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Defining Coronary Flow Patterns: 
Comprehensive Automation of 
Transthoracic Doppler Coronary 
Blood Flow
Ian L. Sunyecz1, Patricia E. McCallinhart1, Kishan U. Patel1, Michael R. McDermott1 & 
Aaron J. Trask1,2

The coronary microcirculation (CM) plays a critical role in the regulation of blood flow and nutrient 
exchange to support the viability of the heart. In many disease states, the CM becomes structurally 
and functionally impaired, and transthoracic Doppler echocardiography can be used as a non-invasive 
surrogate to assess CM disease. Analysis of Doppler echocardiography is prone to user bias and can be 
laborious, especially if additional parameters are collected. We hypothesized that we could develop 
a MATLAB algorithm to automatically analyze clinically-relevant and non-traditional parameters 
from murine PW Doppler coronary flow patterns that would reduce intra- and inter-operator bias, 
and analysis time. Our results show a significant reduction in intra- and inter-observer variability as 
well as a 30 fold decrease in analysis time with the automated program vs. manual analysis. Finally, 
we demonstrated good agreement between automated and manual analysis for clinically-relevant 
parameters under baseline and hyperemic conditions. Resulting coronary flow velocity reserve 
calculations were also found to be in good agreement. We present a MATLAB algorithm that is user 
friendly and robust in defining and measuring Doppler coronary flow pattern parameters for more 
efficient and potentially more insightful analysis assessed via Doppler echocardiography.

The coronary microcirculation (CM) is unique in physiologic structure and function compared to other micro-
vascular beds. It plays a critical role in the regulation of blood flow and nutrient exchange to support the viability 
of the heart. Because this vasculature lies within the surrounding myocardium, it constantly experiences trans-
mural forces in the form of systolic contraction and diastolic relaxation with every cardiac cycle. This dictates the 
amount of blood flow regulation to a large extent, in conjunction with the CM’s response to neural and hormonal 
factors. Compared to other blood flow in the body, coronary flow is unique in that it primarily occurs during 
myocardial diastole, whereas the CM is mostly occluded during systole1.

Transthoracic Doppler Echocardiography (TTDE) has proven to be a useful and relatively inexpensive tool to 
non-invasively assess cardiac perfusion by measuring parameters such as coronary flow velocity reserve (CFVR) 
and velocity-time integral (VTI)2–6. For both human and animal subjects, blood flow is measured via one of the 
major coronary arteries (left main, right main, left anterior descending) at various windows under both baseline 
and stress conditions, which yields the characteristic biphasic coronary flow pattern (CFP). In many disease states 
however, the CM becomes structurally and functionally impaired leading to changes in TTDE measurements and 
can thus be indicative of progressing CM pathology.

For example, in adult humans with type II diabetes mellitus (T2DM), multiple studies have demonstrated 
a reduction in coronary flow reserve (CFR) or CFVR compared to matched controls despite being asympto-
matic7–9. Previous studies by our laboratory have shown that the CM in young T2DM murine and porcine mod-
els undergoes early inward hypertrophic remodeling10,11, and others have demonstrated functional deficits12,13. 
Structural remodeling was associated in vivo with a reduction in coronary blood flow (CBF) and CFR. Moreover, 
this remodeling occurred prior to occlusive macrovascular atherosclerosis which further suggests the importance 
of examining the CM especially early in disease progression11. Of additional interest, recent studies have shown 

1Center for Cardiovascular Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA. 
2Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA. Correspondence and 
requests for materials should be addressed to A.J.T. (email: aaron.trask@nationwidechildrens.org)

Received: 3 August 2018

Accepted: 5 November 2018

Published: xx xx xxxx

OPEN

mailto:aaron.trask@nationwidechildrens.org


www.nature.com/scientificreports/

2SCIeNTIfIC RepoRts |         (2018) 8:17268  | DOI:10.1038/s41598-018-35572-4

significant differences in systolic and/or diastolic portions of these unique biphasic CFPs between normal and 
diabetic patients, suggesting that additional parameters obtained from coronary TTDE may be useful in clinical 
diagnostics14,15.

A disadvantage to TTDE is that manual analysis by a clinician or technician is still required to assess these per-
fusion parameters, which is often a time consuming process. Collecting additional parameters from these CFPs 
would only elongate the laborious process. The guidelines set forth by the American Society of Echocardiography 
state that measurements from only 3–4 cardiac cycles deemed representative by the rater are sufficient to obtain 
an average, yet multiple studies have shown significant differences between intra- and inter-operator variability in 
manual TTDE analysis16–19. Creating an automated or nearly automated algorithm to analyze CFPs would reduce 
user bias, allow for the analysis of many more cardiac cycles, and reduce manual labor.

In this study, we aimed to develop a MATLAB program that would (1) automatically extract existing and clin-
ically utilized parameters of murine coronary TTDE flow patterns such as peak velocity (PV), heart rate (HR), 
and VTI as well as newly-defined times, velocities, and slopes, from raw exported video files and (2) automatically 
perform calculations to obtain parameter averages and CFVR per animal. We hypothesized that this program 
would significantly reduce analysis time compared to manual analysis. Additionally, we hypothesized that the 
measurements obtained from the program would be in good agreement with manual analysis and that the pro-
gram would reduce inter and intra-operator variability.

Materials and Methods
Animals. Our lab had previously conducted multiple studies on 16- and 24-wk male homozygous (db/db) 
diabetic and age-matched heterozygote (Db/db) non-diabetic mice from The Jackson Laboratories. 3 db/db and 3 
Db/db mice were randomly selected from these previous studies for inclusion into the current study to compare 
manual vs. automated analysis. Additionally, we selected 18 Db/db and 20 db/db 16-wk mice to undergo analysis 
solely with our program to determine if our newly selected parameters showed any differences based on disease. 
Mice were housed under a 12-hr light/dark cycle at 22 °C and 60% humidity. They were allowed ad libitum access 
to water and were fed standard laboratory mouse chow. This study was conducted in accordance with National 
Institutes of Health Guidelines and was approved by the Institutional Animal Care and Use Committee at The 
Research Institute at Nationwide Children’s Hospital.

Transthoracic Doppler Echocardiography. Coronary blood flow velocity was measured noninvasively 
with a high-frequency, high-resolution ultrasound unit (Vevo2100, Visual Sonics, Toronto, Canada) equipped 
with a 30 MHz probe, at baseline (1% isoflurane), and under conditions of maximum flow (hyperemia, 3% iso-
flurane) as previously described10. Doppler measurements of the left main coronary artery diameter and flow 
were performed under a modified four chamber view. Mice were anesthetized with 2% isoflurane vaporized 
with 100% oxygen. Following induction, isoflurane was reduced to 1% to determine baseline coronary flow, and 
then increased to 3% to measure maximal coronary flow. Baseline and hyperemic PW Doppler files were either 
manually analyzed on the Vevo 2100 software or exported for automated analysis using the MATLAB program.

Coronary Flow Pattern Program. The CFP program was developed using MATLAB software (The 
MathWorks Inc., Natick, MA) and was designed to analyze and extract time intervals, velocity points, and slopes 
from PW Doppler CFP AVI video files exported from Vevo 2100 software. A detailed description of our algo-
rithm for processing the video files and extracting the desired parameters can be found in the online supplemen-
tal section.

Data Exportation. Raw AVI video files were directly exported from the Vevo2100 software for analysis. 
Specifically, uncompressed PW Doppler AVI video files were automatically exported at a size of 880 × 666 pixels, 
a frame rate of 30 frames per second, and sweep speed parameter of 0.85 seconds.

Region of Interest Extraction. PW Doppler Files: The raw uncompressed PW Doppler video files contain the 
desired coronary Doppler window region as well as a time axis, a velocity axis, an ECG recording, a B-Mode 
window, and various study labels (Fig. 1A). In order to extract the complete coronary Doppler region and ECG 
recording, a number of cropping and parsing steps were initiated and were built upon similar techniques by 
Magagnin et al.14 and Zholgharni et al.20. The final resulting images were the full Doppler CFP sequence from the 
zero-velocity baseline to the maximum velocity and the full ECG recording (Fig. 1B).

Feature Extraction and Parameter Measurements. PW Doppler Files - Envelope Overlay: After cropping the PW 
Doppler files to obtain both the full CFP sequence and the ECG recording, several image processing techniques 
were used to create an envelope overlay of the CFP. A flow chart of the image processing techniques is presented 
in Fig. 2.

PW Doppler Files – Parameter Extraction: The ECG recording was used to separate individual CFP cycles per 
heartbeat. Specifically, the start and end of each CFP cycle was identified as the R-peak to R-peak interval from 
the ECG. Following separation of each individual CFP cycle, the derivatives of their envelopes were calculated. 
Both the flow pattern envelope and its derivative were utilized in measuring our newly defined time intervals, 
velocity points, slopes, VTI and HR specified below (Fig. 3). The parameters were measured and stored for each 
cycle in the CFP sequence.
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Figure 1. (A) Example PW Doppler coronary flow pattern file exported from Vevo2100 software. Exported as 
is, these files contain the desired coronary Doppler window region as well as a time axis, a velocity axis, an ECG 
recording, a B-Mode window, and various study labels. (B) Full PW Doppler and ECG sequence parsed together 
from the single recording in A with non-pertinent information cropped out.

Figure 2. Flow chart of image processing techniques used on the Doppler CFP images.
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•	 Peak Velocity [mm/s]: The peak velocity (PV) was measured as the maximum velocity value for each CFP.
•	 Diastolic Velocity [mm/s]: The diastolic velocity was measured by first identifying the peak diastolic accel-

eration (PDA) of the CFP derivative. A window of 7.5% of the total beat duration was calculated and the 
diastolic velocity was chosen as the minimum value within that window up until the PDA.

•	 Decay Velocity 1 [mm/s]: The decay velocity 1 was measured by first identifying the peak diastolic decelera-
tion (PDD) of the CFP derivative. Between the PV and the PDD, decay velocity 1 was selected as the point at 
which the acceleration crossed the x-axis closest to the PDD.

•	 Systolic Rise Time [ms]: The systolic rise time was measured as the time interval between the start of the CFP 
to the diastolic velocity.

•	 Diastolic Rise Time [ms]: The diastolic rise time was measured as the time interval between the diastolic 
velocity to the PV.

•	 Diastolic Decay Time 1 [ms]: The diastolic decay time 1 was measured as the time interval between the PV 
to the decay velocity 1.

•	 Diastolic Decay Time 2 [ms]: The diastolic decay time 2 was measured as the time interval between the decay 
velocity 1 to the end of the CFP cycle.

•	 Systolic Slope [mm/s2]: The systolic slope was calculated as the average slope from the start of the CFP cycle 
to the diastolic velocity.

•	 Diastolic Slope [mm/s2]: The diastolic slope was calculated as the average slope from the diastolic velocity 
to the PV.

•	 Decay Slope 1 [mm/s2]: The decay slope 1 was calculated as the average slope from the PV to the decay 
velocity 1.

•	 Decay Slope 2 [mm/s2]: The decay slope 2 was calculated as the average slope from the decay velocity 1 to the 
end of the CFP.

•	 Heart Rate [BPM]: The heart rate (HR) was measured as the time duration of the R-R interval.
•	 Velocity Time Integral [mm]: The velocity time integral (VTI) was measured by integrating the CFP cycle 

envelope.

In addition to extracting the specified parameters from PW Doppler files, the program averages each parame-
ter per animal and calculates CFVR. Often in TTDE, certain cycles should be excluded from analysis, as they are 
not representative of cycles in the entire sequence (Supplementary Fig. 1). Our MATLAB program also contains a 
function that eliminates non-representative cycles and outliers from analysis. Figure 4 displays a portion of a CFP 
analyzed with the program showing the identified velocity points and envelope overlay. Finally, CFVR was calcu-
lated by dividing average peak hyperemic velocity into peak baseline velocity: CFVR = PVhyperemia/PVbaseline.

Validation Protocol. Two trained lab personnel with adequate experience in Doppler CFP analysis per-
formed both manual and program analysis in a blinded manner. One PW Doppler baseline CFP file, and one PW 
Doppler hyperemic CFP file were analyzed per animal. 6 animals in total were analyzed. The PW Doppler files 
recordings were 1.20 seconds -4.90 seconds in duration with a minimum of 6 complete cardiac cycles.

Manual Analysis Protocol. Each rater analyzed the animal files a total of two times separated by two distinct 
viewings in a blinded manner. The individual PW Doppler files were blinded and randomized so the rater had 
no knowledge on the specific animal type or file order. The files were further randomized between viewings. 
Measurements were obtained in the Vevo 2100 software. Each rater analyzed the same number of CFPs as the 
start and end cycles were pre labeled prior to analysis. If the rater deemed any of the cycles to be unclear or 

Figure 3. (A) Parameters of coronary flow patterns over the course of one cardiac cycle overlaid on Doppler 
recording. (B) Example of a single coronary flow pattern cycle and its corresponding derivative. The velocity 
and acceleration points (black) were first identified. From there, the time intervals were measured (orange) and 
the average slopes were calculated (purple).
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non-representative, he/she noted that cycle as non-analyzable and continued analysis until the entire sequence 
was completed. The measurements obtained for each cycle included the 4 time intervals, 5 velocity points, 4 
slopes, HR, and VTI. Once flow pattern cycle measurements were made in the Vevo 2100 software, the rater 
populated a pre-labeled Microsoft Excel datasheet. The total time taken to complete both viewings was recorded.

Program Analysis Protocol. The same raters performed the program analysis similarly in two separate viewings. 
The user ran the MATLAB program for each animal and the measured parameters and calculations were directly 
exported into a Microsoft Excel datasheet. The total time taken to complete both viewings was recorded as well as 
time taken to export the raw files into a folder for analysis.

Parameter Selection and Disease. After performing the validation study to determine if our program selected 
parameters similar to a trained rater, we utilized a larger sample size of mice to determine if any of our newly 
defined parameters differed between normal and disease states as a proof of concept. For this test, we analyzed 
CFPs with our program from 16-wk Db/db (n = 18) and db/db (n = 20) mice under baseline and stress condi-
tions. The average and standard error of the mean (SEM) was found for each parameter and an unpaired t-test 
was used to determine if any significant differences were present between normal and diabetic CFP parameters.

Statistical/Data Analyses. Intra-observer variability, inter-observer variability, and variability between manual 
analysis and the MATLAB program were examined. For each of these tests, data was expressed as mean +/− SD. 
Bland-Altman analysis was executed to calculate bias (mean difference) with limits of agreement set as +/− 
2 SD21. Linear regression analysis was performed to determine the coefficient of determination (R2) and the 
regression equation. Unpaired t-tests with a significance level of p < 0.05 were also executed. Statistical tests were 
done in GraphPad Prism 7 software and Microsoft Excel. The CFP program was created in MATLAB and the 
program analysis protocol was run on a computer utilizing an Intel ® Core ™ i3-2100 CPU @ 3.10 GHz.

Results
For the PW Doppler files between all 6 mice, there were a total of 98 complete CFP cycles measured at 1% iso-
flurane (baseline) that could have undergone analysis. There were a total of 117 complete CFPs measured at 3% 
isoflurane (hyperemia) that could have undergone analysis. Because each rater analyzed the same files in two 
separate randomized viewings, each frame and CFP had the same chance of being analyzed twice. Supplementary 
Table 1 specifies the total number of complete CFP cycles that could have undergone analysis for the PW Doppler 
files separated by animal. PV, HR, and VTI results under baseline and hyperemic conditions are presented below 
as they are the most frequently measured in clinical practice.

Intra-Rater Variability. To determine the intra-rater variability for manual analysis and for the program 
analysis, only CFPs that were analyzed in both viewings per rater were included. If a CFP was analyzed in only 
one viewing, or not analyzed in either viewing, the cycle was excluded. This was deemed appropriate as the twice 
analyzed cycles were likely the cleanest and most representative cycles. Supplementary Fig. 2 displays representa-
tive images of both the manual analysis and the program analysis over the same set of cycles to highlight the var-
iability between viewings. Bland-Altman and linear regression analysis were performed on each rater’s consistent 
cycles for PV, HR, and VTI. Table 1 shows the intra-rater variability of these parameters for both manual analysis 
and the program analysis.

PV, VTI, and HR intra-rater variability was reduced in the program analysis for both raters as evidenced by a 
bias nearing closer to 0 and smaller limits of agreement in the Bland-Altman analysis. Additionally, the coefficient 
of determination neared closer to 1 in the linear regression analysis. HR variability in the program analysis was 
nullified completely as this section of the program is fully automated. The decreasing trend in variability with the 
program was found in both baseline and hyperemic CFPs for the listed parameters.

Figure 4. An ideal CFP paired with its corresponding ECG analyzed using the MATLAB program. The circles 
indicate where the program identified the velocity points. The numbers indicate the cycle count from the 
beginning of the sequence.
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Inter-Rater Variability. Supplementary Tablesnual and program inter-rater variability, only cycles that were ana-
lyzed in both viewings and that were consistent among each rater were included. As these CFPs were analyzed twice 
by both raters, they were deemed appropriate to incorporate into this analysis. Average values between the two view-
ings were calculated for each rater and the total number of cycles to determine the inter-rater variability is shown in 
Supplementary Table 2. Bland-Altman and linear regression analysis were performed on the rater’s averages for their 
consistent cycles for PV, HR, and VTI. Table 2 displays the statistical figures for the inter-rater variability.

Variability between raters was reduced when using the program to analyze CFPs for PV, HR, and VTI at 
1% and 3% isoflurane. This is supported by the bias’s tending closer to 0 and smaller limits of agreement in the 
Bland-Altman analysis as well as larger coefficients of determination in the linear regression analysis.

Manual Analysis vs. MATLAB Program Analysis. While the MATLAB program reduced variability 
individually and between different raters, it was equally important that the program selected parameters that were 
in good agreement with manual analysis. The program was tested to assess its ability in finding total parameter 
averages per animal.

Animal by Animal Validation. Often, parameters are averaged across a number of flow patterns for each subject/
animal in order to obtain representative measurements. The purpose of this validation was to compare the aver-
age parameter output of the program to the manual average for each mouse. For each CFP per animal at 1% and 
3% isoflurane, the mean PV, VTI, and HR were calculated by averaging both raters’ measurements. If a cycle was 
not analyzed by either rater, that cycle was excluded (Supplementary Table 3). The final average and SD for each 
animal was then calculated as the average of the analyzed cycles. The same process was repeated for the program 
analysis. If the program found a cycle to be “not-representative” via the exclusion algorithm, it was not included 
in the analysis. Table 3 shows the results between the manual and program analysis as well as the percent differ-
ence between the two. Percent differences larger than 10% are bolded. Figure 5 shows the comparison of CFVR 
per animal between the manual analysis and program analysis. Average HR was equal to or less than 1% different 
between the two methods. There was a significant difference in both PV and VTI for some animals. Specifically, 
3/6 baseline CFP files and 2/6 hyperemic CFP files showed a significant difference in average PV between manual 
analysis and the program analysis. However, the percent difference between the two methods for these animals 

Rater 1 Manual Rater 1 Automated

Bias
+/− 
2 SD Regression Equation R2 Bias

+/− 
2 SD Regression Equation R2

Baseline

PV (mm/s) −5.668 41.340 y = 0.947x + 20.58 0.984 −0.685 17.930 y = 1.047x − 11.28 0.997

HR (BPM) −0.070 1.570 y = 1.003x − 1.122 0.999 0 0 y = x 1

VTI (mm) −0.282 3.874 y = 0.986x + 0.555 0.968 0.120 3.028 y = 1.023x − 0.421 0.995

Stress

PV (mm/s) 6.070 61.940 y = 0.952x + 28.93 0.984 4.273 33.500 y = 1.02x − 19.3 0.995

HR (BPM) −0.080 1.900 y = x + 0.042 0.999 0 0 y = x 1

VTI (mm) 1.910 6.600 y = 1.052x − 4.73 0.928 0.834 1.950 y = 1.012x − 1.374 0.993

Rater 2 Manual Rater 2 Automated

Bias +/− 
2 SD Regression Equation R2 Bias +/− 

2 SD Regression Equation R2

Baseline

PV (mm/s) 22.460 45.120 y = 0.945x − 4.767 0.965 −0.246 6.704 y = 1.014x − 3.35 0.999

HR (BPM) 0.090 4.000 y = 1.003x − 1.079 0.999 0 0 y = x 1

VTI (mm) 0.773 4.518 y = 0.907x + 1.348 0.923 0.008 1.038 y = 1.023x − 0.4207 0.995

Stress

PV (mm/s) 13.040 72.820 y = 0.994x − 8.76 0.975 −5.306 45.360 y = 1.037x − 22.46 0.992

HR (BPM) −0.300 3.600 y = 1.003x − 0.8177 0.999 0 0 y = x 1

VTI (mm) 2.865 7.194 y = 0.825x + 6.42 0.932 −0.430 3.804 y = 1.081x − 3.351 0.981

Table 1. Intra-rater variability between manual and automated analysis for both raters. Bland-Altman analysis 
and linear regression analysis were performed for each parameter.

Manual Automated

Bias +/−2SD Regression Equation R2 Bias +/−2SD Regression Equation R2

Baseline

PV (mm/s) −3.971 47.78 y = 1.09x − 25.65 0.987 2.197 5.962 y = 0.981x + 2.869 0.999

HR (BPM) −0.222 2.68 y = 1.01x − 1.745 0.998 0 0 y = x 1

VTI (mm) −1.492 5.72 y = 1.113x − 0.951 0.951 0.423 1.21 y = 0.971 + 0.01 0.994

Stress

PV (mm/s) −13.48 54.1 y = 1.062x − 32.31 0.991 9.239 28.62 y = 0.993x − 3.745 0.996

HR (BPM) −0.07 2.64 y = 0.994x − 2.372 0.999 0 0 y = x 1

VTI (mm) −4.68 8.19 y = 1.129x − 1.79 0.889 1.137 2.012 y = 0.9507x + 1.191 0.995

Table 2. Inter-rater variability between manual and automated analysis. Bland-Altman analysis and linear 
regression analysis were performed for each parameter.
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was no greater than 17.43%. 4/6 baseline flow patterns and 2/6 hyperemic flow patterns showed a significant 
difference in average VTI with the largest percent difference of 55.07% found in one animal. The greatest percent 
difference in the CFVR calculation was 17.02% in one animal while 4/6 animals showed a percent difference of 
less than 5% between the two methods.

1%-Baseline

Peak Velocity (mm/s)

Manual Analysis Program Analysis

p-value % DifferenceAverage SD n Average SD n

Animal 1 248.728 47.256 9 227.161 52.189 9 0.372 9.06

Animal 2 533.739 35.025 10 510.590 47.521 8 0.251 4.43

Animal 3 260.946 19.825 13 257.125 27.249 9 0.707 1.47

Animal 4 241.672 27.386 19 202.918 25.345 14 <0.05 17.43

Animal 5 165.464 13.603 16 141.567 11.004 11 <0.05 15.57

Animal 6 351.239 22.818 15 311.908 32.140 18 <0.05 11.86

3%-Hyperemic
Manual Analysis Program Analysis

p-value % Difference
Average SD n Average SD n

Animal 1 595.107 37.393 11 549.276 38.318 11 <0.05 8.01

Animal 2 935.917 20.741 6 932.475 26.316 6 0.806 0.37

Animal 3 1021.542 20.166 17 1001.462 48.625 16 0.127 1.99

Animal 4 400.134 27.892 13 398.618 11.846 9 0.88 0.38

Animal 5 643.827 44.016 27 639.422 53.611 23 0.751 0.69

Animal 6 1086.068 32.154 15 962.623 110.616 15 <0.05 12.05

1%-Baseline

Heart Rate (BPM)

Manual Analysis Program Analysis
p-value % Difference

Average SD n Average SD n

Animal 1 343 13 9 342 13 9 0.872 0.29

Animal 2 435 1 10 433 2 8 <0.05 0.46

Animal 3 402 7 13 402 6 9 >0.99 0.00

Animal 4 313 16 19 316 17 14 0.608 0.95

Animal 5 397 4 16 396 5 11 0.569 0.25

Animal 6 473 1 15 471 2 18 <0.05 0.42

3%-Hyperemic
Manual Analysis Program Analysis

p-value % Difference
Average SD n Average SD n

Animal 1 375 2 11 373 3 11 0.081 0.53

Animal 2 427 2 6 425 3 6 0.204 0.47

Animal 3 464 5 17 460 6 16 <0.05 0.87

Animal 4 298 13 13 295 10 9 0.567 1.01

Animal 5 357 8 27 356 9 23 0.679 0.28

Animal 6 390 4 15 390 8 15  > 0.99 0.00

1%-Baseline

VTI (mm)

Manual Analysis Program Analysis
p-value % Difference

Average SD n Average SD n

Animal 1 19.205 3.308 9 15.071 1.792 9 <0.05 24.12

Animal 2 35.822 2.010 10 33.491 2.653 8 <0.05 6.73

Animal 3 19.054 1.134 13 17.058 0.746 9 <0.05 11.06

Animal 4 24.857 2.715 19 20.039 3.648 14 <0.05 21.46

Animal 5 10.130 0.981 16 9.378 1.244 11 0.091 7.71

Animal 6 20.201 2.224 15 16.290 2.700 18 <0.05 21.44

3%-Hyperemic
Manual Analysis Program Analysis

p-value % Difference
Average SD n Average SD n

Animal 1 46.055 3.118 11 32.673 4.684 11 <0.05 34.00

Animal 2 60.471 1.691 6 55.757 2.026 6 <0.05 8.11

Animal 3 62.597 2.448 17 59.229 3.045 16 <0.05 5.53

Animal 4 33.220 3.237 13 31.584 1.371 9 0.1705 5.05

Animal 5 50.719 4.029 27 50.171 5.776 23 0.696 1.08

Animal 6 78.245 10.525 15 44.459 15.516 15 <0.05 55.07

Table 3. Comparison between the program and manual analysis for average measurements per animal.
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Analysis Duration. Though there were only 6 animals included in this validation study, the manual analysis 
portion was time and labor intensive mainly because 13 total measurements were made for each analyzed PW 
Doppler cycle (only three clinically-relevant measures are reported here). On average, it took the raters approxi-
mately 1500 total minutes to complete the manual analysis of both viewings. For the program analysis, the raters 
spent approximately 50 total minutes completing both viewings including time taken to export the raw video 
files. That is a 30-fold decrease in time spent when using the MATLAB program to measure the specified CFP 
parameters over manual intervention.

Parameter Values Between Normal and Disease. We show an appreciable agreement between our program and 
manual analysis when identifying clinically useful parameters of coronary flow. Additionally, we aimed to deter-
mine whether our newly identified parameters varied between normal and disease. Table 4 lists the average and 
SEM for each parameter as well as the p-value when comparing normal and diabetic mice. There were a num-
ber of significant differences especially under hyperemic conditions. All velocity values and HR were signifi-
cantly reduced in diabetic mice under stress. Decay slopes 1 and 2 were significantly decreased while a significant 
increase was noted in diastolic decay time 1 for diabetic mice under hyperemic conditions. The only parameter 
significantly different under normal conditions was HR.

Discussion
The CM is a unique and important microvascular bed that supports the viability of the heart through blood 
flow and nutrient exchange while constantly experiencing transmural contraction and relaxation forces. In the 
progression of certain diseases, the CM has been shown to become structurally and/or functionally impaired, 
often prior to occlusive macrovascular atherosclerosis, which can lead to decreased perfusion, ischemic events, 
and myocardial infarction. TTDE is a non-invasive clinical tool that has been successfully utilized to assess these 
impairments of blood flow regulation in the CM. Analysis of coronary TTDE examinations however can be time 
consuming and prone to operator measurement variability. Automating this analysis could reduce operator vari-
ability, allow for the incorporation of more cardiac cycles with additional parameters measured, and reduce labor 
time. There are, to date, a limited number of studies concerning the automation of TTDE CFP analysis and none, 
to our knowledge, have been published utilizing an echocardiographic software intended for animal models.

We aimed to develop a MATLAB program that could analyze PW Doppler CFP files exported directly from 
our Visual Sonics Doppler Echocardiography machine system to (1) automatically extract VTI, HR, and newly 
defined time intervals, velocities, and average slopes from murine CFPs and (2) automatically calculate CFVR. 
Finally, we hypothesized that this program would significantly reduce analysis time, that measurements obtained 
from the program would be in good agreement with manual analysis, and that the program would reduce inter 
and intra-operator variability.

Our results show that our MATLAB program was able to effectively reduce intra- and inter-operator variabil-
ity when selecting PV, HR, and VTI parameters for analysis. For example, average PV difference between manual 
viewings was as high as 22 mm/s and difference between raters as high as 13 mm/s. Our MATLAB program, 
reduced this variability in mean difference to as low as 5 mm/s between manual viewings and 9 mm/s between 
raters respectively. Reducing variability in TTDE analysis individually and between operators is of critical impor-
tance to accurately and precisely make conclusions about blood flow and the CM.

We then investigated how well our MATLAB program agreed with manual analysis in parameter selection by 
comparing the averages from each animal. While the percent difference was minimal in mean HR for all animals, 
there were some mean significant differences in PV and VTI. Generally, the program measurements for PV were 
closer to the manual measurements under hyperemic conditions, with only 2/6 animals being significantly differ-
ent. Contrarily, 3/6 animals were significantly different for PV when evaluated under baseline conditions. Under 
3% isoflurane administration, the coronary arteries dilate resulting in larger blood flow velocity profiles for each 
cardiac cycle. Thus, the PW Doppler flow patterns often become fuller and more distinct, which is likely why the 
program better selected average PVs per animal under hyperemic conditions.

However, the largest percent difference found for PV in this validation under both 1% and 3% isoflurane was 
17.43% (Animal 4, 1% isoflurane), which corresponded to an average difference of approximately 39 mm/s for 

Figure 5. CFVR per animal comparing between the program analysis vs. the manual analysis. The overlaying 
percentages shows the percent difference between the two methods per animal.
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that animal. The Vevo 2100 software, given the window size that manual PV measurements were made, is accu-
rate to approximately 4–5 mm/s per pixel for the velocity axis. The 39 mm/s difference measured between the 
program and manual analysis for that animal therefore was only a difference of ~9 pixels. As shown above in the 
Bland-Altman limits of agreement, the intra-observer variability for PV was larger than 39 mm/s for the raters. 
Despite the program significantly under-estimating PV in some animals, the deviation was small on a pixel scale 
and the largest deviation was still found to be less than the intra-observer error.

It is important to note the degree of variability that is present in TTDE recordings, especially with murine 
coronary flow. Often, the expected biphasic outline observed in coronary TTDE can be partially shadowed mak-
ing parameter extraction difficult and subjective, even with manual interpretation (Fig. 6). In situations where 
CFP cycles were partially shadowed, we found that the raters would often extrapolate the CFP envelope to create 
the expected biphasic outline, basing their outline on flow patterns before and after the cycle in question or from 
previous experience. This invariably led to the measurement differences observed between our program and the 
manual analysis.

VTI was also found to be significantly different in some animals. Similar to PV, VTI was more accurately 
measured by the program under hyperemic conditions because the flow patterns were fuller and more distinct. 
Under baseline conditions, 5/6 animals VTI was greater than 10% different between the two analysis methods. 
This was also a result of manual extrapolation leading to an over-estimation of VTI. The largest percent difference 
was found to be 55.07% which corresponds to an average difference of ~34 mm (Animal 6, 3% isoflurane). While 
recordings with clearer and more distinct biphasic CFPs would have certainly validated more closely in this ani-
mal to animal comparison, CFPs that require extensive extrapolation may not be suitable for the program. To our 
knowledge, there is no criteria for determining when to exclude a CFP from analysis when the full biphasic pat-
tern is partially shadowed other than at the rater’s discretion. Variability would be reduced if discrete guidelines 
were implemented as to when incomplete CFPs should and should not be analyzed.

We also investigated how well the program measured CFVR. Despite some of the PV values being signifi-
cantly different, 4/6 animals had differences less than 5% between the two methods. The program significantly 
underestimated PV for Animal 6 under both baseline and hyperemic conditions, yet the CFVR was nearly equal 
to the manual assessment. This highlights the importance of consistency when assessing TTDE CFPs. While the 
program did at times underestimate PV, the automated nature of a program like this will inherently produce con-
sistent measurements across all flow patterns and subjects compared to the subjectivity of individual raters and 
their potential unconscious bias.

Finally, we introduced the aspect of dissecting and defining CFP cycles further into four phases based on the 
clear changes in slope during systole and diastole. There appears to be a lack of consistency in CFP nomenclature 

Group Db/db (n = 18) SEM db/db (n = 20) SEM p-value

Baseline

Systolic Rise Time (ms) 53.635 3.864 56.963 2.236 0.4498

Diastolic Rise Time (ms) 26.871 1.271 28.842 1.156 0.2579

Diastolic Decay Time 1 (ms) 28.283 1.967 34.200 2.844 0.1027

Diastolic Decay Time 2 (ms) 32.729 1.855 31.806 2.187 0.7521

Systolic Slope (mm/s2) 499.910 135.667 205.930 104.684 0.0914

Diastolic Slope (mm/s2) 8334.587 619.389 7832.198 545.271 0.5449

Decay Slope 1 (mm/s2) −3399.582 339.016 −2727.118 290.579 0.1387

Decay Slope 2 (mm/s2) −5007.732 497.366 −5257.814 513.631 0.7297

Diastolic Velocity (mm/s) 110.423 29.403 86.978 25.820 0.5512

Peak Velocity (mm/s) 315.927 30.750 295.421 23.718 0.5967

Decay Velocity 1 (mm/s) 227.881 29.243 212.113 26.724 0.6924

Heart Rate (BPM) 432 8 396 5 0.0007

VTI (mm) 24.556 4.623 23.581 4.243 0.8772

Hyperemia

Systolic Rise Time (ms) 53.513 1.685 50.623 1.351 0.1853

Diastolic Rise Time (ms) 26.606 0.796 26.780 0.741 0.8733

Diastolic Decay Time 1 (ms) 22.931 1.995 33.767 1.391 0.0001

Diastolic Decay Time 2 (ms) 30.359 2.190 32.813 1.569 0.3614

Systolic Slope (mm/s2) 4907.218 535.500 3563.728 287.326 0.0291

Diastolic Slope (mm/s2) 18976.735 1166.904 17787.362 1002.266 0.4420

Decay Slope 1 (mm/s2) −11830.073 1401.289 −7289.421 537.252 0.0033

Decay Slope 2 (mm/s2) −18396.149 1125.565 −13422.726 857.346 0.0011

Diastolic Velocity (mm/s) 363.269 35.752 240.222 21.748 0.0048

Peak Velocity (mm/s) 846.456 39.760 693.027 28.672 0.0031

Decay Velocity 1 (mm/s) 613.977 36.966 459.309 24.555 0.0011

Heart Rate (BPM) 452 6 418 6 0.0004

VTI (mm) 55.348 4.377 48.879 3.483 0.2506

Table 4. Comparison of newly defined parameters between normal and diabetic mice under baseline and 
hyperemic conditions from program analysis.
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so we felt it necessary to define these measurements based on our and other investigators interpretations of TTDE 
CFP cycles. There have been a number of recent studies published on human CFPs suggesting that parameters 
other than PV, HR, VTI, and CFVR may be clinically diagnostic. Sezer et al. found that patients with T2DM, 
compared to patients without the disease, had a steeper deceleration of diastolic coronary flow15. Magagnin et al.  
similarly found in human CFPs that the diastolic slope was doubled in patients with left anterior descending cor-
onary stenosis, connective tissue disease, and diabetes mellitus at baseline compared to normal14. Using our pro-
gram, we found significant differences in time, velocity, and slope parameters between normal and diabetic mice 
especially under hyperemic conditions. And similar to the aforementioned studies, much of these differences 
were observed in the diastolic portion of the cardiac cycle. These differences detected by our program may high-
light some aspects of early coronary microvascular remodeling that may otherwise go unnoticed in the traditional 
clinical setting. Future studies will investigate these parameters further to determine if they have any diagnostic or 
predictive value in determining the onset and progression of microvascular disease in diabetes.

Limitations. We showed that our automated program was able to effectively reduce observer bias, reduce 
analysis time, and measure PV, HR, VTI, and CFVR with reasonable accuracy compared to manual analysis, espe-
cially in clear biphasic TTDE CFPs. There were still significant differences for some animals especially at baseline 
conditions and when measuring VTI. Future studies should aim to improve upon the algorithm for overlaying 
the CFP envelopes particularly when certain cycles are shadowed. Potentially incorporating a machine learning 
algorithm in conjunction with image processing techniques could lead to better envelope overlay and parameter 
selection.

Our study focused on a single Doppler ultrasound machine used in animal models. Creating a more flexible 
software that can conform to other ultrasound machine templates would be the next step in creating a compre-
hensive program. Additionally, there are subtle differences between human and murine CFPs, notably in the 
systolic portion of the cycle. The algorithm for selecting parameters in this region would likely need to be altered 
if the program were to be used on human subjects.

Lastly, our program is not entirely automated as the user is still required to manually export the raw video 
files, input scaling factors, and potentially alter the envelope threshold in the program. Even so, it is much quicker 
than manual analysis and similar to other non-coronary flow TTDE programs that have reduced time of analysis 
by 7.5-25 fold14,20,22. However, creating a fully automated program would reduce the analysis time even further.

Conclusions
We developed a MATLAB program that can analyze murine PW Doppler CFP video files from the Vevo2100 
Doppler ultrasound machine faster than manual analysis while reducing user bias. Building upon the limited 
number of previously published studies, our program supports raw exported AVI video files which can incorpo-
rate a larger number of flow pattern cycles for analysis than single still frame images. We also defined additional 
parameters of CFPs that may have useful diagnostic implications in the future.

Figure 6. Images of two separate PW Doppler CFP recordings. The complete and expected biphasic pattern 
is present in the top window compared to the bottom window where a portion of the biphasic pattern is 
shadowed.
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Data Availability
No datasets were generated or analyzed during the current study.
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