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Abstract: The use of current computer tools in both manufacturing and design stages breaks
with the traditional conception of productive process, including successive stages of projection,
representation, and manufacturing. Designs can be programmed as problems to be solved by using
computational tools based on complex algorithms to optimize and produce more effective solutions.
Additive manufacturing technologies enhance these possibilities by providing great geometric freedom
to the materialization phase. This work presents a design methodology for the optimization of parts
produced by additive manufacturing and explores the synergies between additive manufacturing,
parametric design, and optimization processes to guide their integration into the proposed methodology.
By using Grasshopper, a visual programming application, a continuous data flow for parts optimization
is defined. Parametric design tools support the structural optimization of the general geometry, the infill,
and the shell structure to obtain lightweight designs. Thus, the final shapes are obtained as a result
of the optimization process which starts from basic geometries, not from an initial design. The infill
does not correspond to pre-established patterns, and its elements are sized in a non-uniform manner
throughout the piece to respond to different local loads. Mass customization and Fused Deposition
Modeling (FDM) systems represent contexts of special potential for this methodology.

Keywords: additive manufacturing; FDM; optimization; parametric design; infill optimization;
mass customizing

1. Introduction

Additive manufacturing technologies [1,2] represent a paradigm shift from traditional
manufacturing technologies [3–7]. Parts are obtained adding material layer upon layer until the final
geometry is completed, what offers various advantages over traditional processes, such as obtaining
the final geometry in a single process and the great geometric freedom that these technologies allow [1,8].

Restrictions imposed by productive processes must be taken into account when designing a product,
since ignoring these limitations would lead to failure in the materialization phase. In this sense, additive
manufacturing eliminates some restrictions in comparison to traditional manufacturing technologies,
but they also have limitations regarding to technologies themselves and the influence of manufacturing
parameters [9–21], materials behavior [21–27] or context aspects, such as the standardization of these
kind of processes and products [9,28,29]. Additive manufacturing gives great freedom to designs,
and it allows the obtaining of very complex geometries that were previously impossible, especially
with regard to interior cavities. In addition, additive manufacturing also introduces the idea of infill,
which offers new opportunities for those parts of the pieces which were understood as solid within
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traditional manufacturing scenarios and that currently represents a significant research field [30–33].
This possibility means using a smaller amount of material, what from a general point of view represents
interesting opportunities such as cost savings in terms of material and time resources as well as
the possibility to produce lightweight parts. However, approaches based on lightened structures
also offer specific opportunities in different fields, such as load-bearing structures used in coated
implants [34] or the manufacturing of personalized orthosis adapted to the anatomy of the patient
and with advantages in terms of weight, ventilation and hygiene advantages [35]. Therefore, this context
offers a wide range of design possibilities and even allows the definition of specific criteria or design
strategies to additive manufacturing contexts [36–39].

Due to this higher level of geometric freedom, design optimization becomes more important [8],
since the complexity of the geometry resulting from the optimization process is no longer a
problem. In addition, on the other hand, the number of feasible solutions increases significantly,
so selecting the most suitable alternatives becomes more complicated. Currently, the existing additive
manufacturing technologies have achieved greater presence and recognition in the productive field,
and at the same time design and optimization tools have achieved the capacity to respond to the new
challenges that the new capacities of these productive technologies offer to designers.

Regarding the approach of the research carried out, the methodology presented in this work is
based on three technologies and the synergies between them. Thus, it represents the simultaneous
implementation of additive manufacturing technologies, parametric design tools, and optimization
techniques. None of them alone could support this methodological proposal, which is the result of
exploring the possibilities offered by their combined use. From this point of view, the authors consider
that these types of approaches are also of interest in the field of teaching, as resources that can help
students better understand some key aspects of each of the technologies considered, as well as helping
them to explore the new application possibilities these technologies have in productive scenarios
and the opportunities that each one offers professionals in their activity.

Thanks to the parametric design and the programming developed with Grasshoppers [40],
parameters that represent key aspects and that help to achieve certain objectives are taken into
consideration simultaneously. Thus, the mechanical resistance of the structures obtained from topology
optimization both of geometry and infill structure, which represents the main mechanical behavior of
the piece, are verified by applying Finite Element Analysis. However, the proposed methodology is
not conceived as an absolute solution for all possible scenarios nor does it consider all the parameters
and aspects that may have influence. The main contribution of the work carried out is to show
an initial strategy for the integration of the three technologies, and based on the obtained results
the authors consider this study functional and useful. However, the methodology can be implemented
incorporating more specific aspects when applicable by adding new parameters to the programming,
as it could be the case of parts that must withstand impacts.

The objective of this work is to define a continuous workflow by using parametric design able
to obtain optimized designs for their production by additive manufacturing technologies. The aim
of the methodology is to design lightweight pieces from its geometry, infill, and shell. In that sense,
a relevant achievement of the present work is that the optimization problem is defined from the initial
volume in a continuous data flow with no interruption after the topology optimization, therefore no
redefining of the model is needed. On the other hand, this work represents one of the main results of
the research carried out within the framework of the first author’s doctoral thesis [41], and it represents
an important step in the fulfilment of one of the main objectives set in previous works [8] in relation to
the optimization of the infill in a non-uniform manner throughout the piece. Thus, the infill structures
are adapted to local loads, and this process is incorporated within the global methodology for the design
of optimized parts to be obtained by additive manufacturing.

Although the designed methodology is applicable to any additive manufacturing technology,
the case studies developed so far by the authors focus on small prototypes obtained using FDM
(Fused Deposition Modeling) 3D printers. FDM technologies are of special interest for this work from
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different points of view. First, opened shell designs as the wireframed shell applied in the proposed
methodology allow the removal of any required support material. Furthermore, the increasing access
of FDM technology equipment encourage its massive interest and use providing technological tools
for mass customization approaches. The influence of the materials and technologies used required
some previous studies focused on these aspects [9,28].

2. Initial Considerations and Main Synergies of the Technologies Considered

For each technology, the basic concepts and the characteristics of greatest interest for this work are
briefly introduced below, and their main synergies and opportunities for combined use are presented,
composing a brief state of the art prior to the exposition of the proposed methodology.

2.1. Additive Manufacturing

As illustrated in Figure 1, additive manufacturing technologies offer, compared to traditional
manufacturing technologies, some relevant advantages and opportunities. Additive manufacturing
processes introduce enormous geometric freedom thanks to layer upon layer manufacturing, especially
regarding interior cavities [3,36]. In fact, as previously stated, additive manufacturing processes
involve the appearance of the concepts of shell and infill.
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The possibility of designing infill patterns opens up new scenarios that where inconceivable
before the irruption of additive manufacturing. By acting on the infill pattern, both on its geometry
and on its density, the amount of material in the part is modified, which affects parameters such as
the manufacturing time, the amount of material used, the cost and, of course, the lightness of the piece
and its mechanical capacity. In this sense, this work goes further and instead of pre-established
and continuous infill patterns, it proposes its optimization with a variable density throughout the piece.
This aspect is considered one of the main contributions of the proposed methodology.

Moreover, the capability of obtaining a complex geometry in a single equipment and in a single
process represents another advantage of these technologies. Product customization finds in these
technologies a totally new scenario in which customization is not synonymous with high cost [42].
The concept of mass customization is not new, and it is a challenge that has already been attempted to
be faced without the support of additive manufacturing [43–45]. However, when additive technologies
are consolidated as manufacturing technologies, they will probably be the best way to achieve mass
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customization objectives [42,45,46]. In fact, additive manufacturing allows so many new possibilities
and with so much impact that they make it possible to speak of a new paradigm in terms of mass
customization [47]. A reality that opens many lines of application and business, and that in fields such
as medicine and pharmaceutics, where additive manufacturing is already being widely applied [48–56],
can be especially beneficial by offering personalized solutions tailored to patients.

Thus, today additive manufacturing represents a real alternative that is applied in very different
productive contexts [57,58], what has been driving a great development in terms of increasingly
efficient equipment and processes, as well as new materials [59–61]. Thus, additive manufacturing
radically changes the productive paradigm, offering new scenarios and possibilities, both in relation to
the agents involved and their roles and in the way in which products are thought and conceived [62–66].
In this sense, it highlights the impact of the low-cost alternatives for additive manufacturing systems,
already regularly present in schools, small businesses, and even homes. Something that is already
modifying the traditional relationship between designer, manufacturer, and consumer, where all these
roles may even fall on the same person. A trend that could lead to converting these 3D printers into
everyday objects in our homes, proposing new consumption structures [8].

2.2. Parametric Design

Unlike traditional CAD (Computer Aided Design) tools, which use closed scripts provided by
the software developer for the formal representation of a solution previously conceived, parametric
design approaches are based on a network of relations between variables where different values
can be applied, producing different solutions to achieve the objectives. The work developed by
Caetano et al. [67] carries out a significant review of recent advances as well as the terminology
and definitions in regard to these kind of design strategies, and proposes his own definition of
parametric design, which is understood as “an approach that describes a design symbolically based on
the use of parameters”. In the context of the present work, it results of key importance the update of
the solution generated when any parameter is modified, an aspect that parametric approaches allow
and which in 1989 was included by Kalay [68] into the usual definition of parametric design.

The parametric design tools entail a new way of understanding design where it is necessary to
decompose the problem into essential parameters of the project, as well as coding rules and protocols
where any alteration of the parameters leads to a different model. At the same time, the development
of new software offers the designer more and more flexibility and allows him to create his own action
sequences through different programming languages, classifiable into two groups; those that describe
routines in writing and those that do it visually. Parametric models based on visual programming
can be represented in a general graph with a set of nodes, both operation (geometric or otherwise)
and information, connected to each other by arrows that establish a workflow [69].

Presently, research about parametric design opportunities is really significant, as well as
the application of these techniques into a wide range of industrial sectors. In that context it is
possible to identify a great amount of studies based on this kind of design strategies and from very
different contexts and approaches [70,71].

2.3. Design Optimization

Design optimization can be carried out through multicriteria analysis to aid decision-making
or through multi-objective optimization. Multicriteria decision-making considers several possible
solutions or alternatives and selects the most appropriate applying its criteria structure. Multi-objective
optimization does not consider a finite number of alternatives, there are infinite solutions and they are
represented by the variables of the problem delimited by the restrictions.
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The calculation methods of the optimization problems look for the value of the variable or
variables that maximize or minimize the objective function, which are the ones that obtain the highest
or lowest value of the objective to be achieved and within the ranges determined by the constraints
of the problem. In the case of multi-objective optimization problems, the objective functions are
in conflict with each other [72]. If they were not, the optimization problem could be divided into
single-optimization problems taking each of the values separately. This work focuses on the study of
multi-objective optimization problems with the aim of avoiding predetermined formal solutions as far
as possible. Various calculation methods are available in the proposed methodology and it will be
convenient to apply one or the other depending on the design problem [41].

2.4. Opportunities and Synergies

2.4.1. Mass Customization

Compared to serial and large batch manufacturing, the traditional concept of customization is
associated with higher lead times and costs per unit [73]. Reducing these values represents the biggest
challenge of mass customization [52], and the technologies integrated within the proposed methodology
significantly contribute to these objectives. Additive manufacturing allow the rapid manufacturing of
unique models at low cost [74] and, in that sense, FDM technologies and multi-material possibilities
are productive scenarios of great potential [75], although still with limitations derived from the process
and the materials [76]. Probably, the applications in the field of medicine represent the clearest
example to understand the importance and potential of customization [56,77], but it is not the only one.
Any ergonomic product is interesting from the point of view of mass customization [41,47], but really
in all fields there are examples of applications that require unique and optimal solutions, construction
industry for example [78]. Thus, the demand for personalized features without extra costs is an upward
trend [79] in all types of products, even incorporating the customer in the design process [80–82].

Mass customization, as a concept, is in a process of continuous revision and evolution, from a system
based on modular elements to a system based on the co-design of products by consumers [73,79,83–85],
so companies need new studies, methods, and tools to create personalized products with the costs
and mass production efficiency.

Neither digital fabrication nor parametric design are new realities; however, it is the integration
of both that is creating a new flow of information that allows new effective methodologies for
mass customization [42,43,46]. Thus, customization of the products can be achieved through
the parameterization of the designs [86], as flexible design structures conceived from the relation
between its parameters.

2.4.2. Lightweight Parts

When designing lightweight parts, the goal is to minimize the volume or the amount of material
used, without compromising the required mechanical resistance. This means maximizing efficiency in
the way the material is used, and it has a series of benefits, both economic and environmental [87,88].

However, by lightening the structures, the geometric complexity of the pieces increases, and that
complexity can make it difficult, or even impossible, to manufacture them with traditional technologies.
Additive manufacturing addresses this problem by materializing parts layer by layer from digital
models and makes these approaches possible. Additive technologies even allow the obtaining of
with different materials in a single process [89–91]. Many strategies can be adopted to lighten a
piece designed to be manufactured with additive technologies, as they present the opportunity to
design complex geometries without the restrictions of traditional technologies. Figure 2 presents a
scheme with the most relevant ones and indicates with solid green background the ones adopted in
the proposed methodology.
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Figure 2. Classification of the lightening strategies of pieces produced by additive manufacturing.

3. Methodology

The objective of the methodology is to generate lightweight pieces compatible with mass
customization strategies and produced by additive manufacturing. The lightening of the pieces is
achieved by the topology optimization of the initial volume as well as by the structural optimization
of the cellular structures generated for its infill and shell. It is necessary to avoid any intermediate
modeling process in which the flow of information is broken, which would act as a frontier for
the optimization global process. To reach this goal, the methodology is based on parametric design,
where a generative modeling that involves algorithms, structural analysis, and optimization is defined
in a continuous workflow. The selection of the most appropriate computational tool according
to the particular objectives of the methodology and considering the possible alternatives both for
parametric design and optimization process [92] is a key decision. The identification of a suitable
software was faced in previous works [41,93], and Grasshopper was the selected tool.

Most optimization algorithms stablish workflows from parametric designs, by contrast, in other
situations such as topology optimization, in which the variables are unitary and correspond to
the discretized elements of the finite element model, it is not possible to establish these workflows with
parametric models. Consequently, it is necessary to re-model the parts taking as a reference the results
obtained in the topology optimization, this way the data flow between different optimization processes
would be broken and therefore the methodology would fail. Figure 3a illustrates this situation.

One of the main advantages of Grasshopper, in the context of the proposed methodology, is that it
allows the continuation of modeling the solution through algorithms based on the elements of the mesh
resulting from topology optimization. Thanks to this, a continuous workflow can be established
between the different algorithms and generative modeling of Grasshopper. This situation is shown in
Figure 3b. In this way, any element that intervenes in the process as a variable can be integrated into
multi-objective optimization. Thus, the proposed methodology eliminates barriers or stops that could
affect the workflow continuity, so the part optimization process, the resulting mesh and the parametric
modeling for subsequent optimization are connected through a continuous workflow. Consequently,
it is also possible to integrate variables from the algorithms of the topology optimization, or from
previous stages, to the subsequent optimizations of the geometry.
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Grasshopper [40] is a graphical programming application that uses Rhinoceros (Robert McNeel
and Associates, Seattle, WA, USA) [94] interface to visualize the geometries generated by algorithms.
As it is an open source software, it benefits from the activity of many researchers who develop algorithms
programmed with this language, both in the form of mathematical expressions and programmed
sequences. These scripts are shared with other users in the form of plug-ins or add-on. As occurs in
any programming language it is unusual to code from scratch, there are always frameworks, plug-ins,
and other resources that help coding and include already programmed and grouped sequences
for specific functionalities [95]. A review of the most suitable plug-ins considering the utilities of
the methodology was carried out in previous works [8,41]. Table 1 shows those selected for this work
from the previous works indicated, in which their choice is justified. The proposed plug-ins can be
used for the different goals as they introduce frameworks and algorithms already developed that help
the methodology scripting. However, it is possible to use any algorithm that the designer considers
most suitable for the case of study or even code from zero in any compatible programming language
such as Python, C#, NET, or VB.

Table 1. Classification of plug-ins considered to be included in the methodology.

Structural Analysis
Based in FEM Topology Optimization Mono-Objective Optimization Multi-Objective

Optimization Cellular Infill Loops

Karamba
Millipede

Toppot (2d)
Millipide (2d & 3d)

Topos
Mololith

Galapagos
Goat

Millipede (structural optimization)
Karamba (structural optimization)

Octopus

Octopus
Octopus e.

Monolith
Crystallon
Intralattice

Anemone
Loop

Octopus loop
Hoopsnake

The workflow defined through the parametric model of the proposed methodology generates
different design solutions without the need to develop new models [96]. This approach is of interest
when avoiding the interruption of the workflow of the methodology between the mesh result of
the topology optimization and the required parametric design for the further optimizations [97,98].
In this way it is possible to introduce variations in the solution obtained by altering the values of a
certain variable without the need to redefine the three-dimensional model. Thus, the programming
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not only includes linear sequences for the definition of the model, non-linear routines can also be
established, as shown in Figure 4.
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By means of a parametric design, the final design is not drawn or represented, but calculated.
Errors are reduced by eliminating intermediaries and repetitive tasks typical of the traditional design
process. Design process becomes more reliable and efficient. Furthermore, a greater variety of solutions
are offered automatically, therefore it is possible to choose the most optimal result without entailing
additional time or effort [99,100].

This work is focused on additive manufacturing technologies, and from that approach
the geometries to be optimized are the general volume, the infill, and the shell of the piece. A diagram
of the proposed methodology is shown in Figure 5.Polymers 2020, 12, x FOR PEER REVIEW 9 of 27 
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Figure 5. Diagram of the proposed methodology.

For clarity, the exposition of the functioning of the methodology is supported by a simple
application example, of a cantilever beam of predefined span and variable height and width.
Figure 6 schematically represents its loading conditions. Thus, the exposition of each part of
the design and optimization problem is accompanied by a representative image of the result obtained
for this example.
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Figure 7 shows the proposed methodological structure applied to the cantilever beam case in
Grasshopper interface. The same sections as the ones illustrated in Figure 5 are identified. Except for
the infill and shell optimization that can be done separately or together in a unitary structure and for
the cantilever case study a unique lattice structure for both infill and shell, is defined and optimized.
Moreover, in Figure 7 the continuous data flow is represented by green connection lines, where
the relations between variables, constants, and functions throughout the methodology is visible.
The general programming structure shown describes a continuous workflow through the sequences of
operations between the algorithms used for the initial geometry design and the algorithms responsible
for the FEA (Finite Element Analysis) and the optimization processes. The parametric design of
the piece, as well as any transformation, is defined by sequential actions based on mathematical
and geometric programmed functions.Polymers 2020, 12, x FOR PEER REVIEW 10 of 27 
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3.1. Initial Parametric Design

One of the objectives of the methodology is to minimize the influence on the optimized final
result from the initial volume, as Figure 8 shows. The initial volume is defined with a parametric
design and its variables can be modified to obtain the minimum or maximum value of the objective
function to optimize the result. In this sense, the methodology allows the selection of the variables
considered initially to be modified at any time, adapting the approach to the particular objective in
each case. Thus, as a result, a flexible geometric object is obtained, which is automatically modified
when the value of any of its variables is changed.
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3.2. Topology Optimization

Topology optimization is performed through a FEA. In this sense, the algorithm inputs are
the meshed model to be optimized, the loading conditions, what includes supports and loads,
and the mechanical properties of the material, as Figure 9 shows. The programming developed
demands resistance values for the material both for the initial topology optimization of the general
geometry and for the sizing of the bars of the infill structure. Resistance values provided by
filament suppliers cannot be considered, since the manufacturing process and the layered structure
generated impose significant changes in the material [21]. Thus, the mechanical characterization of
the material required a previous study. In that study, solid specimens were manufactured and tested,
since the sizing of the bars of the filling structure considers the resistance of the material with which
they are manufactured and the load applied in each area of the piece, not so much the resistance of
the cells that define the lattice structure [9].

As previously exposed, although any topology optimization algorithm can be introduced in
the methodology, there are several plug-ins available with different algorithm methods such as Solid
Isotropic Material Penalization Method (SIMP) in Millipede or Bi-directional Evolutionary Structural
Optimization (BESO) in Karamba.

The initial geometry for the optimization process is the result of a sequence of functions with
variables from the parametric design of the initial volume. Furthermore, the mesh used to discretize
the model using a finite number of elements can be determined with a variable, not a constant.
This approach allows the location and the number of nodes where the loads and supports are located
to be modified and updated automatically during the process.
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The methodology is not limited to the use of a certain topology optimization algorithm. In each
case, the most useful alternative can be selected. On the other hand, a topology optimization
algorithm will demand a series of input information that can be configured as variables or as constants
depending on the problem and the predictable results. Examples of this type of input are, among
others, the penalty factor, the maximum volume fraction, the filter’s radius of influence, the number of
iterations and manufacturing restrictions. Moreover, in the generation of the resulting meshed geometry
there are variables that can be modified to obtain different results, such as the iso contour value.
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3.3. Shell Design

Additive manufacturing technologies incorporate shell and infill as new aspects to be considered
into the design process [8]. When generating the gcode through the laminator software, some variables
of these two elements can be configured, but configuration options are limited to standardized presets.
Thus, in addition to optimizing the general geometry, the proposed methodology considers it necessary
to incorporate the optimization of both aspects, shell, and infill.

In that sense, since FDM and SLS (Selective Laser Sintering) were the technologies selected to
test the methodology, a porous structure shell was chosen to allow the output of the support material
necessary during manufacturing. On the other hand, under the premise of lightening the part without
compromising its mechanical behavior, a wireframe structure with variable cross sections and working
collaboratively with the infill structure has a better mechanical behavior than a continuous closed
shell [101]. In Figure 10 the programming structure used for shell design is shown.

3.4. Infill Design

Infill patterns and percentages are offered in slicing software as predetermined options.
The objective of the proposed methodology is to optimize not only the boundary geometry of the piece,
but also the shell and infill that conforms it. To achieve this goal, the predetermined options are not
valid, and the infill pattern must be designed from Grasshopper software in a continuous workflow.

Although any infill design is supported by the methodology, to be more specific, periodic opened
structures are chosen. These structures have shown to be stronger than non-periodic [102]. Moreover,
open structures allow the reduction of the amount of material used while maintaining its rigidity
and strength [103]. The diagram in Figure 11 summarizes the programming structure detailed below for
the generation of the infill pattern design. As can be seen, the diagram distinguishes three blocks that
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include in each case the variables considered, the sequence of actions that takes place and the results
obtained. The first block deals with the design of the unit cell. The second develops the programed
sequence where the unit cell is repeated to form larger structures filling the topologically optimized
geometry. In addition, the third is oriented to the adaptation of the resulting infill structure when
meeting the wireframe shell that defines the geometry of the piece. This last block welds the endpoints
from the extremes of the infill structure in the contour of the geometry with the nearest nodes of
the shell structure.
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3.4.1. Unit Cell Design

The proposed methodology includes the parametric design of the infill unit cell. A revision on
cellular structures is made in previous works and the selection of lattice structures is justified [41,104].

3.4.2. Cell Repetition Pattern Unit

On the other hand, the proposed methodology allows different repetition patterns of the infill‘s
unit cell depending on the geometry of the piece. In the case of a predominantly flat volume, it would
be convenient to make a conformal lattice structure. However, in any other case, it would be convenient
to perform a direct repeating pattern with an orthogonal axis orientation configuring a uniform
lattice structure. Depending on the case, one algorithm or another will be used, both are available in
the methodology proposed.

3.4.3. Infill and Shell Coherence

A wireframe structure is designed for both infill and shell; however they are independently
constructed, therefore it is necessary to ensure that nodes from the infill and the wireframe shell are
weld into a coherent structure. This way, the lattice structure, formed by the union of the shell and infill
structures, works in a unitary way and the stresses of the bars of the wireframe shell are transmitted to
the bars of the infill structure.

The lattice structure previously designed is now optimized based on a FEA of the wired
elements. A size optimization is developed and, at first, the minimum section feasible for the additive
manufacturing technology chosen is assigned to each element. For this minimum section, normal
stresses are calculated for the load case and material assigned. Each normal value is compared one by
one with the elastic limit of the material taking into account a safety coefficient, if the normal value
exceeds it, the bar section is increased. However, if it resists, even complying with the safety factor,
the section of the bar is maintained. Both the FEA and the described sequence are repeated until no bar
exceeds the elastic limit of the material. These iterations are performed through the loop programming
structure shown in the diagram of Figure 12, where a comparison and a conditional operator included
as well as functions that perform the specific actions.Polymers 2020, 12, x FOR PEER REVIEW 14 of 27 
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On the other hand, the loop escape sequence is configured from the result of a conditional
structure, where integer values are assigned to the resultant Boolean values and its upper limit of
compared to the value 0 that corresponds to the negative value. This way, if there is not any value that
exceeds the elastic limit mentioned before, the iterations of the loop will stop and no more FEA of
the lattice structure nor further sections assignations will be done. Consequently, a heterogeneous
porous structure is generated, as shown in Figure 13.
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3.5. Multi-Objective Optimization Problem

The main objective of the methodology proposed, and therefore of the optimization problems
involved, is to generate a lightweight piece from both the general volume and the material to be used
while ensuring a good mechanical behavior. To achieve this goal more than one objective must be set
and therefore a multi-objective problem is programmed. For the beam example Octopus plug-in was
used, the multi-objective optimization algorithms inside the plug-in are based on SPEA-2 and HypE
algorithm from ETH Zurich (Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland).
Iterations of the entire design as well as its optimization processes, such as topology optimization
or lattice structure optimization of the piece, are performed. For each iteration different values,
previously defined by the designer as viable values, are assigned to the variables of the parametric
design to generate different viable solutions. This way, different populations of solutions are generated
and recorded to guide the designer in the search and decision of the best solution for its manufacture.
The interface of the plug-in Octopus allows the designer to compare the Pareto solutions looking at their
objective values and the variables that originate them, to choose the most suitable final solution ready
to export in a compatible format to manufacture. Figure 14 illustrates a scheme of the multi-objective
optimization problem and Octopus interface. As in the case of topology optimization, the methodology
allows the selection of the most appropriate method to be applied to each problem. In any case,
for the application in the proposed methodology, optimization algorithms based on metaheuristic
methods are more interesting since they condition the final solution to a lesser extent and explore
the search space more efficiently.

The general parameters considered for the multi-objective optimization problem of the proposed
methodology applied to the beam example are the ones showed in Table 2. However, the proposed
methodology can take any variable from the parametric design, not only of the initial volume before
the topology optimization, but also from the infill or shell design. This way, the designer fixes
the constraints and limitations for the optimization problem from the range of values of the variables
for the parametric design defined for the specific case. One of the mayor limitations in additive
technologies is the minimum strut diameter that can be manufactured, for this reason, the minimum
strut diameter is stablished as a constant, to be defined by the designer for the specific technology
to be used. Not all limitations are initially introduced this way, such as overhanging structures,
as the methodology can be applied to other additive technologies that do not require additional support
material. However, maximum strut length is restricted to the range of values assigned to the variables
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of the wireframe shell size and the lattice infill size introduced in the multi-objective optimization
problem and it is defined by the designer from the technology’s characteristics.
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Table 2. Multi-objective optimization parameters applied to the beam example.

Objectives Variables Restrictions

General volume Minimum volume Load position
Initial geometry variables

Distance and direction restrictions with
the initial geometry given by the load cases

Geometry restrictions

Shell Maximum stiffness
Minimum volume

Wireframe shell bar section
Wireframe shell size

Minimum and maximum wireframe shell
bar section

Geometry restrictions

Infill Maximum stiffness
Minimum volume

Infill bar section
Lattice infill size

Minimum and maximum Infill bar section
Geometry restrictions

First, the main objective, as mentioned before, is to minimize the amount of material without
compromising the resistance of the piece, therefore it is necessary to establish the objectives within
the optimization problem, which can be configured from different mechanical concepts, such as
minimizing displacement or energy deformation, maximize stiffness, etc. However, it is possible to
introduce as many objectives as deemed necessary depending on the specific case.

Secondly, any variable introduced in the parametric design as well as in the optimization
problems, such as topology optimization or size optimization of the lattice structure, can be considered
in the multi-objective optimization problem. For the example given of the beam, the location of
the loads and supports that determines the geometry that the topology optimization acquires is
considered, as well as the geometric variables that determine the initial volume of the piece or the final
lattice structure.
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Finally, the restrictions of the described variables are determined from the range of admissible
values of the variables. In addition, mathematical relationships are established between the different
variables to restrict the search for solutions to the feasible region.

4. Results and Discussion

The proposed methodology, described in the previous section, integrates structural optimization
such as topology and size optimization as well as multi-objective optimization through a continuous
workflow developed with Grasshopper, a graphic coding application integrated in Rhinoceros.
From these methodological bases, two possibilities arise:

(1) Methodology with a single multi-objective optimization algorithm
(2) Hierarchical methodology with more than one multi-objective optimization algorithm
To illustrate the approach and operation of the proposed methodologies, highly simplified

schematics are presented to represent the programmed structure of the continuous data flow throughout
the optimization and design problem. The methodology proposes the use of scripts or plug-ins with
developed algorithms for specific tasks such as optimization problems or structural analysis acting as
frameworks inside Grasshopper’s language. However, Grasshopper supports other programming
language to import or write other algorithms. This flexibility allows the methodology to maintain
updated as well as to easily adapt to different case studies while maintaining the programming
structure and elements.

Optimization and FEA algorithms are pointed out in the methodology diagrams and are
represented by its plug-in logo images for a more intuitive understanding. The letter V represents
the variables that act as inputs to the algorithms that generate the geometry, and the O represents
the objectives extracted from the geometry data or from the FEA solver data. On the other hand,
the cubes, represent the geometric objects generated from Grasshopper using mathematical relationships
or algorithms. The lines and arrows represent the flow of information through the functions
and algorithms of the methodology. The type of data flow is represented in different colors further
explained in the Figure 15.
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Depending on the ubication of the multi-objective algorithms in the workflow two different
methodological approaches are presented below; continuous and hierarchical.
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4.1. Continuous Methodology

As can be seen in the diagram in Figure 16, the geometry is generated parametrically from initial
variables. A topology optimization is then carried out from the resultant geometry and the resultant
mesh is analyzed through a succession of algorithms and functions in order to generate from it, on one
hand, the lattice infill and, on the other, the wireframe shell. Both structures are weld together into a
single coherent structure which is optimized with a multi-objective algorithm at the end to compare
and select the more suitable optimized solution in each case.

4.2. Hierarchical Methodology

Octopus multi-objective optimization algorithms produce solutions from the random search of
the variables making iterations over the entire structure of the programming. The more variables
and objectives introduced in a single problem, the more iterations will be necessary to select the best
genome or solution, which implies a greater consumption of computing resources.

On the other hand, depending on the infill geometry and its relation to the contour shell,
it may be interesting to break the optimization problem into subproblems to have greater control over
the optimization of each part.

In response to these situations, a hierarchical methodology is proposed, in which the general
volume is optimized several times in different stages of the problem. As shown in Figures 17 and 18
a first multi-objective optimization is done to the general volume after the topology optimization,
and a second optimization is carried out to the cellular infill and shell structures, either jointly
or independently.
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and wireframe shell.

As represented in Figure 17, after the topology optimization, the optimization problem is separated
into 2 multi-objective optimization subproblems. This proposed hierarchical methodology, in which
the problem is broken down into subproblems, allows the problem to be decomposed as much as
necessary while there is a flow of data throughout the problem.

It is possible to decide which methodology is more interesting and efficient in each case once much
of the optimization problem has been modeled by including the optimization algorithm in the design
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stage of interest. On one hand the continuous methodology is preferred when there are few variables
to be taken into account in order to be able to search through a representative number of solutions
with a viable consumption of computing resources. On the other hand, the hierarchical methodology
with more than one optimization solver is of special interest in the following cases:

(1) High degree of detail: In those cases, in which a high degree of detail needed without initially
conditioning the final geometry, the hierarchical methodology is the most suitable. By subdividing
the problem in different levels of detail, the geometry is optimized from the general volume to the finest
detail, making decisions throughout the process and having absolute control over the final result.
In the diagram of Figure 19 there are only 3 degrees of detail; however, the problem can be decomposed
to further details or even to its different geometry parts. In addition, other solvers or algorithms
can be incorporated at any point in the optimization process and included within the methodology.
For instance, in Figure 19 an example of one possible application is illustrated and Goat, mono-objective
optimization solver is introduced to optimize in further degree of detail.

(2) Design alternatives: When it is interesting to assess different design alternatives to choose
the most effective the hierarchical methodology is the most suitable option. Once the problem is
defined, it is easy to branch any subproblem into different design alternatives at any point of the process.
Figure 20 illustrates a diagram of an example with the explained possibilities.
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The methodology proposed in this work has been applied to different case studies to validate its
operation. Its application in the design of a beam has been used as an example in some sections of
this work to support specific parts of the exposition and to illustrate how the methodology contributes
to the definition of the final solution through its different stages. Figure 21 illustrates the application of
the methodology to the beam and two other examples: a wall hook and the heel of a shoe. The main
stages and aspects of the design and optimization process are outlined and represented.
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5. Conclusions

The proposed methodology successfully integrates three technologies whose potential and utility
are significantly increased when they work together, taking advantage of their synergies. The results
obtained are considered satisfactory and represent optimized design solutions that improve those that
would be achieved using any of the technologies considered independently.

The methodological approach presented in this work integrates topology optimization with
mono-objective and multi-objective optimization in a continuous workflow using parametric design.
This general achievement allows the application of the methodology to different fields and represents
a useful design and optimization tool for additive manufacturing scenarios. It allows the taking
of advantage of the greater geometric freedom allowed by additive manufacturing, and to explore
the possibilities of these manufacturing technologies.

The adaptation of the designs to individual needs and preferences that is allowed by
the methodology, makes this approach of great interest for mass customization strategies. In this sense,
the methodology can be understood as a design resource for this kind of contexts, with great application
opportunities in fields such as medicine, fashion design, or disciplines such as ergonomics.
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In addition, the methodology allows the level of flexibility required in each case, the design problem
can be decomposed into hierarchical optimization subproblems for greater control by the designer,
and without any barrier in the data flow or in the design process.

On the other hand, and from teaching approaches, this methodology is expected to be one
of the main resources to be used in the framework of the 2020 Call for Teaching Innovation
Projects requested by the authors as members of the Teaching Innovation Group (GID2016-28)
of the UNED. The authors want to identify key criteria and aspects of influence on the success of
additive manufacturing process carried out by the students, in order to incorporate them within a
multicriteria hierarchical structure able to support decision-making for layout design and equipment
future acquisitions. Since the developed methodology integrates and explores the synergies between
three key technologies, such as additive manufacturing, parametric design, and optimization processes,
it can guide the identification of the key criteria and aspects of influence, and its role in this teaching
initiative is expected to be significant, both for researchers and students.

Finally, the results obtained considering FDM 3D printers as the manufacturing technologies for
this work, encourage the authors to launch similar experiences to validate and improve the application
of the methodology with other additive technologies. On the other hand, the authors are currently
in the initial stages of studies focused on the analysis of the mechanical behavior of specific designs
obtained from applying the methodology. It is expected that the results obtained will serve to improve
the functioning of the methodology, validating the results of the simulations ran from the mechanical
characterization of the material faced in previous works.
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