
Retinitis pigmentosa (RP) represents a collection of heri-
table retinopathies characterized by the progressive degenera-
tion of rod photoreceptors, followed by the secondary loss of 
cones and circuitry remodeling. RP is associated with muta-
tions at over 70 loci, disrupting not only phototransduction 
and the visual cycle, but also nearly every aspect of rod cell 
biology, including development, metabolism, transport, and 
structure (RetNet). Mutations in rhodopsin (RHO; OMIM 
180380) are the most frequent causes of autosomal dominant 
(ad) RP, and they account for a small fraction of autosomal 
recessive (ar) RP [1]. More than 150 unique mutations span-
ning the entire RHO coding sequence have been identified 

(Human Gene Mutation Database). These mutations disrupt 
various molecular processes, including phosphorylation, 
glycosylation, chromophore binding, G-protein activation, 
arrestin-mediated endocytosis, and targeting of RHO to the 
rod outer segment (ROS).

RHO mutations have been categorized according to 
biochemical properties or clinical standards [2-7]. In vitro, 
class I mutants were defined as showing levels of expression 
similar to the wild-type (WT) RHO, reconstitution with chro-
mophore, and proper folding; however, in vivo, the protein 
products mislocalized to the plasma membrane of the cell 
body [2,3]. These mutations include several at the C-terminus, 
which disrupt a VXPX consensus sequence necessary for 
post-Golgi trafficking and the targeting of RHO to the ROS 
[8]. C-terminal mutations also affect conserved phosphoryla-
tion sites essential for protein–protein interactions and the 
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Purpose: Retinitis pigmentosa (RP) is a collection of genetic disorders that results in the degeneration of light-sensitive 
photoreceptor cells, leading to blindness. RP is associated with more than 70 loci that may display dominant or recessive 
modes of inheritance, but mutations in the gene encoding the visual pigment rhodopsin (RHO) are the most frequent 
cause. In an effort to develop precise mutations in zebrafish as novel models of photoreceptor degeneration, we describe 
the generation and germline transmission of a series of novel clustered regularly interspaced short palindromic repeats 
(CRISPR)/Cas9-induced insertion and deletion (indel) mutations in the major zebrafish rho locus, rh1–1.
Methods: One- or two-cell staged zebrafish embryos were microinjected with in vitro transcribed mRNA encoding 
Cas9 and a single guide RNA (gRNA). Mutations were detected by restriction fragment length polymorphism (RFLP) 
and DNA sequence analyses in injected embryos and offspring. Immunolabeling with rod- and cone-specific antibodies 
was used to test for histological and cellular changes.
Results: Using gRNAs that targeted highly conserved regions of rh1–1, a series of dominant and recessive alleles were 
recovered that resulted in the rapid degeneration of rod photoreceptors. No effect on cones was observed. Targeting the 
5′-coding sequence of rh1–1 led to the recovery of several indels similar to disease-associated alleles. A frame shift muta-
tion leading to a premature stop codon (T17*) resulted in rod degeneration when brought to homozygosity. Immunoblot 
and fluorescence labeling with a Rho-specific antibody suggest that this is indeed a null allele, illustrating that the Rho 
expression is essential for rod survival. Two in-frame mutations were recovered that disrupted the highly conserved 
N-linked glycosylation consensus sequence at N15. Larvae heterozygous for either of the alleles demonstrated rapid 
rod degeneration. Targeting of the 3′-coding region of rh1–1 resulted in the recovery of an allele encoding a premature 
stop codon (S347*) upstream of the conserved VSPA sorting sequence and a second in-frame allele that disrupted the 
putative phosphorylation site at S339. Both alleles resulted in rod death in a dominant inheritance pattern. Following 
the loss of the targeting sequence, immunolabeling for Rho was no longer restricted to the rod outer segment, but it was 
also localized to the plasma membrane.
Conclusions: The efficiency of CRISPR/Cas9 for gene targeting, coupled with the large number of mutations associated 
with RP, provided a backdrop for the rapid isolation of novel alleles in zebrafish that phenocopy disease. These novel 
lines will provide much needed in-vivo models for high throughput screens of compounds or genes that protect from 
photoreceptor degeneration.
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deactivation of RHO [9]. Class II RHO mutations exhibit 
reduced expression compared to WT, show poor reconstitu-
tion with chromophore, and are retained in the trans-Golgi 
network, suggesting misfolded or unstable products. These 
mutations largely alter the 5′ and membrane spanning 
domains, N-linked glycosylation, or cysteine residues [2]. For 
example, T17M and RHO P23H, the most common RP allele 
in the United States [10-14], display retention in the trans-
Golgi network [2,3,15] and mutations T4K, T17M, and P23H 
in or near consensus glycosylation sequences [16-18] alter 
glycosylation profiles in vitro and similarly affect trafficking. 
Knowledge of the molecular pathology underlying rod death 
is incomplete, but these data and mounting evidence suggest 
that diverse mechanisms are responsible.

Animal models recapitulate many of the histopatho-
logical features of RP, and they have been invaluable for 
investigating the cellular and physiologic consequences 
of disease-causing mutations. Several of the earliest and 
frequently exploited rodent models, such as the rd1, rd2/rds, 
and rd10 mice [5,19-22] and the Royal College of Surgeons 
(RCS) rat [23-25], harbor spontaneous mutations in gene 
orthologs that are associated with human disease. The char-
acterization of transgenic rodent, pig, dog, and frog models 
overexpressing mutant forms of RHO display reduced or aber-
rant opsin localization, thinning of the retinal outer nuclear 
layer (ONL), shortened or dysmorphic ROSs, rod death, and 
eventually cone death [26-37]. Large animal models, such as 
canine, with naturally occurring mutations, share common 
histological features with RP, and they have been incredibly 
useful for pre-clinical safety testing and recognizing the long-
term outcomes of novel therapies [38-42]. In animal models, 
consistent with the in vitro phenotype of class I mutations, 
opsin mislocalization precedes progressive photoreceptor 
death [8,43-46]. Models generated through the knock-in 
of precise mutations into the endogenous Rho locus allow 
for the probing of highly specific mechanistic hypotheses 
leading to RP [47-50]. The relative levels of the mRNA 
expression and protein of the mutant alleles, to those of the 
WT allele influence the stage of onset and severity of the 
degeneration phenotype [37]. Other studies demonstrate that 
a low expression level of P23H RHO was not associated with 
protein accumulation in the endoplasmic reticulum, but it 
was appropriately trafficked to the outer segment and altered 
disc morphogenesis preceded degeneration [48,49]. Advances 
in gene editing in non-mammalian species open the possi-
bility for expanding the number of animal models harboring 
precise lesions of RHO to further the understanding of the 
rod degeneration phenotype. A recent report took advantage 
of clustered regularly interspaced short palindromic repeats 
(CRISPR)/Cas9 to target multiple rho loci in the tetraploid 

model Xenopus laevis. The data showed that the mutation of 
a single locus out of three was sufficient to alter rod survival 
[51].

Zebrafish have proven a powerful forward genetic model 
for studying retinal development and disease [52-56]. The 
majority of existing mutations were the product of numerous 
forward genetic screens to identify genes essential to embry-
onic development, photoreceptor function, and survival 
[52-54,57-62]. Those same features of high fecundity, external 
fertilization, relatively short generation time, and ease of the 
microinjection of one-cell stage embryos have facilitated the 
rapid adoption of gene-targeting technologies to test specific 
hypotheses of gene function in eye development [63-65], to 
generate reporter knock-ins [66,67], to induce precise modi-
fications through homology-directed repair [68-70], and to 
model human disease [71,72].

The purpose of this study was to generate zebrafish lines 
harboring mutations of the major endogenous rho locus, 
rh1–1, as models of rod degeneration. Using CRISPR/Cas9, 
we targeted conserved regions of zebrafish rh1–1 that are 
associated with photoreceptor disease in humans. Given the 
large number of mutations in RHO and the ease and effi-
ciency of gene editing using CRISPR/Cas9, we screened for 
novel germline mutations of the endogenous locus and then 
tested for those that phenocopied the rod defects associated 
with similar mutations in the human locus. This approach 
offers a strategy for targeting zebrafish genes for functional 
analyses in vivo, and it provides zebrafish models for inves-
tigating the initial cellular changes leading to RP with the 
potential to develop therapeutic treatments.

METHODS

Animal maintenance: AB strain zebrafish (Danio rerio) were 
reared, bred, and staged according to standard methods [73]. 
Experiments and procedures were approved by the Florida 
State University Animal Care and Use Committee. The 
transgenic (Tg) line Tg(Xops:EGFP) expresses enhanced 
green fluorescent protein (EGFP) in rods under control of 
the Xenopus rho promoter [74]. Animals were anesthetized 
with MS222 and euthanized in ice water.

CRISPR/Cas9 gene editing: The gRNA plasmids were 
constructed by the Mutation Generation and Detection Core, 
University of Utah, to target the 5′ or 3′ coding region of 
zebrafish rh1-1. The gRNA plasmids were PCR-amplified 
(forward primer: 5′ CAC CGC TAG CTA ATA CGA CTC 
3′; reverse primer: 5′ GAT CCG CAC CGA CTC GGT GCC 
AC 3′) to generate 130 bp in vitro transcription templates 
including a T7 binding site, 20 nucleotides identical to the 
5′ or 3′ rh1-1, and a gRNA scaffold sequence. gRNA was 
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synthesized using the T7 MEGA shortscript kit (Thermo 
Fisher, Waltham, MA) followed by ethanol precipitation. The 
5′ rh1-1 target sequence 5′ GCC TAT GTC CAA TGC CAC 
CGG GG 3′ (PAM underlined) 3′ rh1-1 target sequence: 5′ 
CCG TGT CTT CCA GCT CCG TGT CT 3′ (PAM under-
lined) pT3TS-nCas9n plasmid (Addgene #46757, Cambridge, 
MA) was linearized with XbaI followed by phenol-chloroform 
extraction and ethanol precipitation. A linear plasmid was 
used as a template for in vitro transcription using the mMES-
SAGE mMACHINE T3 kit (Thermo Fisher Scientific) and 
RNA purified using the RNeasy Mini kit (Qiagen, Hilden, 
Germany). A 1-nl solution containing Cas9 mRNA (200 pg/
nl) and one gRNA (100 pg/nl) was microinjected into one- or 
two-cell staged embryos.

Screening for mutations: DNA was extracted from 20 to 25 
injected G0 embryos or uninjected sibling controls, pooled 
into groups of five embryos, and used as a template for the 
PCR amplification of rh1-1. For the restriction fragment 
length polymorphism (RFLP) analysis of 5′ rh1-1, a 253-bp 
product was amplified (forward primer: 5′ ACA GTC CTG 
CCC AGA CAT CTA 3′; reverse primer: 5′ ATG GTG ACG 
TAC AGC GTG AG 3′) and digested with NciI (New England 
Biolabs, Ipswich, MA). Indels were detected by retention of 
the 253-bp band. For the RFLP analysis of 3′ rh1-1, a 325-bp 
product was amplified (forward primer: 5′ GCG TGG CCT 
GGT ACA TCT TC 3′; reverse primer: 5′ GGT CTC TGT 
GTG GTT TGC CG 3′) and digested with BbsI (New England 
Biolabs). Indels were detected with the gain of a 284-bp 
band. For the Sanger sequencing analysis, the entire rh1-1 
coding sequence was amplified (1,198 bp, forward primer: 
5′ ACA GTC CTG CCC AGA CAT CTA 3′; reverse primer: 
5′ GGT CTC TGT GTG GTT TGC CG 3′), purified using 
the EZNA Cycle Pure kit (Omega Bio-Tek, Norcross, GA), 
and sequenced with nested primers for 5′ rh1-1 (5′ ATG GTG 
ACG TAC AGC GTG AG 3′) or 3′ rh1-1 (5′ GCG TGG CCT 
GGT ACA TCT TC 3′).

The remaining injected G0 embryos were reared to adult-
hood and outcrossed with WT animals or inbred to generate 
F1 fish. DNA was extracted either from F1 embryos (typically 
10–15) or from F1 adult fin clip tissue and screened for muta-
tions, as described previously.

Histology and imaging: Immunolabeling and fluorescence 
microscopy of retinal cryosections (10 µm) were performed, 
as described previously [59,74]. Adults and larvae were geno-
typed by DNA sequence analysis. The following primary 
antibodies were used: 1D1 (mouse monoclonal antibody 
(mab), 1:20) against Rho [74], 4C12 (mouse mab, 1:20) to label 
the rod plasma membrane [74], and Zpr-1/FRet 43 (mouse 
mab, 1:20) against Arr3a to label double cone cells [75,76]. 

Species-specific Alexa-conjugated secondary antibodies 
were from Molecular Probes (Thermo Fisher). Sections were 
imaged using either a Zeiss Axiovert S100 fluorescent micro-
scope or a Zeiss LSM 510 Laser Confocal equipped with a 
40X C-Apochromat water immersion objective (NA 1.2).

Terminal deoxynucleotide transferase (TdT)-mediated 
dUTP nick-end labeling (TUNEL) assay was performed on 
retinal cryosections using the In Situ Cell Detection kit (TMR 
red, Roche, Basel, Switzerland), as per the manufacturer’s 
protocol, and co-labeled for rods (4C12).

SDS-Page and immunoblot analysis: Immunoblotting was 
performed as previously described [77,78] with the following 
modifications. Three individuals of each genotype were used 
for the analysis. Two retinas from an adult fish were dissected 
in cold 80% Hanks salt solution, pooled and homogenized in 
50 mM of Tris-buffered saline containing 0.5% Triton X-100 
and a protease inhibitor cocktail, and incubated for 3 h at 
4 °C. Insoluble material was pelleted by centrifugation at 
12,000 ×g. In total, 10 μg of the soluble protein per sample 
was diluted in a sodium dodecyl sulfate (SDS) gel-loading 
buffer and separated on 12% acrylamide gels by SDS–poly-
acrylamide gel electrophoresis (PAGE), followed by electro-
transfer to nitrocellulose. Duplicate blots were immunola-
beled with the 1D1 mab against Rho diluted at 1:1,000 in a 
blocking buffer or the mouse anti-Β-actin mab (Cat# A2228; 
Sigma-Aldrich, St. Louis, MO) diluted at 1:1,000, followed by 
peroxidase-conjugated goat anti-mouse secondary antibody 
(Sigma-Aldrich) diluted at 1:3,000. Labeling was detected 
using enhanced chemiluminescence (ECL; GE Health Life 
Sciences, Marlborough, MA) with exposure on Fugi Rx 
film (MIDSCI, St. Louis, MO). Quantitative densitometry 
of immunolabeling was performed using a Hewlett-Packard 
Scanner (model Scanjet 4850; Hewlett Packard, Palo Alto, 
CA) in combination with Quantiscan software (Biosoft, 
Cambridge, UK; 78). Rho labeling was standardized to actin 
labeling as an internal control. Standardized immunoden-
sity values were then compared across genotypes using the 
Kruskal–Wallis statistical analysis with a significance value 
of p<0.05.

RESULTS

CRISPR/Cas9 targeted mutagenesis of zebrafish rho: Our 
goal was to generate lines of zebrafish harboring mutations 
of rh1–1 that mimic disease-causing alleles in humans. In 
zebrafish, rh1–1 is located on chromosome 8. As in other 
teleosts, the gene is represented by a single exon (Figure 
1A), but the protein sequence shares considerable homology 
with other vertebrate RHO proteins (Figure 1B). A second 
rho gene, rh1–2, is located on chromosome 11, but RNA in 
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situ hybridization shows a spatially and temporally restricted 
pattern of expression [79,80]; therefore, we focused more 
effort on rh1–1. Zebrafish rh1–1 was targeted for disruption 
using CRISPR/Cas9 and gRNA targeting PAM sequences 
near conserved motifs in the 5′- and 3′-coding sequences 
(Figure 1C). One- or two-cell staged zebrafish embryos were 
microinjected with in vitro transcribed mRNA encoding 
Cas9 and a single gRNA complementary to either the 5′ 
rh1–1 region encoding the N-linked glycosylation consensus 
sequence at N15 or the 3′ rh1–1 region just upstream of the 
sequences encoding VSPA intracellular trafficking moiety. 
At 24 h post-fertilization (hpf), DNA was extracted from 
injected embryos and uninjected controls and used as a 
template for PCR. The efficiency of the gRNA and Cas9 pair 
was analyzed by RFLP analysis (Figure 1D-G) and validated 
by Sanger sequencing. Targeting the 5′-region of rh1–1, 
indels were detected by the loss of an NciI restriction site and 

retention of the 253-bp amplicon (Figure 1D,E arrow). Altera-
tions to the chromatograms were consistent with mosaicism 
in the template DNA sequence starting at the predicted Cas9 
cleavage site (data not shown). Indels at 3′ rh1–1 were detected 
following digestion of a 325-bp 3′-rh1–1 amplicon with BbsI 
by the gain of a 284-bp band (Figure 1F,G). Baseline noise 
in the chromatograms downstream of the Cas9 cleavage site 
was interpreted as a low level of mosaicism (data not shown).

To identify the germline transmission of mutant rh1–1 
alleles, clutches of injected embryos were grown to adults. G0 
adults were inbred or outcrossed to uninjected animals. DNA 
isolated from F1 embryos was screened by RFLP and Sanger 
sequencing, as described above. The germline transmission of 
novel alleles affecting both targeted regions was readily iden-
tified in the F1 consistent with the mosaicism observed in the 
chromatograms of injected embryos. F1 progeny were grown 
to adults and genotyped by fin clipping to identify specific 

Figure 1. Gene targeting of 
zebrafish rh1-1. A: Schematic 
representation of the zebrafish 
rh1-1 locus characterized by a 
single exon encoding 354 amino 
acid proteins and 5′ and 3′ UTRs. 
B: Alignment of Rho N- and 
C-terminal amino acid sequences 
across species. Numbering is 
based on the predicted zebrafish 
rh1–1. The conserved N-linked 
glycosylation sequence and VXPX 
targeting sequence are underlined. 
C: DNA sequence and amino acid 
overlay of zebrafish rh1–1 5′- (left) 
and 3′- (right) coding sequences. 
Blue text represents the CRISPR 
PAM sequence. Underlined DNA 
represents the target for guide RNA 
hybridization. The purple overscore 
represent restriction sites for NciI 
or BbsI. Arrows indicate predicted 
Cas9 cleavage sites. D: Diagram-
matic representation of the 253-bp 
5′- rh1–1 gene amplicon and the 

predicted products following digestion with NciI. E: RFLP analysis of a 253-bp PCR product spanning the 5′ rh1–1 gene (C, undigested 
control) and digested with NciI (N) shows retention of the original amplicon (arrow) from pooled DNA from injected embryos versus 
complete digestion of the PCR product of uninjected control DNA (arrowhead). F: Diagrammatic representation of the 325-bp 3′-amplicon 
and the predicted products following digestion with BbsI. G: RFLP analysis of a 325-bp PCR product (C, undigested control) spanning the 
3′ rh1–1 sequence digested with BbsI (B). The PCR product (arrow) from uninjected-controls was digested to near completion, yielding two 
visible bands of 102 and 182 bp. The 284-bp band (arrowhead) following loss of the 5′-BbsI site is clearly visible in the injected embryos 
relative to the controls. The following sequences were used for the RHO alignment: Danio rerio (NP571159.1), X. laevis (NP001080517.1), 
Mus musculus (NP663358.1), Bos taurus (NP001014890.1), and Homo sapiens (NP000530.1).
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rh1–1 alleles. Four mutations in the 5′-coding sequence and 
six mutations in the 3′-coding sequence were recovered, 
including in-frame deletions and a putative null allele (Table 
1). The phenotypes for five of the alleles are described below. 
All analyses were performed on larvae from multiple genera-
tions, and the phenotypes did not vary across generations.

Disruption of zebrafish N-terminal Rho causes rod degenera-
tion: The zebrafish rhofl6 allele encodes a non-sense mutation 
at codon 17 (T17*), predicted to form a truncated product or 
a null allele (Figure 2A). If a null allele, it is anticipated that 
heterozygous animals will express approximately half of the 
level of Rho as WT animals [81]. Therefore, we compared 
the level of the Rho expression in retinas from heterozygous 
rhof l6/+ and homozygous rhof l6/f l6 fish to that of WT adults 
(n=3 for each genotype). Immunolabeling for Rho using 
the 1D1 mab was detected as a ladder with major bands at 
32, 64, and 98 kDa (Figure 2B). The densitometry of the 
immunoblots indicated that Rho labeling was significantly 
different (p<0.025, Kruskel-Wallace test) in heterozygous 
rhofl6/+ and homozygous rhofl6/fl6 samples compared to homo-
zygous WT samples, with approximately half the labeling in 
the heterozygotes and virtually no detectable labeling in the 
homozygous rhof l6/f l6 retinas, consistent with rhof l6 being a 
null allele (Figure 2C).

Differential immunolabeling of a histological section 
with the 1D1 mab and the 4C12 mab, which recognizes an 
epitope on the rod plasma membrane [74], allowed for the 
analysis of rod presence independent of the opsin expression. 
Sections of 5 or 6 dpf WT larvae immunolabeled with 1D1, 
4C12, or Zpr-1 were consistent with the previously described 
arrangement of rods and cones across the ONL. Immuno-
labeling with either 4C12 or 1D1/Rho showed the typical 
asymmetric patterning of rods with the greatest intensity of 
labeling in the ventral retina and more sparse cells in the 
central and dorsal retina (Figure 2D,E). 1D1 selectively 
labels the outer segment and 4C12 labels the entire rod 
photoreceptor, revealing the position of their cell bodies at 
the innermost region of the ONL. Of the four cone subtypes, 
red and green wavelength-sensitive cones can be immunola-
beled with the Zpr-1 mab, which recognizes Arr3a [75,76]. 
Immunolabeling for cones shows uniform palisades across 
the length of the ONL (Figure 2D,E). Rod and cone distribu-
tions in heterozygous rhofl6/+ larvae appear similar to those in 
the WT. In homozygous rhofl6/fl6 retinas, Rho immunostaining 
is completely absent, but the immunolabeling of rods was 
observed close to the retinal margin (Figure 2 D,E), the site 
of continual neurogenesis in teleosts [82]. These data are 
consistent with rhofl6/fl6 as a likely null allele. Furthermore, 
the lack of rod immunolabeling in the central retina suggests 

the Rho expression in zebrafish is essential for rod survival. 
Labeling of red/green cones in rhofl6/fl6 was indistinguishable 
from that of the WT, indicating that the genetic alteration 
resulted in a rod-specific defect.

Two of the N-terminal mutations were predicted as 
in-frame alterations that disrupt an N-linked glycosylation 
consensus sequence (Figure 3A). The N-linked glycosylation 
of proteins occurs at NXS/T consensus sequences, where X 
can be any amino acid other than proline. Human mutations 
at N15 and T17 disrupt a conserved glycosylation sequence 
and are associated with adRP. The zebrafish rhof10 and rhofl7 
alleles disrupt the conserved consensus sequence that includes 
N15 (Figure 3A,C). Zebrafish rhof10 encodes an in-frame 
deletion of T17 while leaving the remaining coding sequence 
unaltered (Figure 3A). The zebrafish rhofl7 allele deletes both 
A16 and T17 and inserts a proline at codon 16 (Figure 3C). 
WT siblings immunolabeled for rod and cone markers at 6 
dpf display the expected labeling across the ONL (Figure 
3B,D). In heterozygous rhof l7/+ and rhof l10/+ larvae, rod and 
Rho immunolabeling is confined to the peripheral retinas, 
with no labeling of the central retina. Immunolabeling for 
cones was unaltered from the controls (Figure 3B-E). The 
phenotype of the heterozygous and homozygous mutants was 
similar with labeling restricted to the retinal margin.

Disruption of zebrafish C-terminal Rho causes rod degen-
eration: Several alleles were recovered using a gRNA that 
targeted Cas9 to a site just upstream of the DNA encoding the 
conserved VSPA sorting sequence and phosphorylation sites. 
The zebrafish rhofl8 allele results in an in-frame deletion of 
A338 and S339, as well as the insertion of T338, V339, W340, 
and T341, disrupting a putative phosphorylation site at S339 
(Figure 4A). Similar to that observed for previous alleles, 
immunolabeling of 6 dpf retinal sections for Rho and rods 
was limited to a few cells near the retinal margin, whereas 
the red/green cones remained intact (Figure 4C).

The zebrafish rhofl9 allele results in a non-sense mutation 
at codon 347 (S347*), eliminating the final eight amino acids 
of the Rho C-terminal tail, including the conserved VXPX 
targeting signal (VAPA in humans, VSPA in zebrafish; Figure 
1B). Heterozygous rhof l9/+ larvae display loss of rods and 
Rho staining from the central retina, with no obvious effect 
on the immunolabeling of red/green cone photoreceptors 
(Figure 4C). In humans, rodents, and frogs, disruption of the 
C-terminal VXPX consensus sequence results in the mistraf-
ficking of Rho to the plasma membrane [8,9,43-46]. To deter-
mine whether the rhofl9 mutation in zebrafish disrupts Rho 
trafficking, the rhofl9 was placed on the Xops:EGFP reporter 
line background. The EGFP expression fills the entire rod 
cell body, terminals, inner segment, and, to a lesser extent, 
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Figure 2. DNA sequence and histology of rhofl6 encoding a premature stop codon p.17T*. A: Chromatograms overlaid with amino acid 
sequences comparing WT and rhofl6 allele encoding p.17T*. B: Representative immunoblot analysis of detergent-soluble extracts of retinas 
from WT, heterozygous rhofl6/+, or homozygous rhofl6/fl6 adults separated by SDS–PAGE, transferred to nitrocellulose, and probed with the 
1D1 mab against Rho or mab AC-74 against B-Actin. Immunolabeling of opsin observed as the monomer at 32 kDa and multimers at 64, 
and 98 kDa were reduced in the heterozygous rhofl6/+ sample and not detected in the homozygous rhofl6/fl6 retina. C: Bar graph of normal-
ized densitometry of immunoblot labeling for Rho (n = 3 animals per genotype), * p<0.025, Kruskal-Wallis test. D: Confocal images of 
cryosections of retinas from 6 dpf WT, heterozygous rhofl6/+, or homozygous rhofl6/fl6 mutants labeled with antibodies to Rho (1D1, red), 
rods (4C12, red), or Zpr-1/Arr3a, a selective marker expressed by red/green cones (Zpr-1, red) overlaid with bright-field microscopy. Note 
the lack of labeling for rods in the central retina and differential labeling for Rho/1D1 and rods/4C12 near the retinal margin of rhofl6/fl6 
homozygous larvae, suggesting that rhofl6 is a null allele. E: Higher magnification images of immunolabeling of the dorsal retinal margin 
WT and homozygous rhofl6/fl6 mutants showing the lack of immunolabeling for Rho, an absence of outer segments (OS), but labeling of the 
cell bodies (CB) by 4C12 in the homozygous mutant larvae.
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Figure 3. Disruption of the N-linked 
glycosylation sequence in rhof l10 
and rhofl7 leads to rod degeneration. 
A, C: Chromatograms overlaid with 
amino acid sequences comparing 
WT, rho f l10, and rho f l7 alleles, 
disrupting the conserved NXT 
consensus glycosylation sequence 
at N15. Red highlights deleted 
amino acids, while blue highlights 
insertions. B, D: Confocal images 
of serial retinal cryosections of 5 or 
6 dpf WT or heterozygous rhofl10/+ 
and rhof l7/+ mutants labeled with 
antibodies to Rho (1D1, red), rods 
(4C12, red), and Arr3a (Zpr-1, red) 
overlaid with bright-field micros-
copy reveal loss of rod-specific 
labeling in the central retina. E: 
Higher magnification images of 
the dorsal retinal margin from WT, 
heterozygous rhof l10/+, or rhof l7/+ 
mutants showing sparse immuno-
labeling for Rho and rods.
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the outer segment [74]. In WT siblings, immunolabeling for 
Rho specifically localizes to the outer segment (Figure 4D). 
However, in rhofl9/+ heterozygous animals, immunolabeling 
for Rho was not restricted to the outer segment, but localized 
to the plasma membrane of the cell body, and many rods lack 
overt labeling of an outer segment (Figure 4D).

Rho mislocalization and cell death in adult zebrafish with 
N- and C-terminal Rho mutations: The fact that in zebrafish, 
rods are not essential for viability allows for the analysis of 
phenotypes in adults carrying rh1–1 mutations. The extent 
of the changes in the number and morphology of the rods in 
rhofl7/+ and rhofl9/+ adult retinas were clear following immu-
nolabeling with the 4C12 mab (Figure 5A-C). At this age in 
WT retinas, the photoreceptor cell nuclei are tiered with rod 
cell bodies, forming a row of several cells in thickness vitread 
to the elongated cone nuclei (Figure 5A). The rod inner 
segments project distally past the row of cone nuclei, and the 
outer segments interdigitate with the pigmented epithelium 
(Figure 5A). In rhof l7/+ (Figure 5B) and rhof l9/+ (Figure 5C) 
retinas, fewer rods were present, their spacing and morpholo-
gies were less regular, and no outer segments were labeled. 
In both mutants, TUNEL was observed in the ONL adja-
cent to the OPL (arrows, Figure 5B,C), but no TUNEL was 
observed in WT retinas (Figure 5A). Immunolabeling for Rho 
confirmed the lack of outer segments and altered trafficking 
in rhofl7/+ and rhofl9/+ adult retinas. In WT adults, immunola-
beling of Rho was restricted to the outer segments located 

at the most distal region of the retina that interdigitate with 
the pigmented epithelium (Figure 5D, top of the panel). In 
heterozygous rhofl7/+ or rhofl9/+ adults, the rod cell bodies were 
immunolabeled for Rho, and little outer segment material was 
observed (Figure 5E,F). Immunolabeling for red and green 
cones (Figure 5G-I) showed no differences between WT and 
mutant samples.

DISCUSSION

This study reports the characterization of novel zebrafish 
models of rod degeneration produced by the CRISPR/Cas9 
gene disruption of two separate targets within the rh1–1 gene. 
We isolated alleles that behave as disease-causing muta-
tions observed in the clinic and in other well-characterized 
animal models. We showed evidence that N-terminal and 
C-terminal mutations resulted in rapid rod degeneration in 
larval zebrafish; however, similar to our previous report [59], 
the loss of rods did not appear to affect cones in adults up to 7 
months of age. The goal in targeting the endogenous zebrafish 
locus is that the alleles will recapitulate transcriptional regula-
tion, mRNA processing, and post-translational modifications, 
which may underlay the variation in the onset of visual defi-
cits observed in clinically relevant disease alleles. Ultimately, 
these lines in zebrafish will provide much-needed models for 
high throughput genetic and small molecule screens in an 
effort to identify compounds or pathways that may lessen the 
initial pathological sequences leading to rod degeneration.

Figure 4. Alteration of conserved 
C-terminal domains in rhofl8 and 
rhofl9. A, B: Chromatograms over-
laid with amino acid sequences of 
3′ rh1-1 in WT, the rhofl8 allele, and 
the rhofl9 allele. Predicted amino 
acid deletions are highlighted in red 
on the WT sequences; insertions are 
highlighted in blue on the mutant 
sequence. C: Confocal images 
of retinal sections of 6 dpf WT 
or heterozygous rhofl8/+ or rhofl9/+ 
larvae labeled with antibodies to 
Rho (1D1, red), rods (4C12, red), 
or Arr3a (Zpr-1, red) overlaid with 
bright-field microscopy. D: High 
magnification confocal images of 
6 dpf WT or heterozygous rhofl9/+ 

larvae showing the rod-specific expression of EGFP (gfp, green) and immunolabeling for Rho (1D1, red). In WT retinas, the Rho immu-
nolabeling is localized to the outer segment (OS), while in the mutant, Rho immunolabeling is localized to the inner segment (IS) and the 
cell body (CB; arrows).
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TALENs and CRISPR/Cas9 have opened the door to the 
development of a range of innovative tools and approaches to 
study gene function in vitro and in vivo. While many have 
taken advantage of the ability to tag genes with reporter 
knock-ins [66,67] or to induce precise modifications through 
homology-directed repair [68-70], we took a relatively simpler 
approach to isolate novel germline mutations and retain those 
that have phenocopied mutations of the human locus. Given 
the ease and efficiency of gene editing in zebrafish using 
CRISPR/Cas9, an extension of the approach is that gRNAs 
could be designed to tile any region of a gene to induce a 
library of in-vivo mutations to screen for effects on gene 
function or novel phenotypes.

The targeted disruption of 5′ rh1–1 yielded a putative 
null allele, rhofl6, and two alleles, rhofl7 and rhofl10, encoding 
in-frame mutations and altering the conserved NXT glyco-
sylation consensus sequence at N15. rhofl7 removes XT and 
inserts a proline, whereas rhofl10 deletes T17. In heterozygous 
larvae, both alleles result in rod-specific cell death and a 
reduced opsin expression. Human mutations N15S and T17M 
affecting the N15 RHO glycosylation consensus sequence are 
associated with adRP [17,18]. RHO N15S and T17M alleles are 

classified as class II mutations, which are expressed at lower 
levels than WT opsin, fail to reconstitute with chromophore, 
and are retained in the trans-Golgi network in heterologous 
in-vitro expression systems [2-4]. Transgenic animal models 
overexpressing these class II adRP alleles exhibit shortened 
ROSs, ONL thinning, and rod death [30,36], confirming that 
glycosylation at N15 is essential.

The putative null allele, rhofl6 (T17*), is the only mutation 
in our set that results in a recessive phenotype. A reduced 
expression by immunoblot and differential immunola-
beling with the Rho-specific mab and a mab that labels an 
antigen expressed on the rod plasma membranes and the 
outer segment confirm that this is a null allele. While most 
human RHO mutations cause adRP, several alleles result in 
arRP, including null alleles of RHO [44,83,84]. Similar to 
null alleles in humans and mice [82,85-87], homozygous 
rhofl6 zebrafish exhibit rod degeneration consistent with the 
opsin expression being essential for rod survival, whereas 
heterozygous animals display no rod death but lower levels 
of immunolabeling by the Rho-specific antibody. Multiple 
polymorphisms at each V345 and P347, as well as deletion of 
the distal RHO C-terminus (Q344ter) likely affect vectorial 

Figure 5. rhof l7 and rhof l9 lead to 
increased TUNEL in adults. Retinal 
sections of WT (A,D,G) or hetero-
zygous rhofl7/+ (B,E,H) and rhofl9/+ 
(C,F,I) adult zebrafish immunola-
beled with antibodies to rods (4C12, 
green, A-C), Rho (1D1, red, D-F), 
or red/green cones (Arr3a/Zpr-1, 
red, G-I) and stained with TUNEL 
(red, A-C). All sections were 
counterstained with DAPI (blue). 
Immunolabeling for rods reveals 
fewer, less regularly arranged 
cells in the mutants compared to 
the WT. TUNEL-positive nuclei 
(arrows), positioned along the 
proximal region of the ONL, are 
only observed in the mutant retinas 
(A-C). In WT retinas, Rho immu-
nolabeling is restricted to the ROS 
at the top of the panel D. Immunola-
beling in rhofl7/+ and rhofl9/+ adults is 
localized to the cell bodies, and no 
outer segments are evident (E-F). 
Immunolabeling for red and green 

cones was indistinguishable across the samples (G-H). Abbreviations: ganglion cell layer, GCL; inner nuclear layer, INL; outer nuclear 
layer, ONL.
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sorting of RHO to the ROS [8,9]. Disruption of a putative 
phosphorylation site at S339 rhofl8 results in rod death and the 
lack of the full VXPX sorting signal (rhof l9) exhibits opsin 
mislocalization, consistent with mouse, rat, rabbit, frog, 
and pig models [9,42-45]. In all, the cones appear unaltered 
consistent with our previous report [59], which has allowed 
for an analysis of regeneration and circuitry remodeling in the 
absence of cone death [58-61].

The rapid rod degeneration observed in the rh1–1 mutant 
zebrafish described in this report compared to other animal 
models and human RP is notable. Regardless of the lesion, 
mutations of the endogenous zebrafish rh1–1 result in a lack 
of rod labeling in the central and ventral retina by 6 dpf. Rod-
specific labeling was limited to the retinal margin, the site of 
continuing retinal neurogenesis in teleosts [81]. This pattern 
of cell death is similar to that observed in a transgenic line of 
zebrafish overexpressing a membrane-targeted CFP (mCFP) 
in rod photoreceptors [59]. Overexpression of mCFP under 
the control of the Xenopus opsin promoter resulted in Rho 
mislocalization to the plasma membrane and the retention of 
a Rho–GFP fusion protein in the endoplasmic reticulum or 
Golgi [59]. It remains unclear what underlies the more rapid 
rod degeneration in zebrafish models. In mice and rats, data 
suggest that variation in the rate of photoreceptor degen-
eration may be dependent on the copy number of the mutant 
opsin transgene or the relative amount or ratio of the mutant 
to WT Rho expressions [45,50]; however, only the most 
aggressive rodent models show similar rapid cell death. One 
possibility is that the swift death observed in our models may 
be a consequence of the pace of differentiation in the rapidly 
developing zebrafish larvae. In zebrafish embryos and during 
photoreceptor regeneration, the expressions of the transcrip-
tion factors Crx, Nrl, and Nr2e3 precede terminal mitosis, 
and final cell division is symmetric, generating two cells of 
the same photoreceptor subtype [60,88-90], suggesting that 
neuroblasts are primed for rapid differentiation. The rho 
expression first appears in the ventral retina between 50 
and 52 hpf, a time frame within hours of terminal mitosis 
[76,90-94]. Rod numbers increased rapidly within the ventral 
retina, and they extended into the nasal and temporal regions 
of the retina by 70 hpf [90,92,93]. The first outer segments 
appear at 60 hpf [95,96], and larvae exhibit their first visual 
responses at approximately 70 hpf [97,98]. Taken together, 
the rapid onset and high level of protein expressions destined 
for the outer segment may contribute to the rapid rod death 
observed in the rh1–1 mutants. In contrast, in the mouse, the 
expression of rod-specific transcription factors occurs after 
terminal mitosis [99], and the Rho expression for later-born 
rod precursors is delayed for 5.5–6.5 days following terminal 

mitosis [100]. The rapid degeneration in zebrafish may prove 
advantageous as a model for high-throughput in-vivo drug 
screens to identify small molecules that may slow the degen-
eration phenotype.

A recent report by Feehan et al. [30] uses a similar gene-
targeting approach to generate endogenous mutations in the 
Xenopus rho genes, and they found phenotypes consistent 
with dominant and recessive forms of RP, including rod cell 
loss and opsin mislocalization. X. laevis are tetraploid organ-
isms, and the three Rho gene products are highly conserved, 
with either silent or conservative amino acid differences 
among them. Rod degeneration was associated with larger 
in-frame indels; however, frame shift mutations or loss of the 
initiation methionine, resulting in a lower opsin expression, 
were not associated with degeneration. The zebrafish rh1–2 
amino acid sequence is 78% conserved with zebrafish rh1–1, 
with a putative N-linked glycosylation consensus sequence 
at N15 (NES compared with NAT in Rho), but no C-terminal 
VXPX sorting signal. Unlike rh1–1, the rh1–2 expression is 
delayed until 5 dpf, at which time the expression is restricted 
to the ONL adjacent to the peripheral retina, where it remains 
at 175 dpf [79,80]. Our data for gene targeting rh1–2 did not 
reveal any rod degeneration (data not shown). Furthermore, 
the rod death in our putative null allele of rh1–1 suggests the 
absence of genetic compensatory effects, consistent with the 
late onset and limited expression pattern of rh1–2.

In summary, we have taken advantage of recent advances 
in genome editing to generate novel alleles of the zebrafish 
rh1–1 locus, which displays inheritance patterns and 
molecular features similar to major classes of human alleles 
associated with disease. Moreover, histological analyses 
showed patterns of rod dysfunction and degeneration analo-
gous to those contributing to human RP. These lines provide 
a small yet useful collection of zebrafish models for use in 
high-throughput in-vivo small molecule screens or genetic 
screens to identify compounds or gene targets to slow the rod 
degeneration associated with RP.
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