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SUMMARY

Image-based AI has thrived as a potentially revolutionary tool for predicting
molecular biomarker statuses, which aids in categorizing patients for appropriate
medical treatments. However, many methods using hematoxylin and eosin-
stained (H&E) whole-slide images (WSIs) have been found to be inefficient
because of the presence of numerous uninformative or irrelevant image patches.
In this study, we introduced the region of biomarker relevance (ROB) concept to
identify the morphological areas most closely associated with biomarkers for
accurate status prediction. We actualized this concept within a framework called
saliency ROB search (SRS) to enable efficient and effective predictions. By
evaluating various lung adenocarcinoma (LUAD) biomarkers, we showcased the
superior performance of SRS compared to current state-of-the-art AI approaches.
These findings suggest that AI tools, built on the ROB concept, can achieve
enhanced molecular biomarker prediction accuracy from pathological images.

INTRODUCTION

Molecular biomarkers can help elucidate the diversity in disease progression and facilitate optimal

therapeutic decisions, which are particularly helpful for precision treatments in cancer immunotherapy.1–3

Meanwhile, rapidly evolving deep learning techniques4,5 have showcased their abilities to predict

biomarker statuses from histopathological whole-slide images (WSIs)6–16 by capturing the morphological

expressions caused by specific genetics and somatic mutations. Most AI-based biomarker prediction pipe-

lines6,8–12 operate as follows. First, they divide a whole image into a collection of patches using a fixed-size

sliding window (hereafter referred to as sliding window–generated patches) and then employ a convolu-

tional neural network (CNN) to classify each patch. The ensemble of patch predictions is subsequently

aggregated using simple rules or lightweight machine learning algorithms (e.g., majority vote, logistic

regression, support vector machine) to produce final predictions.

A major challenge with this whole-slide–based strategy is that it allocates equal importance to every

patch, neglecting the role of varying tissue patterns. This can hinder prediction performance and may

even result in failure if the image contains too many patches with unrelated tissues. For instance, a variety

of morphic information, such as tumor stroma, blood vessels, and fibroblasts, has little correlation with

molecular biomarker statuses. Consequently, using all the sliding window–generated patches for the

classifier can introduce substantial noises and be detrimental to diagnoses during both training and

inference phases. Moreover, some studies7,17 have tried to capture tumor-containing patches as

the input for the final classifier by performing multiple classifications on sliding window–generated

patches. However, determining standard cancer-related labels (e.g., tumor or non-tumor) becomes chal-

lenging when various tissue patterns coexist, especially for cancers that comprise a mix of multiple

histological subtypes. Furthermore, it is not ideal to develop one classifier to predict many molecular

biomarkers using identical patches without adaptive selection. Distinct biological properties and causa-

tive factors accompany these biomarkers, resulting in variable and context-dependent morphological

representations.
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To address the challenges encountered by current CNN-based approaches, we propose a new morpho-

logical concept known as regions of biomarker relevance (ROB) to represent areas within a pathological

image that are mostly associated with a specific biomarker. Our inventive CNN framework is built on the

ROB concept, allowing for the identification of molecular biomarker statuses from H&E WSIs. Our pro-

posed framework, termed saliency ROB Search (SRS), facilitates the direct detection of bounding boxes

surrounding tumor subtypes, bypassing the need for the classification of each clipped patch. Furthermore,

it identifies salient ROBs to reconstruct the patient’s morphological feature representation, supplanting

the original WSI for the prediction of target biomarker statuses. Utilizing WSIs from LUAD patients, we

demonstrate the practicality and adaptability of SRS by examining various categories of molecular

biomarkers, encompassing TMB, PD-L1 protein expression, TP53, and EGFR mutations. We are confident

that this approach represents a promising avenue for further exploration of molecular biomarker status

prediction using H&E WSIs.

RESULTS

In this study, we introduce a novel deep learning framework, saliency ROB search (SRS), designed to predict

molecular biomarker status based on H&E WSIs. We outline the details of SRS in the STAR Methods

section. In essence, SRS comprises three cascading modules (Figure 1), the Tumor Search Module

(TSM), responsible for detecting tissue of multiple histological tumor subtypes; the ROB Search Module

(RSM), which filters out discriminative ROBs from predicted subtype lesions; and the Status Prediction

Module (SPM) for predicting biomarker status. SRS begins with subtype lesion detection and then in situ

searching for ROBs for every biomarker without human supervision. The adaptive ROB selection enables

SRS to prioritizeWSI patches most relevant to biomarkers, consistently enhancing prediction performance.

To train and validate SRS, we curated and annotated four publicly available datasets, comprising 1454 H&E

WSIs from 775 LUAD patients, focusing on three categories of biomarkers – TMB, PD-L1 protein expres-

sion, TP53, and EGFR mutations.

Performance on TMB prediction

In predicting the TMB biomarker from the TCGA dataset, SRS achieved state-of-the-art (SOTA) perfor-

mance, with an average precision (AP) of 0.782 (95% CI = 0.696–0.865, p = 0.045) and a better area under

the curve (AUC) comparing to SOTA of 0.833 (95% CI = 0.721–0.921, p = 0.040). We validated the effective-

ness of the TSM and RSM modules by varying the inputs for SPM. A detailed performance comparison is

presented in Table 1. We first describe the configurations of the comparing baseline (‘‘SRS, w/o TSM

and RSM’’ in Table 1). In line with previous studies,4,6,7 we utilized a sliding window of 512 3 512 pixels

at a 203 objective lens magnification to partition theWSIs, preparing the input patches for the subsequent

SPM module, which treats the task of predicting biomarker status as a traditional classification problem.

Before deriving the outputs of SPM for patients, we used the prediction probabilities as the confidence

scores to remove those ambiguous patches whose scores lie between 0.3 and 0.7. In comparison to this

baseline workflow, the AUCs improved significantly by 14.2% (from 0.691 to 0.789) and 7.8% (from 0.691

to 0.745) when TSM and RSM were added correspondingly, while the rest pipeline (e.g., SPM) unchanged.

We provided the ROC and PR curves of experiments w/o TSM and RSM in Figure S1. The TSM and RSM are

expected to be helpful in identifying subtype lesions and eliminating regions that have little association

with the target biomarker or exhibit inconsistent biomarker status compared to the source patient. Further-

more, we integrated the screened-out patches in RSM to re-train the SPM, achieving an AP of 0.538 (95%

CI = 0.395–0.610, p = 0.057) and an AUC of 0.664 (95% CI = 0.552–0.730, p = 0.050), which was worse than

the baseline, supporting the claims that the SRS can distinguish between meaningful and meaningless

patches. The enhancement brought by TSM can be attributed to the presence of morphological signals

for molecular biomarker prediction in certain tumor tissues. Meanwhile, RSM proved beneficial for predic-

tion by discarding tissue parts (even tumor tissues) that are indistinct or misleading.

The advantages of SRS extend beyond performance to the robustness of the threshold choices for deter-

mining whether TMB status is high. Mika S. Jain et al.4 observed that AUCs/APs experienced a noticeable

degradation from 0.810/0.740 to 0.760/0.780, 0.810/0.710, and 0.700/0.410 when the threshold changed

from 206 to 135.5, 223, and 293.5, respectively. These thresholds correspond to the median, tertile, and

quartile of patients’ TMB values. However, the issue of poor robustness has been improved due to the

search strategy for salient ROBs in the SRS. As shown in Table 2, our SRS achieved AUCs of 0.785 (95%

CI = 0.675–0.892, p = 0.043), 0.833 (95% CI = 0.721–0.921, p = 0.040), 0.841 (95% CI = 0.747–0.931, p =

0.042), and 0.829 (95% CI = 0.710–0.928, p = 0.040) for the same set of threshold values of 135.5, 206,
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233, and 293.5, respectively. The approximate AUC scores indicate that our SRS can handle different

thresholds, even if the clinical criteria change. In addition, we attempted to apply multi-instance learning

(MIL)18–20 to address the problem of predicting biomarker status fromWSIs but encountered the erroneous

case where themajority of patients were predicted as having high TMB status (see further description in the

discussion section).

We further evaluated the trained SRS models on the held-out test set derived from an external dataset

named CPTAC and achieved an AUC of 0.732 (95% CI: 0.632–0.922, p = 0.039) for TMB status prediction.

Next, we compared different CNN architectures in SPM using the TCGA dataset. The compared CNN

models included ResNet50,21 DenseNet121,22 and Inception-V3.23 The Light-Xception model used in

SRS had fewer parameters (0.99M) and fewer computational FLOPs (388.96M), improving AUCs by 5.6%

(from 0.789 to 0.833), 5.6% (from 0.789 to 0.833), and 4.1% (from 0.800 to 0.833), compared to ResNet50,

DenseNet121, and Inception V3 models, respectively. The detailed performance can be found in Table S1.

We visualized the spatial distribution of histologic subtype lesions detected by SRS (Figure 2A) and the con-

fidence heatmap for predicted subtype lesions (Figure 2B) in predicting TMB biomarker. The confidence

Table 1. Performance comparison between different computational workflows on predicting biomarker of TMB

Method Sensitivity Specificity AP (95%CI) AUC (95% CI)

Jain, M.S.et al. / / 0.740 0.810

Xu et al. 0.726 0.679 / 0.742 (0.682–0.794)

Sadhwani, A. et al. 0.712 0.717 / 0.770 (0.640–0.880)

w/o TSM and RSM 0.667 0.750 0.422 (0.239–0.668) 0.691 (0.502–0.851)

w/o TSM 0.727 0.651 0.442 (0.300–0.723) 0.745 (0.733–0.833)

w/o RSM 0.720 0.735 0.733 (0.604–0.760) 0.789 (0.661–0.899)

SRS 0.760 0.816 0.782 (0.696–0.865) 0.833 (0.721–0.921)

Here we directly reported the results published in the related work.

Figure 1. An overview of saliency ROB Search (SRS) Framework
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score indicated the model’s uncertainty about its prediction. Patches with high confidence scores demon-

strated a stronger correlation with the TMB biomarker. In addition, the problem of lacking accurate labels

for patches is a common challenge in WSI-based methods. During training the RSM, we assigned the

source patient’s status as the supervisory signal for their associated subtype lesions as the standard WSI

diagnosis method. It was not accurate enough, and whether the classification problem could be solved

relied heavily on the accuracy of such pseudo-label assignment. For instance, a patient with low TMB status

may have tissue patches exhibiting high TMB status on histopathological images and vice versa. That is a

possible reason why the standard MIL method24 and CLAM25 cannot perform well in identifying patients

with low TMB status. Actually, the confidence branch in RSM will reduce the adverse effect brought by

such mismatched pairs. With the RSM, we can improve the model’s tolerance for incorrect supervision

Table 2. Performance comparison of SRS between various TMB threshold values

Threshold Sensitivity Specificity AP (95%CI) AUC (95% CI)

135.5 0.714 0.692 0.802 (0.682–0.883) 0.785 (0.675–0.892)

206 0.760 0.816 0.782 (0.696–0.865) 0.833 (0.721–0.921)

223 0.750 0.740 0.771 (0.690–0.859) 0.841 (0.747–0.931)

293.5 0.727 0.712 0.771 (0.670–0.868) 0.829 (0.710–0.928)

Figure 2. Visualization of spatial heterogeneity for subtype lesions, confidence heatmap, and probability heatmap on TMB biomarker prediction

The sampled three patients have TMB of 23, 305, and 586 (206 served as the threshold value for training).

(A) spatial distribution of subtype lesion.

(B) confidence heatmap indicating the association of lesions to TMB status.

(C) probability heatmap indicating the probability of behaving TMB-High status.
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by minimizing the confidence score rather than the distribution difference between the probability and

pseudo-label by multiplying the confidence score with the common cross-entropy loss as a new optimiza-

tion objective.

By means of selecting the subtype lesions whose confidence scores exceed a threshold, the RSM enabled

recognition of the lesions contributing to TMB prediction and exhibiting TMB status consistent with the

respective patient. Our SRS is capable of automatically selecting the salient ROBs, eliminating the uninfor-

mative andmismatched patches asmuch as possible, leading to consistent improvements compared to the

current deep learning counterparts.6,7,17 During the training of the CNN classifier in SPM, we continued to

set the patient’s TMB status as supervision for the lesions chosen through TSM and RSMmodules. Further-

more, we provided a heatmap that indicated the probability of behaving high TMB status for each salient

ROB (Figure 2C). This enabled the salient ROBs to align more closely with the predictive outcomes.

The superior performance achieved by the SRS stems from focusing the salient subtype lesions that are

highly correlated with the TMB biomarker status. In addition, we conducted an analysis of the relationship

between TMB status and the predominant subtype for WSIs, as well as the relationship between the two

predicted attributes of TMB status and subtype category for salient ROBs. The distribution statistics

were summarized in Figure S2, where the ‘‘WSIs’’ group described the number of WSIs exhibiting high

TMB status in the subset of WSIs with a specific predominant adenocarcinoma, and the ‘‘ROBs’’ group

2indicated the number of ROBs predicted as high TMB status and certain subtype adenocarcinoma simul-

taneously. These two statistics revealed that the solid subtype has a more substantial association with high

TMB status. Correspondingly, the low TMB status is concentrated in the papillary and mucinous subtypes,

which aligns with previous research findings.26

Performance on other biomarkers

The SRS had the adaptive ability to predict other molecular biomarkers’ status with user-specified positive cut-

offs. We experimentally verified such capability with a new set cutoff value of 152 on PD-L1 protein expression,

TP53, and EGFRmutations, achieving AUCs of 0.878 (95% CI = 0.756–0.965, p = 0.042), 0.793 (95% CI = 0.686–

0.884, p = 0.040) and 0.918 (95%CI = 0.782–0.995, p = 0.044) on the TCGA test split, respectively.Wepresented

themodel performance anddataset statistics in Tables 3 and4, respectively. Regarding theTMBbiomarker, we

examined the statistical relationship between subtype and biomarker status. High PD-L1 protein expression

and TP53 mutation occurred more frequently in the solid subtype, while EGFR mutations were more common

in the acinar subtype. We presented a more comprehensive analysis in Figure S2.

To demonstrate the importance of the ROB concept, we present the ROB diversity of TMB, PD-L1 protein

expression, TP53, and EGFR mutations in Figure 3. It is evident that each biomarker is associated with its

own unique set of ROBs. In addition, when we simply fed an entire WSI as model input, the prediction per-

formance dropped significantly, as similarly observed in TMB prediction (Figure S3). This may reflect the

fundamental principle that different biomarkers have distinct biological causes at the genetic level and,

consequently, display unique morphological/phenotypic representations on a WSI.

Furthermore, we compared the selected salient ROBs with response regions based on immunohistochem-

istry (IHC) for estimating the biomarker of PD-L1 protein expression biomarker on slides from the Wuhan

Tongji Hospital. We discovered a high similarity between ROBs with a high probability of being positive

(red square) and response regions delineated with red curves in Figure 4.

Table 3. Performance comparison between the naive workflow and SRS on predicting PD-L1 protein expression,

TP53, and EGFR mutations

Biomarker Sensitivity Specificity AP (95%CI) AUC (95% CI)

PD-L1 w/o TSM and RSM 0.765 0.712 0.691 (0.561–0.720) 0.803 (0.655–0.925)

SRS 0.824 0.772 0.749 (0.628–0.811) 0.878 (0.756–0.965)

TP53 w/o TSM and RSM 0.545 0.558 0.615 (0.457–0.705) 0.642 (0.508–0.757)

SRS 0.719 0.714 0.779 (0.689–0.857) 0.793 (0.686–0.884)

EGFR w/o TSM and RSM 0.818 0.677 0.471 (0.225–0.549) 0.775 (0.592–0.917)

SRS 0.778 0.923 0.756 (0.666–0.850) 0.918 (0.782–0.995)
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DISCUSSION

Current deep learning methods for predicting molecular biomarker status from histopathology mainly

were based on inputs of whole slide/whole tumor (WS/WT). However, human cancers displayed significant

intra-tumor heterogeneity in morphological and phenotypic features, which could be detrimental to the

WS/WT-based strategy. There were methods17,27 proposed to recognize the representative tissue using

affinity propagation clustering,28 an unsupervised method, from tumor-containing patches. However,

applying affinity propagation clustering to search salient ROBs could be inefficient because it was intricacy

to determine which clusters were helpful in prediction based on some heuristic rules or experience.

We have tried to apply the standard MIL with maximum pooling to perform TMB prediction using sliding

window–generated patches. Here, maximum pooling meant sampling patches from each WSI with the

largest prediction probability to optimize the model at each iteration. Meanwhile, during inference, we

chose the patches with the largest probability to represent the prediction of the source patient, but they

were all determined to be high with a sensitivity of 1.0 and specificity of 0. In addition, CLAM25 is an exten-

sion of the MIL framework, which incorporates instance-level clustering and attention-based pooling for

accurate classification. We conducted an additional experiment to evaluate the performance of CLAM25

in classifying TMB biomarkers using only tumor (subtype) patches, achieving a sensitivity of 0.943 and

specificity of 0.133, better than the standard MIL but far behind our SRS. The two unsuccessful attempts

provided support for our conjecture that there were always tissue patches that exhibited high TMB despite

the source patient being under low TMB status. This discovery contradicted the fundamental bag-instance

assumption in MIL, which states that negative bags should not contain any positive instances and positive

bags should contain at least one positive instance. The presence of such mismatches made it challenging

to optimize for predicting TMB status, similar to optimizing MIL for natural objects.

On such a basis, we proposed a framework titled SRS to capture morphological patterns that were themost

correlated with the target biomarker, attempting to build an association between genotype and pheno-

type. This improved model performance and enabled the reveal of biological insights hidden in histopath-

ological images. Our work demonstrated that LUADpatients’ biomarker status, such as TMB, PD-L1 protein

expression, and TP53 mutation, etc., can be predicted with digitalized H&E frozen WSIs, and showed an

edge over conventional methods taking the entire WSI as input. Our SRS design can be applied to estimate

the status of a single gene mutation and the mixed effect of multiple gene mutations. Furthermore, we

Figure 3. The distribution of salient ROBs contributing to the prediction of biomarkers of TMB, PD-L1 protein expression, TP53, and EGFR

mutations

Table 4. Demographical and clinical information on LUADdataset from the TCGA,NLST,WHTJ, and CPTAC cohorts

Dataset Female Male Age range (median) Slide amount Patient amount

TCGA Trainval 149 143 33-88 (66) 439 292

Test 41 33 41-87 (65) 111 74

NLST Trainval / / / 209 118

Test 47 29

WHTJ Trainval / / / 123 123

Test 34 34

CPTAC Test 37 68 / 491 105
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verified the robustness of the threshold choice, which showed that SRS could be workable for various

biomarkers with diverse binarization settings.

Limitations of the study

Despite the promises, there are certain limitations of SRS. One major limitation is that molecular bio-

markers with continuous values (e.g., TMB) were analyzed with coarse categories instead of fine numerical

values. A more quantitative analysis beyond binary classification requested more patients with continuous

values varying the diverse ranges for training. Moreover, the lack of a carefully curated and comprehensive

dataset poses the difficulty in developing an efficient algorithm to produce a foundational feature encoder

based on high-resolution H&E WSIs, where the extracted features should be directly utilized for training

biomarker value regressors. Another limitation pertains to the use of the classic Cascade R-CNN for detect-

ing tumor subtype, which cannot represent themost advanced object detectionmodels currently available.

Nonetheless, we intend to address this limitation in further work by incorporating the latest transformer-

based methods to update our detector. Despite these, our proposed SRS framework validated the venue

of selecting saliency ROBs for biomarker prediction and brought substantial improvements to the current

deep-learning solutions. Our study highlights the potential for further development of the SRS framework

and its application in clinical practice.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

B Image datasets

B Dataset split

B Image annotation

B Biomarker processing

d METHOD DETAILS

B Tumor search module

B ROB search module

B Status prediction module

B Prediction ensemble

Figure 4. The comparison between ROBs in the H&E image and response region in the IHC image (red curve) for

evaluating PD-L1 protein expression

On the left image, the red color indicates patches with a high probability of positive PD-L1 status, while the blue color

indicates a low probability.
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B Experimental setup

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Model performance evaluation

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2023.107243.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to the lead contact, Tian Xia (tianxia@

hust.edu.cn).

Materials availability

This study did not generate any new unique reagents.

Data and code availability

d This paper used both existing LUAD WSI from TCGA, CPTAC and NLST datasets and newly acquired

LUADWSI fromWHTJ dataset to train and validate the computional framework. The accession numbers

for theses publicy available datasets of TCGA, CPTAC andNLST are listed in the key resources table. The

newly acquired WHTJ dataset will be shared by the lead contact upon request.

d The original code will be available at https://github.com/ganjf/biomarkerPrediction.

d Any additional information required to reanalyze the data reported in this work paper is available from

the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Image datasets

In this study, we have curated 1454 digitized H&E frozen WSIs from 775 LUAD patients that were collected

from four resources: the Cancer Genome Atlas (TCGA), the National Cancer Institute’s Clinical Proteomic

Tumor Analysis Consortium (CPTAC), the National Lung Screening Trial (NLST), and theWuhan Tongji Hos-

pital (WHTJ). We summarized the dataset statistics in Table 4, including the available gender and age in-

formation, with ‘/’ denoting the inaccessible clinical information for the NLST, WHTJ, and CPTAC datasets.

The TCGA dataset consists of 550 WSIs from 366 patients, whose resolutions are either 0.25 mm/pixel (403)

or 0.5 mm/pixel (203). The CPTAC dataset consists of 491 WSIs from 105 patients, and the slides were

scanned at a resolution of 0.5 mm/pixel (203). The NLST dataset includes 256 WSIs from 147 patients

scanned at resolutions of 0.25 mm/pixel (403) or 0.5 mm/pixel (203). The WHTJ dataset consists of 157

WSIs from 157 patients, and the slides were scanned at a resolution of 0.25 mm/pixel (403).

Dataset split

For TCGA, NLST, and WHTJ datasets, we utilized 80% of cohort patients for training and validation (train-

val) and the rest 20% for testing, where the CPTAC dataset served as a hold-out external testing set. Due to

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The Cancer Genome Atlas (TCGA) National Cancer Institute https://portal.gdc.cancer.gov/

The National Lung Screening Trial (NLST) National Cancer Institute https://cdas.cancer.gov/datasets/nlst/

The National Cancer Institute’s Clinical

Proteomic Tumor Analysis Consortium (CPTAC)

National Cancer Institute https://www.cancerimagingarchive.net/

Software and algorithms

OpenSlide OpenSlide team https://openslide.org/

OpenCV OpenCV team https://opencv.org/

Pytorch Meta AI https://pytorch.org/

MMDetection OpenMMLab https://github.com/open-mmlab/mmdetection

SRS This paper https://github.com/ganjf/biomarkerPrediction
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the lack of clinical genetic information, NLST andWHTJ datasets do not serve for experiments of biomarker

prediction. Still, they are only used to validate the performance of LUAD subtype detection.

Image annotation

Our study comprised 1454 WSIs from 775 LUAD patients in four sources. The LUAD is recommended to be

classified as multiple histologic subtypes by the 2015 World Health Organization (WHO) Classification of

Lung Tumors.29 Six qualified pathologists from Wuhan Tongji Hospital, with an average of 9 years experi-

ence, reviewed and annotated all WSIs from TCGA, NLST, and WHTJ datasets, using our own developed

software for WSIs labeling to outline rectangular bounding boxes of histologic adenocarcinoma subtypes.

Each annotation of adenocarcinoma subtypes has been confirmed by other colleagues from the expert

panel to establish a consensus.

Biomarker processing

In this work, we validated our model on three different types of biomarkers, including ensemble somatic

mutations (TMB), gene-level somatic mutations (TP53 and EGFR), and protein expression (PD-L1) on the

TCGA dataset. The CD274 gene was measured to evaluate PD-L1 protein expression. The actual biomarker

status was determined by the whole-exome sequencing (WES) for TMB, by RNA sequencing for CD274,30

and by next-generation sequencing (NGS)31 for TP53 and EGFR mutations, respectively. We plotted the

distribution of TCGA patients’ TMB value and PD-L1 protein expression in Figure S4. The TMB and PD-

L1 protein expressions are continuous variables, ranging from zero to thousands; therefore, the status

was grouped into high/positive and low/negative depending on the preset threshold value. Coherent

with previous studies,6,26 we set the threshold value as 206 mutations for TMB, which approximately

equated to 10 mutations per megabase (muts/Mb) when analyzing with the FoundationOne CDx assay,

as suggested in the FDA approval.32 With such standards, 32.24% and 36.19% of patients in the TCGA

and CPTAC datasets are identified with TMB-High status. The optimal cutoff value for the PD-L1 protein

expression was chosen using Cutoff Finder,30,33 a standard optimization software for biomarker cutoff

determination. In the TCGA dataset, 20.22% of patients were identified as positive in PD-L1 protein expres-

sion with a threshold of 152 calculated from Cutoff Finder. Additionally, there were 46.5% of patients with

TP53 mutation and 16.3% of patients with EGFR mutation.

METHOD DETAILS

The overview of SRS is outlined in Figure 1. It consisted of three separate cascaded CNN modules: i) a

tumor search module (TSM) to perform subtype lesion detection for pinpointing histologic adenocarci-

noma areas and identifying corresponding tumor subtypes on H&E WSIs, ii)a ROB search module (RSM)

to accomplish out-of-distribution (OOD) detection for selecting the most salient ROBs from predicted

subtype lesions and iii) a status prediction module (SPM) for predicting target biomarker status for each

saliency ROB. In addition, we clarified the theoretical details of the framework in the Supplementary

Method.

Tumor search module

To alleviate the computation burden, we used fixed-sized windows to generate available-sized input from

down-sampledWSIs equivalent to 53 object lensmagnification (2.0 mm/pixel) for subtype lesion detection.

Specifically, we set the window size to 1000 3 1000 pixels (2000 3 2000 mm), ensuring the range was large

enough to contain multiple subtype lesions. During training, we placed windows centered on each anno-

tated subtype lesion to generate tiles as training data. At the inference stage, we continued to use sliding

windows of size 1000 3 1000 pixels (2000 3 2000 mm) to partition WSIs with an overlap of 250 pixels (500 3

500 mm) (see Figure S5). The overlap ensured that any lesion would be entirely contained in some window.

Additionally, we discarded the sliding-window-generated tiles with little tissue (i.e., tiles with >50% areas

consisting of background pixels with each RGB value >220). However, the existence of overlap could cause

the redundancy of predictions. Therefore, we perform non-maximum suppression (NMS) twice to reduce

redundancy. The first NMS was applied after inferring subtype regions on each sliding-window-generated

tile, and the second one was applied after mapping predicted bounding boxes back to the original WSI. By

applying NMS twice, we were able to reduce redundancy and improve the efficiency and accuracy of

detection.
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In TSM, we utilized Cascade R-CNN34 as a basic detector to detect multiple histologic subtypes of adeno-

carcinomas on WSIs, which contains a set of R-CNN detectors. The architecture had an advantage in

improving the quality of predicted subtype locations stage by stage with respect to the prior dominant

object detection model named Faster R-CNN.35 It consisted of three modules, namely backbone, neck

and head. The Res2Net36 served as backbone to extract semantic feature from pathological images. It rep-

resented multi-scale features at a granular level and enlarged the size of receptive fields. The neck was

Feature Pyramid Network (FPN),37 constructing features pyramid with marginal extra cost on computation

burden andmemory storage to improve the detection accuracy. In this study, wemerely utilized the feature

output from the last three layers in ResNet as input to the FPN. The head consisted of the region proposal

network (RPN)35 and the R-CNN. The RPN scanned the feature map to output a set of anchor-based object

proposals, each with a probability of foreground and background. Those anchors with different scales and

aspect ratios were introduced to process objects with various shapes, whose design were based on prior

knowledge. We employed a data-centric search named k-means clustering38 to determine the optimal an-

chor design based on the characteristics of the annotated bounding boxes in the training set. As a result,

we set a scale of 8 and aspect ratio of 0.8, 1.0 and 1.25 to generate anchors on each feature map in FPN.

Additionally, the R-CNN resampled the object proposals generated by RPN with progressively increasing

IoU thresholds to screen higher quality proposals and performed bounding box regression and object clas-

sification for each proposal. To alleviate the problem of imbalance between positive and negative samples,

we used online hard example mining (OHEM) sampler39 at each stage of RCNN. The OHEM sampler

ranked the proposals by loss and only made use of the current worst-performing proposals to further opti-

mize the network parameters.

We exemplified the detection performance of TSM by using LUAD samples in the TCGA, NLST, and WHTJ

benchmark datasets. The lesion detectors were trained and tested independently on each dataset. For

detecting five LUAD tumor subtype areas in a WSI, with an IoU threshold of 0.5, TSM achieved test mAP

of 0.696, 0.738, and 0.712 for TCGA, NLST, and WHTJ, with recalls of 0.893, 0.923, and 0.820, respectively.

We reported the detailed category-wise detection performance in Table S2.

To produce the appropriate data for the sequential RSMmodule, we enlarged the predicted bounding box

to a square with a side length of N3512 pixels at an object lens magnification of 203. This also allowed us

to capture more paracanerous tissue with a clinical value around the tumor areas. The post-processing step

is illustrated in Figure S6. The scale factor of N was chosen to be the smallest integer making N3512

greater than the longer side of the predicted bounding box. Next, we divided the enlarged lesion bound-

ing box into a set of 512 3 512 pixels grids. During the evaluation of the detection performance, we never

performed the post-processing step.

ROB search module

To enhance the accuracy of ROB positioning, we applied an out-of-distribution detectionmethod based on

confidence estimation.40 This can help to identify the most valuable lesions for a target biomarker, referred

to as saliency ROBs, from the subtype lesions predicted by the TSM. By doing so, we were able to eliminate

the uninformative or irrelevant regions, which facilitates the model training of biomarker status classifica-

tion and the ensemble of prediction on local tissue regions.

The ROB filter used in RSM was a Light-Xception architecture, equipped with an extra confidence branch

paralleling the classification branch, referred to as Light-Xception-CE (see Figure S7), with which we can

estimate the confidence score for a given subtype lesion. The Light-Xception was entirely based on

separable convolution layers instead of conventional convolution. It was essentially a simplified variant

of Xception.41 Due to the decrease of model complexity, the Light-Xception had a faster speed to operate

an image and a better ability to avoid overfitting. The separable convolution layer consisted in a depth-wise

convolution layer that performs spatial convolution on feature map over each channel independently,

followed by a point-wise convolution layer to perform affine transformation on full channel outputs over

each spatial point. Compared with the conventional convolution, separable convolution had fewer train-

able parameters and less computation with the same kernel size. The Light-Xception had 13 convolution

layers, including 12 separable convolution layers. Those convolution layers were structured into 7 modules,

and there are residual connections between adjacent modules, except for the first and the last module. The

prediction branch outputed a normalized score between 0 and 1 with the softmax function, representing

the probabilities of behaving high and low biomarker status. The confidence branch outputed a normalized
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score between 0 and 1 with the sigmoid function, indicating how sure the model was to produce a correct

prediction. We set a threshold for the confidence score and chose the subtype lesions with scores above

the preset threshold as saliency ROBs. These ROBs were considered to have the greatest contribution to

the model’s decision-making process for biomarker status.

During training, we used the biomarker status of the source patient as the supervisory signal for each lesion.

The RSM was optimized by integrating a confidence score output with a cross-entropy loss for the half

samples in a mini-batch. This enabled the RSM to tolerate the ambiguous lesions exhibiting uninformative

to the target biomarker determination and the mismatched lesions exhibiting inconsistent biomarker sta-

tus with the source patient. However, too many lesions with mismatched supervisory signals can harm the

training process of the traditional classification problem. In this study, the optimal confidence threshold

was determined based on the highest classification accuracy achieved by the Light-Xception-CE model

on the ROB subset, meeting the threshold requirement from the training set. In our experiments, we set

the confidence threshold to 0.5, 0.48, 0.55, 0.50 for TMB, PD-L1 protein expression, TP53 and EGFR

mutations.

Status prediction module

In SPM, we employed the same Light-Xception architecture to train the last biomarker classifier for predict-

ing the probability of exhibiting a high/positive biomarker status for each saliency ROB. Similar to the

training of RSM, we assigned the patients’ biomarker status as the target supervision for their associated

saliency ROBs when feeding them into the CNNmodel as input. This pseudo-label assignment was consis-

tent with the standard deep-learning pipeline for WSI diagnosis as in previous works.6,7,17 For instance, if a

patient presented high TMB status, whose ROBs would be assigned as high TMB status during CNN

training. Summarily, we attempted to create a new representation for patients that replaces the original

WSI while containing fewer meaningless patches that could interfere with the biomarker status decision.

Prediction ensemble

We described how to aggregate the local patch predictions to derive the ultima biomarker status for a pa-

tient. We collected predictions of saliency ROBs from all WSIs associated with the source patient who may

have multiple slides and took the median of patch predictions as the resulting diagnosis about the target

biomarker.

Experimental setup

We trained the Cascade R-CNN detector (TSM) based on the implementation of mmDetection.42 All

cascade detection stages in Cascade R-CNN had the same architecture, three stages for detection with

the increasing IoU threshold of 0.3, 0.4, 0.5. The standard horizontal/vertical flipping and color jittering

(including brightness, contrast, saturation, and hue) were applied as data augmentation. Furthermore,

we randomly adjusted the width and height of bounding boxes of ground truth at a small range to alleviate

the problem of boundary blurring. We utilized SGD optimizer with a momentum of 0.9 and a weight decay

of 1e-4 to update the network parameters via backpropagation. The training started on two synchronized

GPUs, each holding 2 images per iteration, with learning rate of 0.001 using warm-up at the first 1000 iter-

ations to linearly increase the learning rate from 1e-6. The learning rate was reduced by a factor of 10 at the

15th, 25th and 35th epoch and the training terminated at the 40th epoch.

We implemented the Light-Xception-CE (RSM) and Light-Xception (SPM) models with PyTorch. Along with

the data augmentation mentioned during the TSM training process, we randomly adjusted the amount of

hematoxylin and eosin stained by decomposing the tissue image from the RGB color space into the HED

color space. We also applied Cutout43 to randomly mask parts of the tissue regions. Additionally, we uti-

lized the confidence loss function defined in the confidence estimation method40 and SGD optimizer with a

momentum of 0.95, weight decay of 5e-4, learning rate of 0.01 and a batch size of 64 to update the param-

eters of the Light-Xception-CE via backpropagation for 100 epochs. To address data imbalance, we set the

loss weight to 1:2, 1:4, 1:1, 1:4 for biomarkers of TMB, PD-L1 protein expression, TP53, and EGFRmutations,

respectively. Subsequently, we utilized the cross-entropy loss and SGDoptimizer with amomentum of 0.95,

weight decay of 5e-4, learning rate of 0.01 and a batch size of 32 to update the parameters of the Light-

Xception via backpropagation for 100 epochs. The loss weight was set to 1:2, 1:3 and 1:1, 1:4 for biomarkers

of TMB, PD-L1 protein expression, TP53, and EGRF mutations, respectively.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Model performance evaluation

The dataset splits for the TCGA, NLST, andWHTJ datasets were performed at the patient level using strat-

ified random permutation. The SRS performance was validated on the TCGA test set, and the CPTAC data-

set served as an external dataset. We evaluated the model performance based on the metrics, including

sensitivity, specificity, average precision (AP), and area under the curve (AUC). For every possible probabil-

ity cutoff, the ROC curve summarized the trade-off between sensitivity and specificity, while the PR curve

summarized the trade-off between precision and recall. To assess the statistical significance of the AUC/

AP score, we estimated the 95% confidence interval (CI) with bootstrap resampling, and derived the p value

by comparing the observed AUC/AP score with the distribution of bootstrap AUC/AP scores.We based the

hyperparameter and model developments on the validation split of the TCGA dataset with grid search.
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