Table 3
Predicted genes/products involving plant growth promotion traits (PGPT).

Gene /Product Number of
genes (>)

Example Contig PGP Trait 

Coenzyme pyrroloquinoline
quinone (PQQ)

5 pqqB,C, D,E 1, 79 Plant defense, pro
dehydrogenases (

Hydrogen cyanide synthase 6 HcnB, C 1 Regulating availab
Proteins in butanediol
metabolic process

2 BudC 2, 19 Plant defense 

Nitrogen metabolism and
transport

4 gdh, glnB,
ptsN,

19, 89 Regulating nitrog

Urea degradation 20 ureA-I, allA,
alc, pucl

1, 19,
79

Regulating nitrog

1-aminocyclopropane-1-
carboxylate deaminase
(ACC)

1 acdS 1 Reducing plant et

Tryptophan synthase 2 trpA, B 1 Auxin production
Biotin biosynthesis and
transport

9 accB, C;
BioB,C D;
madC

1, 2, 6,
19

Seed developmen

Gluconic acid production 5 GDHs, gdhI,
IV

1, 19,
79

Phosphate solubil

Siderophore biosynthesis,
transport and liberation of
iron

102 yusV, TonB All 6 Iron uptake, phos
by production of 

Table 2
Predicted secondary metabolite clusters involving antibiotic biosynthesis.

Cluster Number Contig Average
size (bp)

% in the
genome

Examples

Non-ribosomal peptide
synthetase (NRPS)

3 1 & 6 52601 1.84 Pyochelin

Polyketide synthase (PKS) 2 1 46054 1.07 Polyketide
capsular p

tRNA-dependent
cyclodipeptide synthases
(CDPS)

1 79 22042 0.26 Cyclodipe

Terpene synthase 5 1, 19,
79

21463 1.25 Terpene 

Aryl polyene 1 19 41210 0.48 Polyene 

Bacteriocin 1 79 10758 0.13 Protein To
Phosphonate 1 1 40578 0.47 Phosphino

tripeptide
Other 1 79 41082 0.48 Pyrrolnitr
biosynthase and ethylene metabolism associated 1-aminocyclo-
propane-1-carboxylic acid (ACC) deaminase [24]. These results
supported SSG as a possible potent biocontrol agent for plant
diseases. They also indicated that SSG may also be a candidate
biocontrol agent for insect pests and a biofertilizer.

SSG was identified as B. cepacia through genome-based
identification on TrueBacTM ID [25]. The average nucleotide
identity (ANI) between the genomes and the type strain of B.
cepacia [26] was 98.4%. (ANI coverage of 94.8%). However,
multilocus sequence typing (MLST) of the SSG genome sequence
through https://pubmlst.org/bcc/ revealed that SSG contains only
three of the seven loci that are used for differentiation of species in
the Bcc [27,28]. Although SSG had the same allele number at atpD
as two strains of Bcc (BCC0412, IST431) and the same allele number
at lep as one strain (BCC0218) of Bcc in genomovar I, the overall SSG
allelic profile did not match any Bcc that has been listed previously
[27], indicating divergence of SSG from other species in this
genomovar that uses B. cepacia as a representative.

Clinically important isolates of Bcc are most commonly
members of genomovars II and III, with few human pathogens
contained within genomovar I [5]. To determine if SSG was
different from clinical strains, we searched for the cable pilin gene
encoding Burkholderia cepacia epidemic strain marker (BCESM) in
the predicted CDS by Prokka and Rast. However, we found nothing,
Potential application

duction of glucose
GDHs)

Plant stress resistant elicitor, gluconic acid production,
antioxidant, antineuroinflammatory drug production

ility of phosphate Biofertilizer
Plant resistant elicitor

en utilization Biofertilizer

en utilization Biofertilizer

hylene levels Plant growth regulator

 Plant growth regulator
t Plant seed production

ization Biofertilizer

phate solubilization
chelating substance

Plant growth regulator

 Potential applications

, ornibactin Cytotoxic antibiotics

, myxochromide D,
olysaccharide

Antibiotic, anticancer agents

ptide Antifungal, antiviral (influenza A), anti-multidrug
resistant bacterial and anticancer agents

Pesticides

Anti-oxidants, antibiotics
lQ, Colicin V synthase Antibacterial drug
thricin Antifungal and anti-oomycete agent

in Antibacterial, antifungal and anti-oomycete agent

https://pubmlst.org/bcc/
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indicating absence of BCESM, which is consistent with PCR results
presented in the previous study [7]. Together with the presence of
genes involved in nitrogen fixation and production of bacteriocin,
traits that are uncommon in Bcc clinical strains [29,30], SSG is as a
unique member of the Bcc which is distinct from clinical strains
and appears to have great promise for agriculture and biotechnol-
ogy applications.

Nucleotide sequence accession numbers

This Whole Genome Shotgun project has been deposited at
DDBJ/ENA/GenBank

under the accession WTQB00000000. The version described in
this paper

is version WTQB01000000; BioSample SAMN13541113; SRA
accession: PRJNA594935. The SSG strain is stored at the Virginia
Tech Collection of Phytophthora and Beneficial Microbes (VTC) of
the World Data Center for Microorganism (WDCM1197).
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