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Drug-drug-gene interactions as mediators of adverse drug 
reactions to diclofenac and statins: a case report and 
literature review
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Concomitant treatment with drugs that inhibit drug metabolising enzymes and/or transporters, such as commonly prescribed 
statins and nonsteroidal anti-inflammatory drugs (NSAIDs), has been associated with prolonged drug exposure and 
increased risk of adverse drug reactions (ADRs) due to drug-drug interactions. The risk is further increased in patients 
with chronic diseases/comorbidities who are more susceptible because of their genetic setup or external factors. In that 
light, we present a case of a 46-year-old woman who had been experiencing acute renal and hepatic injury and myalgia 
over two years of concomitant treatment with diclofenac, atorvastatin, simvastatin/fenofibrate, and several other drugs, 
including pantoprazole and furosemide. Our pharmacogenomic findings supported the suspicion that ADRs, most notably 
the multi-organ toxicity experienced by our patient, may be owed to drug-drug-gene interactions and increased 
bioavailability of the prescribed drugs due to slower detoxification capacity and decreased hepatic and renal elimination. 
We also discuss the importance of CYP polymorphisms in the biotransformation of endogenous substrates such as 
arachidonic acid and their modulating role in pathophysiological processes. Yet even though the risks of ADRs related 
to the above mentioned drugs are substantially evidenced in literature, pre-emptive pharmacogenetic analysis has not yet 
found its way into common clinical practice.
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Inter-individual variability in drug response is a major 
clinical challenge, as it can result in adverse drug reactions 
(ADRs) or treatment failure. It is estimated that 80 % of all 
ADRs depend on the dose and could therefore be prevented 
(1, 2).

The development of ADRs depends on a number of 
well-known factors, such as age, renal and liver function, 
and genetic predisposition. In patients receiving concomitant 
drug treatment, such as those with different syndromes/
comorbidities, especially the elderly, this risk may further 
increase because of drug-drug interactions (DDIs) (3, 4). 
However, traditional assessment of DDI-related ADR risks 
needs to take into account individual genetic variations. 

Pharmacogenomics has made much progress in recent 
times, especially in the field of drug metabolism and 
transport, and this knowledge should be included in the 
assessment of clinically relevant ADRs. This particularly 
refers to drug-gene interactions and drug-drug-gene 
interactions as important triggers of ADRs (4–7).

Pharmacogenomic research has paid particular attention 
to phase I [cytochromes P450 (CYPs)] and phase II 
metabolic enzymes [UDP glucuronosyltransferases 
(UGTs)], as well as to drug transporters (ABC and SLC 
superfamilies). CYPs are especially important for variability 
in drug pharmacokinetics and response as they account for 
the metabolism of 70–80 % of all drugs (8). Moreover, by 
mediating the metabolism of endogenous substrates, some 
CYP enzymes play an important protective and physiological 
role (9, 10).
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Although pharmacogenomic testing can help identify 
patients at risk of ADRs, its wide application in clinical 
practice has not yet taken root due to several practical issues, 
most notably which patients should be tested and how to 
interpret and include test results in decision making that 
may, in turn, improve treatment efficacy and safety in 
patients (11). In addition, little is still known about the 
usefulness of pharmacogenomic testing in patients 
undergoing concomitant drug treatment (7).

In this combination of a case report and a review article, 
we argue that pre-emptive pharmacogenetic analysis, i.e. 
prior to drug administration, and assessment of drug-drug-
gene interactions could improve personalised approach to 
drug and dose selection and minimise the risk of ADRs. 
Yet, even though several laboratories have adopted this 
approach, it has not taken root in standard clinical practice 
(12).

CASE PRESENTATION

On admittance to the hospital emergency department, 
a 46-year-old Caucasian woman presented with general 
weakness, difficulty breathing, oliguria and anuria, ascites, 
and oedema of both lower extremities.

Her medical history was without any serious acute or 
chronic diseases, but she reported having had regular 
migraine headaches for the last 10 years, which she treated 
with diclofenac. The migraines had become severe over the 
three months preceding admission to the emergency 
department, and the patient had upped diclofenac doses to 
150–200 mg/day. She also reported having had urinary tract 
infections, for which she had received two 14-day courses 
of sulphamethoxazole/trimethoprim (400/80 mg bid) 
therapy.

As no emergency treatment was necessary, the patient 
was transferred to the nephrology department for further 
examination. Laboratory tests revealed dyslipidaemia, 
anaemia, hypokalaemia, hypocalcaemia, and elevated blood 
urea and creatinine, twice the upper limit of the reference 
interval (RI) (9.8 mmol/L and 176 µmol/L, respectively). 
Urinalysis revealed a high level of proteins (9 g/24-hour 
urine). All this pointed to renal dysfunction, but abdomen 
ultrasound did not reveal any kidney abnormality (size and 
cortical echogenicity were normal) and no evidence of 
urinary tract obstruction.

Patient’s history of long-term high-dose diclofenac use 
raised suspicion of acute kidney injury (AKI) and drug-
induced minimal change nephrotic syndrome, as both are 
associated with NSAID use.

One day following admission, a percutaneous kidney 
biopsy was performed, and histopathological analysis of 
kidney tissue samples presented complete podocyte 
effacement, which was accompanied by interstitial 
inflammation and acute tubular damage. A small segment 
of sclerosis was also found, as well as myelin figure and 

zebra corpuscles in one podocyte, raising suspicion of Fabry 
disease. However, genetic testing found no mutation to 
support it.

Diclofenac was discontinued, and the patient started 
receiving intravenous hydration and diuretics. However, 
renal parameters continued to increase (with creatinine 
reaching the peak of 559 µmol/L), and urine output was 
reduced to 100 mL, despite diuretics. The patient underwent 
three intermittent courses of haemodialysis and was started 
on methylprednisolone (at first as 250 mg/day intravenous 
pulse therapy and then oral doses), which gradually 
improved her renal function.

All the while she suffered from frequent migraine 
headaches. A neurologist successfully managed it with a 
beta-blocker propranolol (3x20 mg/day) throughout 
hospitalisation. Twenty days following admission, the 
patient’s creatinine level dropped to 231 µmol/L, and daily 
urine output kept around 2000 mL, but nephrotic proteinuria 
persisted (11 g/24-hour urine). On day 21 of hospitalisation, 
she was discharged and prescribed the following oral 
therapy: furosemide 40 mg/day, prednisone 60 mg/day, 
pantoprazole 40 mg/day, propranolol 3x20 mg/day for 
migraines, atorvastatin 20 mg/day for dyslipidaemia, and 
calcitriol 0.25 µg every other day in combination with 
calcium carbonate 3x1g/day (Figure 1).

Two weeks following discharge, the patient was 
readmitted to the emergency department due to a two-day 
fever (up to 38 °C), sweating, and mild chills accompanied 
by a dry cough and slight pressure along the edge of the 
sternum. Pleuropneumonia was suspected and confirmed 
by X-ray along with marked elevation of blood inflammatory 
markers [C-reactive protein 85.5 mg/L (RI<5.0); white 
blood cells 10.2x109/L (RI 3.4–9.7); fibrinogen 8 g/L (RI 
1.8–4.1); and erythrocyte sedimentation rate 115 mm/h (RI 
4–24 mm/h)]. Markedly elevated blood liver enzymes – 
alkaline phosphatase [ALP 203 U/L (RI 54–119)], alanine 
aminotransferase [ALT 154 U/L (RI 10–36)], and gamma-
glutamyl transferase [GGT 205 U/L (RI 9–35)] – indicated 
liver injury. Total bilirubin was low (2–3 μmol/L), and 
prothrombin time was normal. Urinalysis pointed to 
possible urinary tract infection (UTI).

To manage pneumonia and possible UTI due to recent 
AKI and still not fully recovered renal function the patient 
was immediately started on IV ceftriaxone 1 g/day. Further 
liver tests, abdominal ultrasound, virology, autoimmune 
tests, and urine culture excluded biliary disease, viral 
infection, and autoimmune liver disease, but confirmed 
ascites and UTI with Enterococcus faecalis.

After five days of hospitalisation, chest X-ray follow-up 
confirmed improvement in the patient’s clinical course, but 
high values of liver enzymes persisted.

On day seven of hospitalisation, GGT and ALP 
increased significantly (452 U/L and 255 U/L, respectively), 
while ALT dropped to 107 U/L but remained well above 
the RI. Physicians reviewed the patient’s laboratory findings 
from the previous hospitalisation of two weeks earlier and 
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Figure 1 The timeline of the first hospitalisation with all pharmacotherapy and laboratory data

discovered that ALP had slightly increased to 134 U/L two 
days after the IV methylprednisolone pulse therapy and that 
bilirubin levels had been low (2–3 μmol/L). This is what 
prompted them to check all the patient’s medications for 
potential liver toxicity. Assuming drug-induced liver injury 
(DILI), they replaced ceftriaxone with oral cefuroxime 
(1500 mg qid), and prednisone with methylprednisolone, 
and discontinued atorvastatin treatment.

During the second 15-day hospitalisation, blood urea 
and creatinine levels were normal, proteinuria decreased 
noticeably, liver enzyme levels normalised, and ascites 
withdrew (Figure 2).

On discharge, the following therapy was prescribed: 
methylprednisolone 40 mg/day, pantoprazole 40 mg/day, 
furosemide 40 mg/day, propranolol 3x20 mg/day, and 
calcitriol 0.25 µg every other day in combination with 
calcium carbonate (3x1 g/day) and potassium supplement 
2 g/day (potassium citrate/potassium hydrogen carbonate).

The patient’s clinical condition was followed up on a 
regular basis for the next two years (visits every 3–4 
months). The patient was in good general health without 
any acute illnesses, but dyslipidaemia persisted. Two years 
after the second hospitalisation, the patient started taking a 
fixed-dose combination of fenofibrate/simvastatin (initially 
145/20 mg, which was later increased to 145/40 mg). At 
the next follow-up visit three months later, this therapy was 
discontinued due to elevated creatine kinase (CK) level 
[607 U/L (RI<153)] and symptoms of myalgia associated 
with statin-induced myotoxicity. Four weeks after 
fenofibrate/simvastatin discontinuation, CK dropped to 
normal, which confirmed ADR in our patient.

Taking all these adverse drug reactions into consideration 
(drug-induced nephro-, hepato-, and myotoxicity), the 
patient underwent pharmacogenetic tests for genetic 
variants of the enzymes and drug transporters relevant for 
the metabolism and distribution of all medicines she 
received. The influence of possible drug-drug-gene 
interactions was also assessed.

Genotyping

Genomic DNA was extracted from whole blood samples 
collected in K3-EDTA tubes using the FlexiGene DNA Kit 
(Qiagen, Hilden, Germany) according to the manufacturer’s 
instructions. Single nucleotide polymorphisms (SNPs) 
ABCB1 c.3435C>T (rs1045642), ABCC2 c.-24C>T 
(rs717620), ABCC2 c.1249G>A (rs2273697), ABCG2 
c.421C>A (rs2231142), CYP2C9*2 (rs1799853), 
CYP2C9*3 (rs1057910), CYP2C19*2 (rs4244285), 
CYP2C19*17 (rs12248560), CYP2D6*3 (rs35742686), 
CYP2D6*4 (rs3892097), CYP2D6*6 (rs5030655), 
CYP2D6*41 (rs28371725), CYP3A4*22 (rs35599367), 
CYP3A5*3 (rs776746), SLCO1B1 c.521T>C (rs4149056), 
UGT1A4*2 (rs6755571), UGT1A4*3 (rs2011425), UGT1A9 
-2152C>T (rs17868320), -275T>A (rs 6714486), and 
UGT2B7  -161C>T (rs7668258), were genotyped for with 
the TaqMan® SNP genotyping assays on a 7500 Real-Time 
PCR System (Applied Biosystems, Carlsbad, CA, USA) 
according to the manufacturer’s instructions. UGT1A1*28 
was genotyped for with the LightSNiP genotyping assay 
(TIB Molbiol GmbH, Berlin, Germany) and ABCB1 
c.2677G>T/A (rs2032582) with real-time PCR genotyping 
on a LightCycler® 2.0. Instrument (Roche Diagnostics, 
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starting dose and titrate it carefully up to clinical effect or 
up to half the maximum recommended dose. Monitoring 
for signs of toxicity was advised for short-term application, 
while for longer-term therapy an alternative drug, not a 
CYP2C9 substrate, was recommended. Treatment with 
propranolol was also to be monitored for signs of toxicity, 
and other CYP2D6 substrate drugs to be administered with 
caution.

DISCUSSION AND REVIEW OF DRUG-
DRUG-GENE INTERACTIONS

This brief review is focused on diclofenac and statins 
as the ones associated with ADRs found in our patient. What 
suggests that the issue may be widespread is the fact that 
these two drugs are among top prescriptions in Croatia (18) 
and many other countries.

As a NSAID, diclofenac is indicated for pain relief and 
inflammation in a wide range of conditions. Following oral 
uptake, it is mainly eliminated via hepatic biotransformation, 
while less than 1 % is excreted unchanged through urine 
(Figure 3). In the liver it is mainly metabolised through 
oxidation and conjugation to glucuronic acid (19). 
Oxidation to the major metabolite 4’-hydroxydiclofenac is 
mediated by CYP2C9, while oxidation to the minor 
metabolite 5’-hydroxydiclofenac is mediated by CYP2C8, 
CYP3A4, and CYP2C19 (20). Diclofenac acyl glucuronide 
as the product of conjugation, in turn, is mainly mediated 

Mannheim, Germany) as described elsewhere (13). 
CYP2D6*5 whole gene deletion and CYP2D6 gene 
duplications were genotyped for with long-range PCR 
analysis on a Gene Amp PCR System 9700 (Applied 
Biosystems) as reported elsewhere (14, 15). All genotyping 
took place in a pharmacogenetic testing laboratory that 
regularly participates in external quality assessment 
schemes (RfB and EMQN).

Our findings are presented in Table 1. Based on these 
findings, relevant published research, and the guidelines 
and recommendations of pharmacogenetics consortia, 
including The Clinical Pharmacogenetics Implementation 
Consortium (CPIC) (16) and the Dutch Pharmacogenetics 
Working Group (DPWG) (17) for simvastatin, atorvastatin, 
NSAIDs, and pantoprazole, our patient was advised which 
drugs not to take and was prescribed alternative therapy 
with a lower simvastatin and atorvastatin doses in 
accordance with current guidelines. Creatine kinase (CK) 
was monitored routinely to introduce a replacement statin 
(pravastatin or rosuvastatin) should CK levels rise. Further 
treatment excluded the combination of simvastatin/
atorvastatin and fenofibrate. Furthermore, the patient was 
advised not to take CYP2C9 substrate drugs over longer 
periods of time or to use the lowest effective doses when 
necessary, but under monitoring for signs of toxicity. This 
advice particularly referred to coumarin anticoagulants, 
some NSAIDs (celecoxib, flurbiprofen, ibuprofen, 
lornoxicam), and meloxicam. The recommendation for 
meloxicam was to start with half the lowest recommended 

Figure 2 The timeline of the second hospitalisation with all pharmacotherapy and laboratory data
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Table 1 Pharmacogenetic profile of our patient and related pharmacotherapy

Gene-allele Genotype Phenotype Drug-substrate Drug-inhibitor

CYP2C9 *2, *3 *1/*3 intermediate metaboliser - IM
diclofenac 
sulphamethoxazole 
trimethoprim 

atorvastatin 
fenofibrate 
simvastatin 
sulphamethoxazole

CYP2C19 *2, *17 *1/*1 normal metaboliser - NM
diclofenac 
pantoprazole 
propranolol

pantoprazole 
atorvastatin

CYP2D6 *3, *4, *5, *6, 
*41, xN *1/*4 intermediate metaboliser - IM propranolol atorvastatin 

propranolol

CYP3A4 *22 *1/*1 normal metaboliser - NM

atorvastatin 
diclofenac 
pantoprazole 
propranolol 
prednisone 
simvastatin

diclofenac 
pantoprazole

CYP3A5 *3 *3/*3 non-expresser
atorvastatin 
propranolol 
simvastatin

UGT1A1 *28 *1/*28 intermediate enzyme 
activity

atorvastatin 
furosemide 
simvastatin

atorvastatin 
pantoprazole

UGT1A4 *2 (70C>A) *1/*1 normal enzyme activity atorvastatin

UGT1A4 *3 (142T>G) *1/*3 intermediate enzyme 
activity atorvastatin fenofibrate

UGT1A9 (-2152 C>T) C/C normal enzyme activity fenofibrate 
atorvastatin fenofibrate

UGT1A9 (-275 T>A ) T/T normal enzyme activity fenofibrate 
atorvastatin fenofibrate

UGT2B7 -161C>T T/T substrate depending low/
high enzyme activity

atorvastatin 
diclofenac 
propranolol 
simvastatin

fenofibrate

ABCB1 (MDR1) 
2677G>T/A 
ABCB1 (MDR1) 
3435C>T

G/G

T/T

decreased transporter 
function

atorvastatin 
pantoprazole 
prednisone 
propranolol 
simvastatin

atorvastatin 
ceftriaxone  
furosemide 
pantoprazole

ABCC2 (MRP2) -24C>T 
ABCC2 (MRP2) 
1249G>A

C/C 
G/G normal transporter function

atorvastatin 
ceftriaxone  
diclofenac 
simvastatin

furosemide

ABCG2 421C>A C/A decreased transporter 
function

atorvastatin 
ceftriaxone  
diclofenac 
fenofibrate 
pantoprazole

furosemide 
pantoprazole

SLCO1B1 *5 *1A/*5 decreased transporter 
function

atorvastatin 
diclofenac  
simvastatin 

atorvastatin 
diclofenac 
fenofibrate
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by UGT2B7 (21). Approximately 65 % of diclofenac is 
excreted as oxidative metabolites via the kidneys, while the 
remaining 35 % is excreted as glucuronide metabolites in 
faeces via bile (22).

In vivo studies have shown that diclofenac and its 
glucuronide metabolites are substrates for efflux transporters: 
multidrug resistance protein 2 (MRP2/ABCC2), 3 (MRP3/
ABCC3), and the breast cancer resistance protein (BCRP/
ABCG2) (23–25).

Statins are the first-line treatment for hypercholesterolemia 
in both primary and secondary prevention of cardiovascular 
disease (26). Simvastatin is a prodrug, administered as 
inactive lactone and then converted to open hydroxy acid 
form (27). Atorvastatin is orally administered in active acid 
form (28). Both undergo extensive first-pass metabolism 
in the intestine and liver (Figure 4), mediated primarily by 
CYP3A4 with a minor contribution of CYP2C9 and 
CYP3A5 (29–32). The main enzymes involved in statin 
glucuronidation are UGTs (1A1, 1A3, 2B7) (27, 33–37).

Of the drug transporters, P-glycoprotein (encoded by 
MDR1/ABCB1) and BCRP/ABCG2 (encoded by ABCG2) 
mediate intestinal and biliary efflux of statins (38, 39), while 
OATP1B1 has a central role in hepatic uptake (40–42).

As the majority of CYPs and UGTs are polymorphic, 
their gene polymorphisms can affect the outcome of drug 
therapy (10). Transporters too have an important role in 
drug fate within the human body. Their interplay, along 
with pharmacogenetic variability, can change drug 
metabolism and reuptake of substances, prolonging drug 
bioavailability and increasing the risk of ADRs (43, 44)

There is considerable interindividual variation in 
susceptibility to the most common ADRs to both of these 
drugs, yet pre-emptive genetic testing has not yet taken root 
in regular clinical practice. There are several reasons for 
this, including insufficient training of healthcare 
professionals about this issue, insufficient strong evidence 
linking pharmacogenetic data with clinical outcomes, and 
a lack of cost-benefit analysis. Pharmacogenetic tests are 
mostly done retrospectively, as was our case, to identify 
and explain unexpected ADRs or therapeutic failure in a 
patient. In our patient the tests revealed the presence of 
several loss-of-function gene variants for metabolic 
enzymes and drug transporters (CYP2C9, UGTs, ABCs, 
and SLCO1B1), which pointed to drug-drug-gene 
interactions contributing to prolonged bioavailability of 
applied drugs as additional relevant factor for the observed 
drug-induced ADRs (nephrotoxicity, hepatotoxicity, statin-
associated muscle symptoms, and elevated CK).

Diclofenac nephrotoxicity

There are several possible mechanisms of genetic 
influence on diclofenac nephrotoxicity. Diclofenac inhibits 
prostaglandin biosynthesis from arachidonic acid in the 
kidney by inhibiting cyclooxygenase enzymes (45). The 
vasodilating effect of prostaglandins increases renal blood 

flow and glomerular filtration rate. Their inhibition, in turn, 
reduces renal blood flow, which may lead to peripheral 
oedema, increased pressure, body weight, and acute renal 
failure (46). All these symptoms have been observed in our 
patient.

NSAIDs are known to cause kidney failure even at 
therapeutic doses, as they interfere with the vasodilation 
response of renal prostaglandins to vasoconstrictor 
hormones released by the body (47). However, this effect 
is often overlooked, because the symptoms are usually 
moderate and transitory or even absent, like with the 
absence of anuria (48). ADRs to diclofenac can be 
potentiated further by pharmacogenetic variants affecting 
absorption, distribution, metabolism, and excretion 
(ADME), and our patient had several that could have 
contributed to weaker diclofenac metabolism (CYP2C9*3, 
UGT2B7 -161TT, and UGT1A1*28) and transport (ABCB1 
3435TT and ABCG2 421CA).

In vitro studies have shown that CYP2C9*3 and other 
CYP2C9 alleles *5, *8, *13, and *35 significantly decrease 
diclofenac metabolism (49–51) but not CYP2C9*2 (51). 
Conflicting results have been obtained in clinical studies. 
While some indicate that CYP2C9*3 is associated with 
decreased diclofenac metabolism (higher diclofenac to 
4-’hydroxy-diclofenac metabolic ratio in urine) (52), other 
more convincing data show no association between 
CYP2C9*3 polymorphism and increased oral diclofenac 
plasma concentration or lower clearance (53). The CPIC 
guideline (54) states that the pharmacokinetics of diclofenac 
is not affected by the CYP2C9 genotype and there is not 
enough evidence to provide recommendation for clinical 
practice.

It is important that, besides diclofenac metabolism, the 
CYP2C9*3 variant may have had an additional effect on 
the development of nephrotoxicity. One of the physiological 
roles of some CYP enzymes is to mediate metabolism of 
arachidonic acid (AA) (55). Since the knowledge about this 
third AA metabolism pathway emerged (in addition to 
lipoxygenase and cyclooxygenase), subsequent research 
has revealed that its products, epoxyeicosatrienoic acids 
(EETs) (56) and 20-hydroxyeicosatetraenoic acid (20-
HETE), have essential roles in regulating renal tubular and 
vascular function, such as lowering pressure and protecting 
against renal and vascular injury by reducing inflammation, 
oxidative stress, and endothelial dysfunction (57, 58).

Furthermore, some studies suggest that CYP variants 
mediating weaker AA metabolism can contribute to kidney 
damage (59) and that carriers of loss-of-function alleles 
CYP2C9*2 and CYP2C9*3 have reduced EET production 
(60). Furthermore, loss-of-function CYP2C8*3, CYP2C9*2, 
CYP2C9*3, and CYP2J2*7 variants have been associated 
with endothelial dysfunction, myocardial infarction, and 
stroke (61–64).

As our patient is the carrier of the loss-of-function allele 
CYP2C9*3, we can assume that reduced EET production 
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increased her susceptibility to the nephrotoxic effect of 
diclofenac.

Increased levels of 20-HETE pose the risk of 
cardiovascular diseases (65) and glomerular injury (57). 
20-HETE elimination in humans mainly follows the 
glucuronidation pathway by UGTs and can vary 10 times 
between individuals (66). 20-HETE glucuronidation 
extensively correlates with the UGT2B7 and UGT1A9 
protein expression (65) and is under considerable control 
of their genetic polymorphisms (UGT2B7 802C>T, 
UGT1A9 –118T9>T10, and UGT1A9 1399C>T) in the liver. 
The UGT2B7 802TT genotype significantly decreases 20-
HETE glucuronidation (65). As the UGT2B7 802C>T 
polymorphism is in complete linkage disequilibrium with 
the –UGT2B7 -161C>T polymorphism (67, 68) we can 
assume that the UGT2B7 -161TT genotype in our patient 
was responsible for slower glucuronidation and 20-HETE 
elimination and may have contributed to kidney failure. In 
addition to the genetic UGT2B7 802C>T (*2) variant, recent 
data point to a significant role of NSAID, above all 
diclofenac, in the inhibition of 20-HETE glucuronidation, 
which may have further potentiated nephrotoxicity (69).

Drug-induced hepatotoxicity

As the CYP2C9*3 variant can lower diclofenac 
oxidation to the major metabolite, 4’-hydroxydiclofenac, 
this could lead to increased production of the minor 
metabolite 5’-hydroxydiclofenac via CYP2C8, CYP3A4, 
and CYP2C19 and the formation of hepatotoxic 
benzoquinones such as diclofenac-2, 5-quinone imines (70). 
Along with diclofenac acyl glucuronide, these protein-
reactive diclofenac-2,5-quinone imines have been suggested 
to play an important role in diclofenac hepatotoxicity (70).

UGT2B7 has the main role in diclofenac glucuronidation. 
UGT2B7 polymorphisms were shown to have substrate-
dependent effects on catalytic activity, and its variants can 
be associated with no effect (71, 72), decreased (73, 74), 
or even increased enzyme activity (75, 76). Some studies 
indicate that UGT2B7*2 (802T/-161T) is more frequent in 
patients with diclofenac-induced hepatotoxicity (68, 77), 
which is associated with reduced diclofenac acyl 
glucuronidation and increased bioactivation to quinonimines, 
resulting in increased risk of diclofenac-induced liver 
damage (70).
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Figure 3 Diclofenac transport and metabolism (adopted from PharmGKB pathway images at https://www.pharmgkb.org/pathway/
PA166163705 under the Creative Commons BY-SA 4.0 license) 
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The bioavailability of diclofenac, furthermore, depends 
on the function of ABCC2 (MRP2) and ABCG2 (BCRP) 
transporters, which are involved in its absorption, 
distribution, and excretion (78, 79). In our patient the 
ABCG2 gene variant may have therefore decreased the 
function of this transporter and contributed to drug 
accumulation and nephrotoxicity due to delayed excretion. 
We believe that due to the above described mechanisms of 
diclofenac metabolism, our patient’s liver function may 
have already been sensitised and more prone to hepatotoxicity 
induced by other drugs, which developed two weeks later. 
This conclusion stems from the fact that the signs of 
hepatotoxicity developed in our patient two weeks after 
hospital discharge, during which time she was receiving 
atorvastatin, propranolol, furosemide, pantoprazole, 
prednisone, and calcitriol. This is a rather short time for 
atorvastatin to induce liver injury, were it not for previous 
sensitisation. Admittedly, liver injury could also have been 
exacerbated by ceftriaxone prescribed in the hospital, which 
points to other factors, including polypharmacy, as 
additional risk of DILI.

Even so, atorvastatin-induced liver injury (AILI) has 
amply been evidenced following atorvastatin treatment (81, 
82). Post-marketing surveillance revealed that 1.5 % of 
patients who received atorvastatin treatment suffered from 
liver injury.

Possible hepatotoxicity predispositions in our patient 
included prolonged exposure to diclofenac, atorvastatin-

related hepatotoxicity, and pharmacogenetics of ABCB1 
and ABCG2. Our patient is a carrier of the ABCB1 3435TT 
and 2677GG genotype. The effects of ABCB1 (MDR1) 
transporter on the pharmacokinetics of statins have been 
reported in several studies (38, 83, 84), and variant-
weakened transport activity could lead to lower biliary 
clearance and hepatic accumulation of atorvastatin. ABCB1 
polymorphisms rs1128503 (1236C>T), rs2032582 
(2677G>T/A), and rs1045642 (3435C>T) have been shown 
to markedly affect atorvastatin area under the plasma 
concentration-time curve (AUC) (38). However, a recently 
published study did not establish an association between 
ABCB1 polymorphisms and the bioavailability of 
atorvastatin (85).

One study (86) pointed to the association between AILI 
and the ABCB1 2677G>T/A variant (rs2032582) in a 
Japanese population. Carriers of the ABCB1 2677G variant 
(like our patient) were more vulnerable to AILI, which was 
also confirmed by a cytotoxicity test in vitro in the same 
study. Since no differences were observed in atorvastatin 
bioavailability between Asian and Caucasian populations 
(87), the increased risk of AILI associated with the ABCB1 
rs2032582 allele might therefore also apply for the 
Caucasian population and our patient. Atorvastatin 
accumulation in the liver of our patient might have been 
exacerbated by the interaction with concomitantly 
administered pantoprazole, a known substrate and inhibitor 
of MDR1/ABCB1 (88).
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Polymorphic ABCG2 is an efflux transporter with 
significant function in numerous tissues, as it modulates the 
bioavailability of many drugs, including statins (89). Our 
patient is a carrier of the ABCG2 421C>A variant, associated 
with reduced transporter activity, which suggests that she 
could have been exposed to higher systemic and hepatic 
atorvastatin levels (39, 90). The Keskitalo group (39) found 
that carriers of the c.421AA genotype had a 72 % larger 
mean atorvastatin AUC than those with the c.421CC 
genotype. Another study (91) in a Japanese population 
revealed that patients carrying the rs2622604 ABCG2 allele 
variant had a 55 % increase in oral atorvastatin bioavailability 
vs non-carriers.

In line with these increased bioavailability findings, our 
previous research (92) showed that patients with ABCG2 
421CA or AA genotypes had 2.9 times higher odds of 
developing atorvastatin dose-dependent ADRs. Even after 
adjustments for clinical and other genetic risk factors, 
ABCG2 remained statistically significant for ADRs. The 
relevance of the ABCG drug transporter has also been 
recognised by regulatory authorities (93, 94), which 
recommend that the development of new medicinal products 
should take into account whether they are substrates or 
inhibitors of ABCG2. The incidence of ABCG2 gene 
variants varies greatly among populations and races. It is 
significantly higher in the Asian (30 %) than Caucasian 
(10–15 %) and black (2 %) populations (39, 95).

Although the views on the role of UGTs as predictors 
of atorvastatin pharmacokinetics and toxicity still diverge 
(35, 96, 97), we believe that the UGT1A1, UGT1A4, and 
UGT2B7 gene variants in our patient could have had some 
influence on prolonged atorvastatin systemic and hepatic 
exposure and susceptibility to ADRs, including liver 
damage.

Some authors suggest that these inconsistencies 
considering UGT gene variants are due to extensive linkage 
disequilibrium in the UGT1A locus (29, 35).

Statin-associated muscle symptoms

Myopathy is one of the most serious ADRs to statins 
(98, 99). Pharmacogenetic testing has shown that our patient 
is a heterozygous carrier of the decreased function allele 
SLCO1B1 521T>C, which is associated with elevated 
systemic exposure to several statins (100) and an increased 
risk of myotoxicity. However, short-term (two-week) 
administration of atorvastatin did not produce this effect in 
our patient. Instead, she developed signs of myotoxicity, 
i.e. myalgia and elevated CK only when simvastatin was 
administered in combination with fenofibrate and then she 
had to discontinue simvastatin.

The SLCO1B1*5 (c.521T>C, p.V174A, rs4149056) 
variant has been associated with a 221 % higher systemic 
exposure to simvastatin acid in carriers of the 521CC 
genotypes than in the wild-type carriers (521TT). Although 
to a lesser extent, the relevance of this polymorphism was 

confirmed for other statins (85) as well, except for 
fluvastatin (100). Atorvastatin AUC increased 145 % in 
521CC carriers (100). The prevalence of rs4149056 is 
estimated to be 1 %, 12 %, and 16 % in Africans, East 
Asians, and Europeans, respectively (101). We therefore 
assume that the SLCO1B1 polymorphism in our patient 
slowed down hepatic uptake of simvastatin and increased 
its bioavailability in systemic circulation, making her more 
prone to myotoxicity and interactions with other drugs, 
including fenofibrate.

Fibrates can increase the risk of statin ADRs due to 
pharmacodynamic and pharmacokinetic interactions (102). 
Although this ADR risk for simvastatin and fenofibrate 
combination is low in general population, it increases in 
patients with a pharmacogenetic predisposition, like in 
carriers of the ADME gene variants that prolong drug 
exposure. We believe this to have been the case with our 
patient as a carrier of several polymorphisms (UGT1*28, 
UGT2B7 -161T, ABCB1 3435T, ABCG2 421A and 
SLCO1B1 521C), as she developed signs of myotoxicity 
and elevated CK after taking the simvastatin/fenofibrate 
combination.

In vitro, fenofibric acid is a mild-to-moderate inhibitor 
of CYP2C9, weak inhibitor of CYP2C8, CYP2C19, and 
CYP2A6 (103,104), and moderate inhibitor of MDR1 and 
to a minor degree of OATP1B1 (105). In vivo, it inhibits 
hepatic MDR1 (106). Most of active fenofibric acid 
undergoes glucuronidation by the UGT isoforms (1A9 and 
2B7), forming glucuronides which are excreted in the urine 
and bile (26).

Since simvastatin also uses UGT enzymes for its 
biotransformation (Figure 2), interactions through UGTs 
can be expected, especially if the enzyme activity is reduced 
due to genetic predisposition.

Drug-drug, drug-gene, and drug-drug-gene interactions

The concomitant use of medicinal products should 
consider all three types of interactions (drug-drug, drug-
gene, and drug-drug-gene) as relevant factors in ADRs. In 
our patient, diclofenac with sulphamethoxazole/
trimethoprim resulted in nephrotoxicity, atorvastatin with 
furosemide, pantoprazole, and ceftriaxone resulted in 
hepatotoxicity, while the simvastatin/fenofibrate fixed-dose 
combination resulted in myotoxicity. Sulphamethoxazole 
and trimethoprim are both substrates of CYP2C9 and can 
inhibit CYP2C9 and CYP2C8 activities, respectively (107), 
which in the case of our patient as a carrier of the loss-of-
function CYP2C9*3 variant could be of even greater 
significance.

Proton pump inhibitors (PPIs) and loop diuretics have 
recently been associated with modest increases in the levels 
of atorvastatin and its metabolites (14 % and 38 %, 
respectively) (108). PPIs inhibit the CYP2C9, 2C19, 2D6, 
and 3A4 enzymes, which can result in interactions with 
other drugs which are the substrates of these enzymes (109). 
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Furthermore, PPIs have been reported to interact with drug 
efflux transporters ABCB1 and ABCG2 both as inhibitors 
and substrates (110–112).

Since ceftriaxone, which was replaced in our patient 
over the risk of increased hepatotoxicity (113), is a substrate 
of ABCC2 and ABCG2 transporters, drug-drug interactions 
at this level should also be taken into consideration.

As for furosemide, it has been identified as a substrate 
for OAT1, OAT3, BCRP/ABCG2, OATP1B1, and 
OATP1B3 and a potent inhibitor of BCRP in vitro (114,115). 
The ABCG2 rs2231142 (141K) variant, however, may 
attenuate BCRP-mediated loop diuretic-atorvastatin 
interaction, yet Turner et al. (108) did not establish any 
interaction between atorvastatin and furosemide in relation 
to the ABCG2 rs2231142 (421C>A, Q141K) variant, most 
probably because their study included too few carriers. They 
concluded that the magnitude of the identified PPI and loop 
diuretic interactions at the population level were modest 
and of questionable clinical relevance. However, they also 
added that these newly discovered drug interactions could 
contribute to the risk of ADRs in specific patients – such 
as ours – who already have other risk factors for prolonged 
drug exposure, including comorbidities and polypharmacy. 
This consideration was confirmed by Klarica Domjanović 
et al. (116), who showed that the ABCG2 421C>A 
polymorphism significantly modulated drug-drug 
interactions between valproate and lamotrigine.

CONCLUSIONS

In our patient, ADRs were the consequence of 
interactions between drugs and ADME-affecting gene 
variants encoding for metabolic enzymes (CYPs and UGTs) 
and drug transporters ABCB1, ABCG2, and SLCO1B1. 
ADME pharmacogenetic variants can significantly 
modulate/increase the range of drug-drug interactions, 
prolonging their bioavailability and leading to ADRs as a 
result. In addition, variations in CYP and UGT enzyme 
function may reflect on the biotransformation of endogenous 
substrates such as arachidonic acid. Through inflammation, 
oxidative stress, and endothelial dysfunction, this may add 
to the risk of organ damage.

A number of ADRs could have been prevented by 
pharmacogenetic testing in advance of treatment with 
diclofenac, atorvastatin, and simvastatin/fenofibrate. This 
testing could also have provided information about possible 
drug-drug-gene interactions in concomitant therapy, 
especially with sulphamethoxazole/trimethoprim, 
pantoprazole, and furosemide. This is why we believe that 
drug-drug-gene interactions deserve further comprehensive 
studies and that pharmacogenetic testing should find its 
rightful place in managing patients with polypharmacy.
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Interakcije lijek-lijek-gen kao posrednici nuspojava diklofenaka i statina – prikaz slučaja i pregled literature

Statini i nesteroidni protuupalni lijekovi (NSAID) učestalo se propisuju, pa i kao konkomitantna terapija. Postoji značajna 
interindividualna razlika u osjetljivosti na njihove najčešće nuspojave. Rizični čimbenici za razvoj nuspojava tih lijekova 
mogu biti povezani s lijekom i pacijentom ili s vanjskim čimbenicima. Polifarmacija je česta u kroničnih bolesnika i 
povećava rizik od razvoja interakcija lijekova. Istodobna primjena lijekovima koji inhibiraju CYP, UGT, ABC i / ili SLC 
prijenosnike lijekova (ABCB1, ABCG2 i OATP1B1) povezana je s produljenjem bioraspoloživosti lijekova, što rezultira 
povećanim rizikom od razvoja nuspojava. S tim u vezi, predstavljamo slučaj 46-godišnje žene koja je tijekom dvije godine 
doživjela akutno oštećenje bubrega i jetre, kao i mialgiju, dok je uzimala diklofenak, atorvastatin, fiksnu kombinaciju 
simvastatina / fenofibrata istovremeno s nekoliko drugih lijekova, uključujući pantoprazol i furosemid. Analiza dobivenih 
farmakogenetičkih rezultata te pregled dosadašnjeg znanja u tom području upućuju na zaključke da interakcije lijek-lijek-
gen mogu produljiti bioraspoloživost primijenjenih lijekova. Mehanizam se argumentirano temelji na sporijoj sposobnosti 
detoksikacije i smanjenoj eliminaciji putem jetre i bubrega, što rezultira toksičnošću za više organa. Jednako tako, prikazuje 
se važnost polimorfizama CYP u biotransformaciji endogenih supstrata poput arahidonske kiseline i u njihovoj 
modulacijskoj ulozi u patofiziološkim procesima. Danas postoje prilično značajni znanstveni dokazi o određenim 
farmakogenetičkim spoznajama koji rezultiraju povećanim rizikom od razvoja nuspojava za spomenute lijekove, no 
unatoč tomu, farmakogenetička analiza prije uvođenja lijekova u terapiju još nije uvedena u redovitu kliničku praksu.
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