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Non-coding RNAs: Important
participants in cardiac fibrosis
Yiheng Dong, Naling Peng, Lini Dong, Shengyu Tan and
Xiangyu Zhang*

Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China

Cardiac remodeling is a pathophysiological process activated by diverse

cardiac stress, which impairs cardiac function and leads to adverse clinical

outcome. This remodeling partly attributes to cardiac fibrosis, which is a result

of differentiation of cardiac fibroblasts to myofibroblasts and the production

of excessive extracellular matrix within the myocardium. Non-coding RNAs

mainly include microRNAs and long non-coding RNAs. These non-coding

RNAs have been proved to have a profound impact on biological behaviors of

various cardiac cell types and play a pivotal role in the development of cardiac

fibrosis. This review aims to summarize the role of microRNAs and long non-

coding RNAs in cardiac fibrosis associated with pressure overload, ischemia,

diabetes mellitus, aging, atrial fibrillation and heart transplantation, meanwhile

shed light on the diagnostic and therapeutic potential of non-coding RNAs for

cardiac fibrosis.

KEYWORDS
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Introduction

The cardiac extracellular matrix (ECM) predominantly consists of collagen I
and collagen III. Collagen I provides tensile strength and collagen III maintains the
elasticity. ECM also contains various cytokines and proteases, which have diverse
effects on biological characteristics of cardiac cells and regulate ECM structure. There
are also a large number of resident cardiac fibroblasts (CFs, the main source of
ECM), pericytes, smooth muscle cells, and small populations of immune cells in
cardiac interstitium, which play an important role in maintaining homeostasis of ECM.
ECM constitutes scaffold of the heart and provides microenvironmental support for
cardiomyocytes (CMs).

Normal construction of ECM is vital to maintain ventricular systolic and diastolic
function. Under physiological conditions, the ECM achieves a balanced turnover
through degradation and synthesis. Nevertheless, this balance often gets disturbed under
various pathological conditions, such as injury, pressure overloading, and metabolic
disorder. Limited cardiac fibrosis, namely, adaptive remodeling, is beneficial for normal
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structure of the heart. Aberrant cardiac fibrosis, namely,
maladaptive remodeling, increases the stiffness of ventricle and
impairs the transmission of mechanical force, which eventually
develops into heart failure (HF) with either preserved or reduced
ejection fraction (1).

Based on current studies, multiple signaling pathways
have been identified to participate in the pathological process
of cardiac fibrosis. TGF-β superfamily, renin-angiotensin-
aldosterone system, and adrenergic signaling have been
extensively investigated. Endothelin, inflammatory cascades,
oxidative stress, mitogen-activated protein kinase (MAPKs),
and Wnt signaling also participate in this process (2).

Three-quarters of the human genome can be transcribed
into RNA, while protein-coding genes represent only 2%
of the whole genome (3) and residual transcripts are non-
coding RNAs (ncRNAs). These ncRNAs transcripts mainly
include microRNAs (miRNAs) and long ncRNAs (lncRNAs).
MiRNAs are a class of small (≈22 nucleotides long) ncRNAs
that induce gene silence by binding to the 3′ untranslated
regions of target mRNAs in most cases. Interaction of miRNAs
with 5′ untranslated regions or coding region of mRNAs
also exists in a few cases (4). LncRNAs are defined as RNAs
longer than 200 nucleotides, which are not translated into
functional proteins. Regulatory mechanisms of LncRNAs on
genes expression are complex and mediated by their interaction
with DNA, RNA, and protein (5). Many studies have proved
that ncRNAs play a crucial role in various cardiac diseases,
including cardiac fibrosis. This review will summarize the role
of miRNAs and lncRNAs in cardiac fibrosis, meanwhile discuss
the potential role of these ncRNAs as novel biomarkers and
therapeutic candidates.

Non-coding RNAs in cardiac
fibrosis

Pressure overload-related cardiac
fibrosis

Pressure overload-related cardiac fibrosis characterized by
interstitial fibrosis or perivascular fibrosis is primarily induced
by hypertension or valvular stenosis because of increased
afterload in human. Transverse aortic constriction (TAC) in
mouse is a recognized method to simulate left ventricular (LV)
pressure overload in human. Angiotensin II has been also widely
used to produce hypertension in mice.

MicroRNAs
MiR-21

MiR-21 is a cardiac fibrosis-related ncRNA which have
got in-depth investigations in recent years. Increased levels of
miR-21 in plasma and cardiac tissue were found in patients
suffering from hypertension, aortic valve stenosis, and HF
compared with healthy controls (6–8). By in situ hybridization,

miR-21 expression was detected predominantly in CFs rather
than CMs (6). In established pressure overload murine
model subjected to TAC, miR-21 could protect CFs from
apoptosis and promote them survival (6). By comparing
wild type with osteopontin-knockout mice subjected to
chronic angiotensin II infusion, osteopontin was identified
as an upstream molecule of miR-21; Phosphatase and Tensin
Homologue/Drosophila Mothers against Decapentaplegic
Protein 7 (PTEN/SMAD7) were downstream targets (7).
MiR-21 also regulates the transformation of other cell types
to CFs in myocardial tissues. In one study, miR-21 was
found to promote bone marrow fibroblast progenitor cells
homing and trans-differentiation into myofibroblasts in
pressure-overloaded myocardium, which could be inhibited
by IL-10 (9). MiR-21 was also expressed in macrophages in
TAC murine models, even far higher than in CFs; specific
genetic deletion of miR-21 in macrophages induced their
polarization toward an anti-inflammatory M2-like phenotype
rather than pro-inflammatory M1-like phenotype, which
mitigated cardiac fibrosis and improved heart function (10).
Through ligand-receptor–pairing analysis and an in vitro
experiment, M1-like phenotype macrophages could activate
differentiation of CFs to myofibroblasts in a paracrine
manner (10).

MiR-30

MiR-30 family is composed of miR-30a, miR-30b, miR-
30c, miR-30d, and miR-30e. Due to differences in seed
sequences, they perform diverse biological functions via
targeting different molecules. MiR-30 family was proved
to have cardiac protective function. In hypertension- or
TAC-induced LV hypertrophy animal model, significant
downregulation of miR-30c in CFs caused high expression
of connective tissue growth factor (CTGF) and excessive
cardiac fibrosis (11). In another experiment performed
on mice subjected to TAC, miR-30d was demonstrated
to be essential for preventing maladaptive cardiac
remodeling (12).

MiR-25

Ion channel plays an important role in cellular physiological
function. MiR-25 could regulate cardiac fibrosis through
altering expression of ion channel. The calcium-transporting
ATPase SERCA2a primarily mediates Ca2+ uptake during
excitation-contraction coupling in CMs. MiR-25 was a
suppressor of SERCA2a and pathologically upregulated in
myocardial tissues from patients with severe HF (13). In situ
hybridization revealed that miR-25 was expressed primarily
in CMs rather than CFs or vascular endothelial cells in
mouse subjected to TAC (13). Anti-miR-25 improved cardiac
contractility and showed anti-fibrotic effects, which were
confirmed by an elevated level of SMAD7 and a decreased
tendency of α-smooth muscle actin (α-SMA), a marker of
fibrosis (14).
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MiR-26

In spontaneously hypertensive rats, the plasma and
myocardial miR-26a levels were inversely associated with blood
pressure and cardiac fibrosis (15). Upregulation of miR-26a
can ameliorate hypertension-induced cardiac fibrosis through
directly inhibiting the expression of fibrosis-related genes,
such as Enhancer of Zeste Homolog 2 (EZH2), CTGF, and
SMAD4 (15).

MiR-133

MiR-133 is exclusively expressed in CMs and has a positive
influence on cardiac fibrosis via multiple signaling pathways. In
a follow-up study, patients with inflammatory cardiomyopathy
and preserved LV function at study entry showed higher
expression of miR-133 than patients with reduced LV function
(16). A high level of miR-133 was associated with less fibrosis
and myocyte necrosis (16). In pressure overload-induced LV
hypertrophy, miR-133 was significantly downregulated, which
resulted in upregulation of CTGF and excessive ECM deposition
(11). Subsequent experiment reported that downregulation of
miR-133 was correlated to histone deacetylase (HDAC) (17).
In addition, overexpression of miR-133 could prevent CMs
from apoptosis in mouse subjected to TAC through directly
targeting β-adrenergic receptors (βARs) as well as several other
components of the βARs signaling cascade, which contributed
to less fibrosis (18).

MiR-29

MiR-29 family comprises three members, namely, miR-
29a, miR-29b, and miR-29c, which are derived from two
bicistronic miRNA clusters. MiR-29a is co-expressed with miR-
29b1, whereas miR-29c is co-expressed with miR-29b2. All
family members share a conserved seed region (19). In in vitro
experiments, miR-29 has been demonstrated to exert anti-
fibrotic function and inhibit the proliferation of CFs and the
expression of fibrosis-related genes via targeting cell cycle
related protein cyclin-dependent kinases (CDK2) and vascular
endothelial growth factor-A (VEGF-A)/MAPK signaling (20,
21). However, as per in vivo studies, miR-29 family seems to
exert complex functions. In a hypertensive myocardial fibrosis
model induced by angiotensin II, miR-29b was significantly
downregulated in heart tissues; recovery of miR-29b expression
was sufficient to prevent or rescue hypertensive myocardial
fibrosis induced by angiotensin II, and partly attenuated
reduction of cardiac function via repressing TGF-β/SMAD3 as
well as MAPK pathways (22). After angiotensin II infusion, miR-
29a/b1 knockdown mouse exhibited more obvious diastolic
dysfunction, severer cardiac fibrosis and systemic hypertension
when compared with wild type (23). These studies demonstrated
the anti-fibrotic effect of miR-29. But contradictory results were
obtained in another study, in which systemic miR-29 knockout
(miR-29a/b1 or miR-29b2/c) protected mouse from cardiac
hypertrophy and interstitial fibrosis caused by TAC (24). The

controversial results in different studies might be caused by
the following reasons: (1) Different studies utilized distinct
animal models. Compared with angiotensin II, TAC induces
the onset of pressure overload more quickly, which might
involve different pathophysiological processes. (2) The precise
cell source of miR-29 remains unclear. It had been validated
that CFs was the main source of miR-29 in some experiments
(19), whereas in other studies, miR-29 was mainly derived
from CMs (24). MiR-29 exerts antifibrotic functions in CFs
but pro-hypertrophic functions in CMs. MiR-29 significantly
increased within 48 h and downregulated to baseline level
21 days after TAC in CMs; temporal expression pattern in CFs
was unknown (24). Therefore, it needs further studies to explore
the exact effects of miR-29 on cardiac fibrosis. In addition,
cell-type-specific expression characteristics of miR-29 over time
and potential impacts of disease models on miR-29 expression
should be investigated.

MiR-320

MiR-320 has similar cell-type-specific functions like miR-
29. In TAC mouse models, miR-320 was upregulated in
CMs but downregulated in CFs. The increased expression
of miR-320 in CMs led to deterioration of cardiac function
through inhibiting Pleckstrin Homology Domain Containing
M3 (PLEKHM3), whereas the decreased expression of miR-
320 in CFs caused myocardial fibrosis via derepressing
interferon-induced transmembrane protein 1 (IFITM1) (25).
Dysregulation of miR-320 between different cell types was
mediated by a cluster of cell-type-specific transcriptional factors
and distinct expression patterns of argonaute 2, which was
required for the stability of mature miR-320 (25). Recovery
of miR-320 expression to normal levels in CMs and CFs,
respectively, seems to be prospective therapeutics for HF.

MiR-214

MiR-214 is a highly conserved miRNA among vertebrates
and is expressed in multiple tissues. In mouse, miR-214
is encoded by an opposite strand of Dynamin3 gene on
chromosome 1 (26). In the heart of pressure overload
mouse models induced by TAC, miR-214-3p was remarkably
downregulated; restoring its expression could inhibit the
proliferation and differentiation of CFs and attenuate cardiac
fibrosis (27). But another study found profibrotic effects of
miR-214 (28). In this study, miR-214 derived from T cells
was significantly increased and positively correlated with
perivascular fibrosis in hypertensive mouse models induced
by angiotensin II, and plasm miR-214 in patients with
hypertension was higher than in controls and directly related
to pulse wave velocity, a marker for vascular sclerosis (28).
MiR-214 was downregulated in TAC mouse models but
upregulated in patients with hypertension. The discrepancy
between animal models and patients with hypertension needs
further investigation.
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MiR-212/132

MiR-212/132 family originates mainly from CMs. The
upregulation of miR-212/132 has been found in defective
heart of mouse and human (29). An in vitro experiment has
demonstrated that the expression of miR-212/132 in CMs could
be induced under hypertrophic stimulus such as angiotensin
II, insulin-like growth factor-1, and phenylephrine/isoprenaline
(29). In vivo, CMs-specific overexpression of miR-212/132
reduced life expectancy of mouse, which exhibited severe HF
symptoms as well as dramatically increased atrial natriuretic
peptide (ANP) and brain natriuretic peptide (BNP). Compared
with wild type, attenuation of cardiac dysfunction and decrease
of cardiac fibrosis were observed in mouse subjected to
TAC with CMs-knockout of miR-212/132 (29). Foxo3 is the
direct downstream target of miR-212/132. Inhibition of Foxo3
by miR-212/132 leads to downregulation of autophagy level
and upregulation of calcineurin/NFAT signaling, as well as
deterioration of cardiac function (29). Moreover, expression of
miR-132-3p was sufficient to promote phenotypic transition
of human fibroblasts and deposition of ECM via inhibiting
Foxo3 (30). But, in another study, the same authors obtained
different results and found that upregulation of miR-212/132
may have protective effects during pressure overload (31). The
expression of Methyl-CpG–binding Protein 2 (MeCP2), which
was associated with mitochondrial function, was inhibited
after TAC; CMs-specific loss of MeCP2 in mouse subjected
to TAC attenuated maladaptive myocardial remodeling and
facilitated recovery of cardiac dysfunction when removal of
the aortic constriction compared with wild type (31). Further
analysis found inhibition of MeCP2 after TAC was mediated
by activation of adrenergic signaling and upregulation of
miR-212/132 (31). In summary, upregulation of miR-212/132
under pressure overload might be a compensatory mechanism,
which provides benefit to normal cardiac function in the early
period of disease through promoting CMs hypertrophy and
limited interstitial fibrosis, and maintaining energy metabolism
homeostasis. Nevertheless, continuous upregulation of miR-
212/132, when pressure overload sustains for a long time, will
lead to maladaptive myocardial remodeling.

The roles of miR-Let7i (32), miR-1954 (33), miR-378 (34),
miR-221/222 (35), miR-199a (36), miR-99b-3p (37), miR-125b
(38), and miR130a (39) in cardiac fibrosis are displayed in
Table 1.

Long non-coding RNAs
Limited evidences display the role of lncRNAs in pressure

overload-related fibrosis. In TAC murine models, lncRNA
maternally expressed gene 3 (MEG3) was found to be enriched
mainly in CFs in comparison with other cardiac cell types
and its transcript was upregulated at the initial phase of
cardiac remodeling (40). MEG3 could interact with P53 and
consequently promote the binding of P53 to the promoter of
matrix metalloprotease-2 (MMP2), leading to increased MMP2

expression and MMP2-mediated deposition of ECM; silencing
of MEG3 could prevent the development of cardiac fibrosis and
hypertrophy (40). Cardiac Hypertrophy–Associated Transcript
(CHAST) is a pro-hypertrophic lncRNA induced by NFAT. It
can regulate hypertrophic genes through inhibiting Pleckstrin
Homology Domain–containing Protein Family M Member 1
(PLEKHM1) and cardiac fibrosis via paracrine pathways (41).
Myosin Heavy-chain-associated RNA Transcripts (MHRT) is
a cardioprotective lncRNA enriched in CMs, which decreases
under various pathological stress conditions. MHRT can bind to
the helicase domain of Brg1 and prevent Brg1 from recognizing
its genomic DNA targets. Restoring MHRT to the normal
level protected the heart from hypertrophy and cardiac fibrosis
after TAC (42).

Ischemia-related cardiac fibrosis

Ischemia-related cardiac fibrosis belongs to replacement
fibrosis caused by necrotic injury of CMs.

MicroRNAs
MiR-21

In myocardial infarction (MI) murine model, miR-21 was
upregulated and promoted the expression of MMP2 via a
PTEN pathway in CFs (43), which probably influenced the
turnover of ECM.

MiR-30

MiR-30 plays an important role in ischemia or MI-related
cardiac fibrosis. After acute ischemic stress, miR-30d was
significantly upregulated in CMs and CMs-derived extracellular
vesicles (EVs). Increase of miR-30d reduced CMs apoptosis and
CFs activation through EVs-mediated paracrine signaling (44).
However, in chronic ischemic HF, decreased expression of miR-
30d induced adverse cardiac remodeling, which was validated
both in mouse and in humans (44). The exact mechanisms of
downregulation of miR-30d in chronic ischemic heart disease
remain unknown and need further investigation.

MiR-26

In patients with ST−elevation MI, expression of miR-26a
was downregulated (45). Transfection H9c2 cells with miR-26a
could reduce apoptosis. Overexpression of this miRNA in vivo
could decrease the levels of collagen I as well as CTGF and
improve cardiac function via regulating ataxia–telangiectasia
mutated (ATM)/p53 signaling (45).

MiR-150

Low circulating levels of miR-150 were associated with
LV remodeling after first ST-elevation acute MI (46).
During acute MI, expression of miR-150 was remarkably
decreased; restoration of its expression could improve
cardiac function, reduce infarct areas, and attenuate
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TABLE 1 Effects of miRNAs on cardiac fibrosis.

MiRNAs Cell model Animal model Changes in
model

Targets Effects on fibrosis References

Pressure overload-related cardiac fibrosis

mmu-miR-21 CFs, bone marrow
fibroblast progenitor

cells (BM-FPC)
treated with TGF-β,

macrophages

TAC or treated with
angiotensin II

infusion

Upregulated Sprouty1,
PTEN/SMAD7

Promote fibrosis. Increase survival
of CFs, BM-FPC

trans-differentiation to CFs,
expression of α-SMA and CTGF

(6, 7, 9, 10)

mmu-miR-30c and
mmu-miR-30d

CFs and CMs TAC Downregulated CTGF Inhibit fibrosis. Decrease
expression of CTGF, collagen I and

III, fibronectin, and α-SMA

(11, 12)

mmu-miR-25 CMs TAC Upregulated SERCA2a Promote fibrosis. Increase
expression of α-SMA

(13, 14)

mmu-miR-26a CFs treated with
angiotensin II

Spontaneously
hypertensive rat

Downregulated EZH2, CTGF,
SMAD4

Inhibit fibrosis. Decrease
proliferation of CFs, expression of
CTGF, collagen I and III, MMP2

(15)

mmu-miR-133 CMs and CFs TAC Downregulated CTGF, βARs Inhibit fibrosis. Decrease
expression of CTGF and prevent

CMs from apoptosis

(11, 17, 18)

mmu-miR-29 CFs Treated with
angiotensin II

infusion

Downregulated CDK2,
VEGF-A/MAPK
signaling, TGF-β,

PGC1α

Inhibit fibrosis. Decrease fibrotic
area

(20–23)

CMs TAC Upregulated in CMs Wnt signaling Promote fibrosis. Increase
hypertrophy of CMs and fibrotic

area

(24)

mmu-miR-320 CFs and CMs TAC Downregulated in
CFs. Upregulated in

CMs

IFITM1 in CFs,
PLEKHM3 in CMs

Inhibit fibrosis in CFs. Decrease
expression of collagen I and

fibronectin.

(25)

mmu-miR-214-3p CFs TAC Downregulated NOD-like Receptor
Family CARD

Domain Containing 5

Inhibit fibrosis. Decrease
expression of collagen I and

α-SMA

(27)

mmu-miR-212/132 CMs, CFs TAC Upregulated FoxO3 and MeCP2 Promote fibrosis. Increase
hypertrophy of CMs and

activation of CFs, expression of
collagen I and CTGF

(29–31)

mmu-miR-Let7i CFs treated with
angiotensin II

Treated with
angiotensin II

Downregulated IL-6 and collagen Inhibit fibrosis. Decrease
expression of collagen

(32)

mmu-miR-1954 CFs treated with
angiotensin II

Treated with
angiotensin II

Downregulated Thrombospondin 1 Inhibit fibrosis. Decrease
expression of collagen

(33)

mmu-miR-378 CMs and CFs TAC Downregulated Mitogen-activated
protein kinase kinase

6

Inhibit fibrosis. Decrease fibrotic
area, expression of collagen I and

III

(34)

mmu-miR-221/222 CFs treated with
TGF-β

Treated with
angiotensin II

Downregulated C-Jun N-terminal
kinase 1, TGF-β

receptor 1 and 2, and
ETS proto-oncogene

1

Inhibit fibrosis. Decrease
proliferation and activation of CFs

and fibrotic area.

(35)

mmu-miR-199a CFs and CMs TAC or treated with
angiotensin II or

isoproterenol

Upregulated Sirt 1 for
miR-199a-5p and

SMAD1 for
miR-199a-3p

Promote fibrosis. Increase fibrotic
area expression of collagen I, III

and α-SMA

(36)

mmu-miR-99b-3p CFs treated with
angiotensin II

Treated with
angiotensin II

Upregulated Glycogen synthase
kinase-3 beta

Promote fibrosis. Increase fibrotic
area, expression of fibronectin,

collagen I and α-SMA

(37)

mmu-miR-125b CFs treated with
TGF-β

TAC or treated with
angiotensin II

Upregulated Apelin Promote fibrosis. Increase
proliferation and activation of CFs

and fibrotic area

(38)

mmu-miR-130a CFs treated with
angiotensin II

Treated with
angiotensin II

Upregulated Peroxisome
proliferator-activated

receptor γ

Promote fibrosis. Increase fibrotic
area, expression of collagen I, III,

CTGF, fibronectin and α-SMA

(39)

(Continued)
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TABLE 1 (Continued)

MiRNAs Cell model Animal model Changes in
model

Targets Effects on fibrosis References

Ischemia-related cardiac fibrosis

mmu-miR-30d CFs and CMs MI Upregulated in acute
ischemic stress.

Downregulated in
chronic ischemic

stress

mitogen associated
protein kinase 4 in
CMs, integrin α5 in

CFs

Inhibit fibrosis. Decrease apoptosis
of CMs, proliferation and

activation of CFs

(44)

mmu-miR-26a CFs and CMs MI Downregulated ATM/p53 Inhibit fibrosis. Decrease apoptosis
of CMs, expression of collagen I

and CTGF

(45)

mmu-miR-150 Monocytes, CFs and
CMs

MI Downregulated CXCR4 in
monocytes; SPRR1a,
egr2 and p2× 7r in
CMs; Hoxa4 in CFs

Inhibit fibrosis. Decrease
accumulation of monocytes to

myocardium, apoptosis of CMs,
and fibrotic area

(47–50)

mmu-miR-144 Didn’t use MI Downregulated mTOR Inhibit fibrosis. Decrease fibrotic
area, expression of MMP

(51, 52)

mmu-miR-29 CFs MI Downregulated Inhibit fibrosis. Decrease
expression of collagen

(19)

mmu-miR-214 CMs MI Upregulated Sodium/calcium
exchanger 1 and
CTRP9 in CMs

Unclear. (26, 53)

hsa-miR-132 Human pericyte
progenitor cells and

CFs

MI Upregulated in
pericyte progenitor

treated with
hypoxia/starvation

MeCP2 Inhibit fibrosis. Decrease
proliferation and differentiation of

CFs.

(54)

mmu-miR-433 CFs treated with
TGF-β

MI Upregulated AZIN1, JNK1 Promote fibrosis. Increase fibrotic
area, proliferation and activation

of CFs, expression of CTGF,
collagen I and III, and α-SMA

(55)

mmu-miR-384-5p CFs treated with
TGF-β

IR Downregulated Fzd1 and 2,
TGF-β-R1 and Lrp6

Inhibit fibrosis. Decrease fibrotic
area, activation of CFs, expression

of collagen I and α-SMA

(56)

mmu-miR-370 CFs MI Downregulated TGF-β-R1 Inhibit fibrosis. Decrease of CTGF
and α-SMA

(57)

mmu-miR-146-5p CFs, macrophages
and endothelial cells

MI Upregulated Interleukin 1 receptor
associated kinase 1

and
Carcinoembryonic
antigen related cell

adhesion molecule 1

Promote fibrosis. Increase
proliferation and activation of CFs,

and fibrotic area

(58)

mmu-miR-143-3p CFs treated with
TGF-β

MI Upregulated Sprouty 3 Promote fibrosis. Increase
proliferation and activation of CFs,

and fibrotic area

(59)

Diabetes mellitus-related cardiac fibrosis

mmu-miR-21 CFs and endothelial
cells treated with high

glucose

Streptozotocin-
induced

diabetic model

Upregulated DUSP 8 Promote fibrosis. (70, 71)

Age-related cardiac fibrosis

hsa-1468-3p CFs with TGF-β Upregulated DUSP 1, 6, 8 and
p53/p16

Promote fibrosis. Increase
senescence-associated

b-galactosidase activity, expression
of collagen I, CTGF and periostin

(75)

Atrial fibrosis

mmu-miR-21 CFs Mouse model Upregulated Sprouty1 Promote fibrosis. Increase fibrotic
area and spontaneous atrial

fibrillation in older age.

(77)

cfa-miR-29 Fibroblasts Canine atrial
fibrillation models

induced by
ventricular

tachypacing, mouse
model

Downregulated ECM-genes,
including collagen
1A1, collagen 3A1,

and fibrillin

Inhibit fibrosis. Decrease
expression of collagen I and III,

and fibrillin

(78)

(Continued)
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TABLE 1 (Continued)

MiRNAs Cell model Animal model Changes in
model

Targets Effects on fibrosis References

cfa-miR-26 Atrial fibroblasts, CFs Dogs with ventricular
tachypacing-induced

congestive HF

Downregulated KCNJ2/TRPC3 Inhibit fibrosis. Decrease
proliferation of CFs

(79–81)

Heart transplantation-related cardiac fibrosis

mmu-miR-21 RAW 264.7 cells
(murine monocytic

cell line)

Allogeneic and
isogeneic murine

heart transplantation

upregulated PTEN/AP-1 Promote fibrosis. Increase
fibrocyte accumulation in

myocardium, expression of
α-SMA and vimentin

(82)

fibrosis (47–50). Mechanically, miR-150 could reduce
monocyte accumulation to myocardium by inhibiting
CXCR4, decrease CMs apoptosis through repressing pro-
apoptotic genes small proline–rich protein 1a (SPRR1a),
egr2 and p2×7r, and prevent activation of CFs via
downregulating pro-fibrotic Homeobox a4 (Hoxa4)
(47–50).

MiR-144

MiR-144 was significantly decreased during acute MI.
MiR-144-knockout aggravated HF after MI. Intravenous
injection of miR-144 mimics could sufficiently attenuate fibrosis
and improve ventricular function (51). Similarly, remote
ischemic preconditioning induced by cycles of transient limb
ischemia and reperfusion (IR) could enhance expression of
miR-144 and attenuate cardiac dysfunction induced by IR
injury (52).

MiR-29

During MI, expression of miR-29 was decreased in the
border zone adjacent to the infarct and remote areas, which
was significantly related to the upregulation of fibrosis-related
genes (19). Inhibition of miR-29b by cholesterol-modified
oligonucleotides could lead to moderate increment of collagen
expression (19). Thus, miR-29 family seems to have an anti-
fibrotic function in MI.

MiR-214

In ischemia myocardial disease, miR-214 plays a complex
role in regulation of cardiac function. During IR, miR-214
was remarkably upregulated in wild-type mouse and death
of myocytes caused by calcium overload was attenuated
(26). Compared with wild type, ligation of the left anterior
descending coronary artery in miR-214-knockout mouse
resulted in a significant increase in mortality accompanied
by more obvious reduction in cardiac function and more
extensive myocardial fibrosis (26). A study found that
chronic intermittent hypoxia exposure during MI period
in mouse led to significant upregulation of miR-214-3p
and then reduction of cardio-protective factors C1q tumor
necrosis factor-related protein-9 (CTRP9). Suppression
of miR-214 by antagomiR-214-3p can prevent cardiac

hypertrophy and myocardial remodeling (53). Possible
reasons for the contradiction of these two studies are listed
as follows: (1) Different strands of the same miRNA have
different functions. In the former study, systemic knockout
of miR-214 was performed, which means both miR-214-
3p and 5p were deleted; while in the latter study, only
miR-214-3p was knockout, which might have no influence
on the expression of miR-214-5p. (2) The former study
indicated that miR-214 exerted cardio-protective functions
via myocytes. But the latter study suggested that miR-214-3p
caused maladaptive remodeling through both myocytes and
fibroblasts, the potential functions of miR-214-5p were not
investigated. (3) MI with or without chronic intermittent
hypoxia exposure may involve distinct pathophysiological
process, which might contribute to the controversy of
miR-214 functions.

MiR-132

MiR-132 seems to have cardio-protective effects during MI.
MeCP2 remarkably increased after MI and miR-132 secreted
from human pericyte progenitor cells could inhibit expression
of MeCP2 and prevent proliferation and differentiation of CFs,
finally reduce interstitial fibrosis (54).

The roles of miR-433(55), miR-384-5p (56), miR-370 (57),
miR-146-5p (58), and miR-143-3p (59) in cardiac fibrosis are
displayed in Table 1.

Long non-coding RNAs
Comparing expression profiles of lncRNAs in ischemic

cardiomyopathy with control hearts through bioinformatic
technology, 145 lncRNAs were differentially expressed (60)
and most of them were correlated with expression of
fibrogenic genes such as collagen 3A1, collagen 8A1, and
fibronectin. In this study, five highly conserved and CFs-
enriched lncRNAs were selected to identify their function on
cardiac fibrosis; knockdown of these lncRNAs, respectively,
reduced the expression of fibrogenic genes. Another study
found that ischemia promoted EVs secretion from CMs (61).
These EVs containing specific lncRNAs were transferred to
fibroblasts and led to profibrotic phenotype. Neat1 was one
of the EV-enriched lncRNAs and was regulated by P53 and
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hypoxia-inducible factors-2A (HIF-2A). Silencing of Neat1
could induce apoptosis and inhibit the expression of pro-
fibrotic genes.

LncRNA H19 is enriched in the heart and skeletal
muscle, which is mainly expressed during embryonic
development and repressed after birth. After MI, HIF-1α

induced re-expression of H19 in the peri-infarct area (62).
Overexpression of H19 resulted in severe cardiac dilation;
meanwhile,significant increase of the infarct area and fibrosis
was observed. H19 could bind to YB-1, a repressor of
collagen I gene, and destroyed the interaction between
YB-1 and collagen I promoter. Wisp2 Super-Enhancer–
Associated RNA (WISPER) was a cardiac enhancer-associated
lncRNA and its expression predominantly enriched in CFs.
Silencing of WISPER in vitro using antisense oligonucleotides
could result in increased apoptosis of CFs and inhibition
of ECM-related protein coding genes, including collagen,
fibronectin, and TGF-β (63). Therapeutic depletion of
WISPER in vivo can inhibit cardiac fibrosis and improve
heart function after MI. LncRNA NON-MMUT022555,
namely Pro-Fibrotic LncRNA (PFL), also markedly increased
after MI in mouse and enriched in CFs compared with
CMs (64). PFL can directly bind to let-7d, an inhibitory
RNA of cardiac fibrosis, in a sequence-specific manner and
promote fibroblast-myofibroblast transition. Recently, a
novel conserved anti-fibrotic lncRNA was identified, namely,
Scaffold Attachment Factor B Interacting LncRNA (SAIL)
(65). Expression of SAIL was decreased in cardiac fibrotic
tissue and activated CFs. Knockdown of SAIL promoted
CFs proliferation and collagen production after MI. SAIL
could directly bind to scaffold attachment factor B (SAFB)
through 23 conserved nucleotide sequences and prevent
interaction between SAFB and RNA polymerase II, thereby
decreasing transcription of fibrosis-related genes. Some
other lncRNAs were also dysregulated after MI, including
cardiac fibroblast-associated transcript (CFAST) (66),
metastasis−associated lung adenocarcinoma transcript 1
(MALAT1) (67) lncRNA-30245 (68), and lncRNA AK137033
(69). The functions of these lncRNAs are summarized
in Table 2.

Diabetes mellitus-related cardiac
fibrosis

The prevalence of metabolic diseases worldwide is
increasing, especially diabetes mellitus, which results in an
enormous healthy and economic burden. Microangiopathy
and metabolic disorders caused by diabetes mellitus could
lead to extensive focal necrosis of myocardium, namely,
diabetic cardiomyopathy (DCM), which eventually induce
cardiac fibrosis, HF, arrhythmia, cardiogenic shock,
and sudden death.

MicroRNAs
MiR-21 could promote CFs proliferation and differentiation

after high glucose treatment via dual-specificity phosphatases
(DUSP) 8/p38/JNK/SAPK axis (70). In a murine model with
type I diabetes mellitus, elevated level of p-p65 increased
expression of miR-21, which led to downregulation of SMAD7
and activation of p-SMAD2 and p-SMAD3, and then promoted
endothelial−mesenchymal transition from endothelial cells
to CFs (71).

Long non-coding RNAs
Recently, it has been found that multiple lncRNAs

play an important role in DCM development, such as
lncRNA KCNQ1 Opposite Strand/Antisense Transcript
1 (Kcnq1ot1), lncRNA Myocardial Infarction-associated
Transcript (MIAT), and lncRNA Colorectal Neoplasia
Differentially Expressed (CRNDE) (72–74). LncRNA
Kcnq1ot1 was significantly upregulated in diabetic
myocardial tissues. Acting as a competitive endogenous
RNA for miR-214-3p, lncRNA Kcnq1ot1 could regulate
inflammation, pyroptosis, and biologic properties of
fibroblasts via modulating expression of caspase-1 (72).
Silencing of Kcnq1ot1 could inhibit fibrosis and improve
cardiac function. Overexpression of LncRNA MIAT has
been detected in serum of patients with diabetes. MIAT
could bind to miR-214-3p and then prevent miR-214-3p-
mediated inhibitory effect on IL-17 expression. Knockdown
of MIAT alleviated cardiac inflammation and fibrosis,
consequently improved ejection fraction (73). CRNDE has
high interspecies conservation and is mainly enriched in
CFs. High expression of CRNDE was observed in mouse
with DCM and could be induced by TGF-β and angiotensin
II (74). Further investigation found that CRNDE attenuate
cardiac fibrosis via SMAD3-Crnde negative feedback. SMAD3
transcription could activate CRNDE, whereas CRNDE
can bind to SMAD3 and competitively inhibit interaction
between SMAD3 and α-SMA promoter to alleviate cardiac
fibrosis (74).

Age-related cardiac fibrosis

Age is one of the risk factors for HF, which is partly
associated with progressive cardiac fibrosis. Proliferation
of CFs is the characteristic manifestation of cardiac
aging. Collagen accumulation was initiated before the
occurrence of atrial and ventricular fibrosis in old people.
Compared with young individuals, expression of collagen
I was increased but collagen III decreased in the elderly.
Evidence demonstrated that miRNAs play a vital role in the
development of cardiac fibrosis. A substantial increase in
cardiac miR-1468-3p levels was detected in healthy hearts
in the elderly and aged sudden cardiac death victims with
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TABLE 2 Effects of lncRNAs on cardiac fibrosis.

LncRNAs Cell model Animal model Changes in
model

Targets Effects on fibrosis References

Pressure overload-related cardiac fibrosis

mmu-lncRNA
MEG3

CFs treated with
TGF-β1

TAC Upregulated P53/MMP2 Promote fibrosis. Increase fibrotic
area, expression of CTGF

(40)

mmu-lncRNA
CHAST

CMs treated with
phenylephrine and

isoproterenol

TAC Upregulated Plekhm1 Promote fibrosis. Increase fibrotic
area, expression of CTGF

(41)

mmu-lncRNA
MHRT

TAC Downregulated Brg1 Inhibit fibrosis, Decrease fibrotic
area

(42)

Myocardial infarction-related cardiac fibrosis

mmu-lncRNA H19 CFs under hypoxia MI Upregulated YB-1 Promote fibrosis. Increase fibrotic
area, expression of α-SMA,

periostin, vimentin and collagen I

(62)

mmu-lncRNA
WISPER

CFs MI Upregulated TIA1-related protein Promote fibrosis. Increase fibrotic
area, expression of α-SMA,
collagen I, collagen III and

fibronectin

(63)

mmu-lncRNA PFL CFs treated with
TGF-β or

angiotensin II

MI Upregulated Let-7d Promote fibrosis. Increase fibrotic
area, expression of collagen I,

CTGF, fibronectin and α-SMA

(64)

mmu-lncRNA SAIL CFs treated with
TGF-β or

angiotensin I

MI Downregulated SAFB Inhibit fibrosis. Decrease fibrotic
area, expression of collagen I and

III

(65)

mmu-lncRNA
CFAST

CFs MI Upregulated coactosin-like 1 Promote fibrosis. Increase fibrotic
area, expression of collagen,

fibronectin and α-SMA

(66)

mmu-lncRNA
MALAT1

CFs treated with
angiotensin II

MI Upregulated miR-145 Promote fibrosis. Increase fibrotic
area, expression of collagen I and

III, α-SMA

(67)

mmu-lncRNA 30245 CFs treated with
TGF-β

MI Upregulated PPAR-γ Promote fibrosis. Increase fibrotic
area, expression of collagen I and

III

(68)

mmu-lncRNA
AK137033

CFs treated with
TGF-β

MI Upregulated Secreted
frizzled-related

protein 2

Promote fibrosis. Increase fibrotic
area, expression of collagen I and

α-SMA

(69)

Diabetes mellitus-related cardiac fibrosis

mmu-lncRNA
Kcnq1ot1

CFs treated with
high glucose

Streptozotocin-
induced

diabetic murine
model

Upregulated miR-214-3p Promote fibrosis. Increase fibrotic
area, expression of collagen I and

III

(72)

mmu-lncRNA MIAT CFs treated with
high glucose

Streptozotocin-
induced

diabetic murine
model

Upregulated miR-214-3p Promote fibrosis. Increase fibrotic
area, expression of collagen I and

III

(73)

mmu-lncRNA
CRNDE

CFs treated with
TGF-β or

angiotensin II

Streptozotocin-
induced

diabetic murine
model

Upregulated Smad3 Inhibit fibrosis. Decrease fibrotic
area, expression of collagen I and

III, α-SMA

(74)

primary myocardial fibrosis (75). By downregulating DUSP1,
6, and 8, miR-1468-3p can enhance TGF-β/p38 pathway
and then promote cardiac fibrosis. Meanwhile, miR-1468-
3p was attributed to cardiac aging via increment of p53
and p16 expression (75). It has been found that all miR-29
variants greatly increased with age (24, 76). MiR-29 also
contributed to cellular senescence and cardiac aging via
epigenetic mechanisms in mouse (76). In view of the close
relationship between miR-29 and fibrosis, it is interesting to

explore the function of miR-29 in age-related cardiac fibrosis
in future studies.

Atrial fibrosis

There is a close correlation between atrial fibrosis and atrial
fibrillation. A number of evidences support vital roles of miRNA
in the development of atrial fibrosis.
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MiR-21

Increased expression of miR-21 and downregulation of
its target Spry1 were observed in left atrial myocardium
from patients with atrial fibrillation (77). Angiotensin II
could induce upregulation of miR-21 in CFs, which is
mediated by Rho-GTPase Rac1, CTGF, and lysyl oxidase
(a key enzyme of collagen cross-linking). Inhibition of
miR-21 with antagomir-21 in vivo can prevent atrial
fibrosis (77).

MiR-29

In canine atrial fibrillation models induced by ventricular
tachypacing, miR-29 family was downregulated in atrial tissues.
Nevertheless, expression of fibrosis-related genes was increased
significantly, such as in collagen I and collagen III (78). Similar
characteristics in plasma or atrial tissues from patients with
atrial fibrillation and/or congestive HF were observed (78).
Using a miR-29b sponge carried by adeno-associated virus
(AAV) 9 in mouse could significantly increase myocardial
fibrosis related proteins in mouse (78).

MiR-26

Downregulation of miR-26a was observed in cardiac tissues
obtained from canines and patients with atrial fibrillation, which
attributed to its inhibition by NFAT (79). Decreased miR-26a led
to upregulation of KCNJ2 (inward-rectifier K+ channels Kir2.1
α-subunit was encoded by KCNJ2) expression and enhanced
inward-rectifier K+-current both in CMs and CFs, thereby
making resting membrane potential hyperpolarized and Ca2+-
entry increased, which could stimulate CFs proliferation (79,
80). Proliferation of CFs was also enhanced by upregulation
of Ca2+-permeable Transient Receptor Potential Canonical-3
(TRPC3) channels mediated by inhibition of miR-26 (81).

Heart transplantation related cardiac
fibrosis

Cardiac transplantation is the only choice for patients with
end-stage HF. After transplantation, the cardiac function of
a considerable number of patients is still declining gradually,
partly due to fibrosis caused by ischemia, inflammation,
and immunological rejection. NcRNAs also participate in
transplantation-related fibrosis. It has been observed that
miR-21 significantly increases in patient hearts with immune
rejection after transplantation (82). Further study demonstrated
fibrocytes, with an important role in fibrosis, mainly derived
from monocytes, which might be the source of miR-21 in the
context of heart transplantation (82). In vitro, overexpression
of miR-21 could induce phenotypic conversion of monocytes
to fibrocytes and increase the levels of fibrotic markers
such as α-SMA via inhibiting PTEN and activating activator
protein 1 (AP-1). In vivo inhibition of miR-21 using antisense

oligonucleotides could prevent fibrocytes accumulation in
cardiac allografts and fibrosis (82).

The complex relationship between ncRNAs and cardiac
fibrosis is displayed in Figure 1.

Non-coding RNAs as diagnostic or
prognostic markers for cardiac
fibrosis

Multiple cardiac diseases eventually develop into HF
accompanied with progressive maladaptive remodeling. The
degree of cardiac remodeling is closely related to clinical
prognosis. Currently, most of the parameters reflecting
remodeling come from imaging technology and are difficult
to predict clinical outcome. In view of their correlation
with cardiac remodeling, ncRNAs seem to be effective
biomarker candidates.

RNA sequencing revealed that there was a significant
alteration of ncRNAs in myocardial tissues (83) and blood
samples (84) from patients with HF, including fibrosis-
related miRNAs. Meanwhile, the expression signatures of
these altered ncRNAs can discriminate failing heart from
different etiologies (83). Utilizing ROC curve analysis, high
specificity and sensitivity of three-miRNAs combination (miR-
29b-3p, miR-29c-3p, and miR-451a) correlated with pulmonary
capillary wedge pressure (PCWP) get validated (84); early
detection and dynamic observation of these miRNAs may
predict HF occurrence in the initial phase of cardiac disease.
In the context of MI (85) and hypertrophic cardiomyopathy
(86), a specific combination of circulating miRNAs has a
high predictive value for the presence of cardiac fibrosis.
Expression of endomyocardial miR-133a negatively correlated
with cardiac fibrosis; subsequent follow-up study revealed
that patients with a high expression of miR-133a have low
occurrence rate of cardiovascular death, malignant arrhythmia,
and hospitalization for HF (16). Compared with traditional
risk factors, lower circulating miR-132 could improve risk
prediction for HF re-hospitalization (87). MiR-150-5p was
significantly downregulated in patients with advanced HF and
correlated with maladaptive remodeling, disease severity, and
prognosis (88). MiR-150 was also superior to N-terminal pro-
BNP to predict remodeling (46). It has been demonstrated
that miR-29a was upregulated in the serum of patients with
hypertrophic cardiomyopathy and was the only biomarker for
myocardial fibrosis among other miRNAs (89). By genome-wide
profiling of the cardiac transcriptome after MI, alteration of a
large number of cardiac-specific lncRNAs was identified. These
lncRNAs participate in various physiological process of cardiac
cells, and therefore serve as attractive candidate biomarkers
for clinical use (90). Long Intergenic NcRNA Predicting
Cardiac Remodeling (LINPCR) was well identified as an
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FIGURE 1

The role of NcRNAs in cardiac fibrosis. During various cardiac diseases and heart aging, significant alteration of cellular transcriptome takes
place in cardiac tissues, including ncRNAs, especially miRNAs and lncRNAs, which could influence the process of cardiac fibrosis. Under
stimulation, monocytes and endothelial cells can trans-differentiate into CFs; ncRNAs and cellular factors derived from CMs and macrophages
could be secreted into EVs or released to extracellular microenvironment, and absorbed by CFs; expression of ncRNAs in CFs can be changed
as well. Consequently, CFs would proliferate and differentiate into myofibroblasts via different signaling pathways. Myofibroblasts secrete a large
amount of ECM, which leads to cardiac fibrosis eventually. Red arrows represent promoting fibrosis, green arrows represent inhibiting fibrosis.
ncRNAs, non-coding RNAs; miRNAs, microRNA; lncRNAs, long non-coding RNAs; CMs, cardiomyocytes; CFs, cardiac fibroblasts; EVs,
extracellular vesicles; ECM, extracellular matrix.

efficient biomarker to predict cardiac remodeling and severity
of HF (91, 92). Circulating lncRNA H19 was upregulated
in decompensated right ventricle (RV) from patients with
pulmonary arterial hypertension and positively correlated with
RV hypertrophy and fibrosis. Importantly, a high level of miR-29
could predict long-term survival (93).

Apart from clinical outcome, ncRNAs can also be used to
predict therapeutic efficacy. Upregulation of several miRNAs
(miR-26-5p, miR-145-5p, miR-92a-3p, miR-30e-5p, and
miR-29a-3p) in serum was associated with a better response
to cardiac resynchronization therapy (94). Protective role
of remote ischemic conditioning in adverse LV remodeling
after MI was dependent on miR-144 (95). Sacubitril/valsartan
was used to decrease pathological fibrosis and myocardial
hypertrophy in HF. A study has demonstrated that treatment
with sacubitril/valsartan could induce increase of specific
circulating exosome containing fibrosis-related miRNAs.
Signature of exosomal miRNAs after sacubitril/valsartan
treatment could serve as potential biomarkers for drug response
(96). Another study revealed that expression profiles of miRNAs
could reflect efficiency of exercise (97) and intensive glycemic
control (98) for diabetic heart disease. In addition, there
were different expression patterns of miR-21 and miR-221 in

CFs between failing RV and LV in a canine biventricular HF
model. This may be one of the explanations that the failing
RV does not respond like the LV to guideline-directed medical
therapy of HF (99). Considering differences in genetic and
embryonic developmental background, this result needs to
be further confirmed in patients. LncRNAs also function as
biomarkers for drug response. A study demonstrated that
mitoquinone could ameliorate pressure overload induced
cardiac fibrosis and LV dysfunction in mice, which was
confirmed by improved expression level of cardiac remodeling
associated lncRNAs (100).

Therapeutic potential of
non-coding RNAs for cardiac
fibrosis

As mentioned above, overexpression or deletion of some
ncRNAs through either their mimics or gene silencing has
been proved to significantly ameliorate cardiac fibrosis and
improve heart function. Notably, ncRNAs are naturally occuring
regulatory molecules in cells and could target multiple genes
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related to cardiac fibrosis (101). Developing new technologies
targeting ncRNAs seems to be a prospective choice to inhibit and
reverse cardiac fibrosis.

It has developed a large number of RNA-based therapeutics,
such as antisense oligonucleotides (ASO), small interfering
RNA, miRNA sponges, and miRNA mimics (101). Recently,
preclinical and clinical studies have demonstrated that
inhibition of pro-fibrotic miRNAs at a proper time, using novel
locked nucleic acid ASO, could attenuate myocardial fibrosis
and give rise to better outcome in pigs or humans suffering
from HF (102–104). Small molecules have great advantages to
target ncRNAs because of their good solubility, bioavailability,
and metabolic stability (101), such as natural compounds. Some
experiments have identified potential natural compounds as
anti-fibrotic drugs through downregulating harmful miRNAs
in vivo (56, 105).

Stem cell based therapy has been at the forefront for
many years, but the actual effects are limited because of low
survival rates of these cells in vivo. Specific combination of
multiple miRNAs could prevent transplanted stem cells from
apoptosis in vivo and significantly improve their therapeutic
ability (106, 107).

It is worth mentioning that regulatory mechanisms of
lncRNAs in cells are complex and some lncRNAs lack
interspecies sequence conservation, which makes it difficult to
be targeted and carry out preclinical trials in animal models.
Therefore, there are no lncRNA-targeting therapeutics for
cardiac fibrosis entering clinical development so far.

Before translation into clinic, we need to avoid off-target
effects and genotoxicity of ncRNA-based therapy. NcRNAs have
complicated regulatory networks from various cell types to
multiple organs. For example, a great deal of evidence supports
the profibrotic effects of miR-21. It seems that miR-21 is one
of the perfect therapeutic targets for cardiac fibrosis. But other
studies have found beneficial effects of miR-21 in cardiovascular
disease. MiR-21 could lower blood pressure and improve cardiac
function in hypertension via decreasing production of reactive
oxygen (8). In addition, miR-21 could prevent plaque necrosis
during atherogenesis and protect CMs from apoptosis in the
context of MI (108–111). Injection of AAV6-miR-199a to pigs
subjected to MI could significantly promote regeneration of
CMs, reduce fibrotic area, and alleviate cardiac dysfunction
in early period, but sudden death occurred unexpectedly in
70% pigs under treatment because of ventricular fibrillation
caused by unbalanced proliferation of CMs (112). Inappropriate
inhibition of miR-21 or overexpression of miR-199a at a wrong
time and dosage could be harmful to the heart.

To solve potential issues described above, cell-type-specific
and organ-specific ncRNAs modulation is necessary. Exosomes,
nanoparticle, and viral vector can be modified with specific
ligands according to markers on the surface of different cell
types and therefore provide good choice for specific delivery of
AOS or mimics. Exosomes are small (30–100 nm) cell-derived

membrane vesicles, which contain DNA, RNA, and protein.
Exosomes can mediate communications between different cell
types and therefore regulate a wide variety of local and
systemic cellular processes, including cardiac fibrosis. It has
been demonstrated that miRNAs in the exosomes could be
delivered to cardiac tissues and improve cardiac function (96,
113–117). Many in-depth studies have revealed advantages
of nanomaterials on drug delivery in recent years and an
experiment has found that nanoparticle delivery of miR-29b
to cardiac tissues could improve myocardial remodeling (118).
Moreover, antibodies-decorated lipid nanoparticles have been
used to deliver mRNAs to T cells, which could generate chimeric
antigen receptor T cells in vivo to specifically eliminate activated
CFs and improve cardiac functions (119). This attractive
approach might also be used for cell-type-specific modulation
of ncRNAs in cardiac tissues. Viral vector based regulation of
some miRNAs could also remarkably ameliorate pathological
remodeling (14, 120). A group of reported engineered AAVs
could specifically deliver genes to rodent and non-human
primate nervous system recently (121); developing engineered
AAVs for ncRNAs delivery to CMs or CFs is one of the
promising directions in the future.

Conclusion

NcRNAs play a critical role in the development of cardiac
fibrosis. Therapeutics based on ncRNAs provides a prospective
direction for fibrosis-related heart diseases. Although the
understanding of the relationship between ncRNAs and cardiac
fibrosis has been advanced considerably in recent decades,
several issues remain to be overcome. First, animal models
widely used about cardiac fibrosis exhibit obvious discrepancies
to corresponding human diseases (122), which might lead
to contradictory results among different studies and limited
translation to clinic. Second, 3p strand and 5p strand of miRNAs
have distinct functions, but most studies did not distinguish 3p
strand and 5p strand. Third, upstream modulators and exact
cellular resources of ncRNAs remain unknown in the context
of cardiac diseases. Thus, it is not enough for us to understand
the functions of ncRNAs more accurately at present. Further
validation of ncRNAs in the pathogenesis of cardiac fibrosis
would highlight their potential as diagnostic and prognostic
markers and provide a novel strategy for the treatment of
cardiac fibrosis.
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