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Abstract: In a recent paper, novel polyester nanocomposites reinforced with up to 3 wt% of cellulose
nanocrystals (CNCs) extracted from conifer fiber were characterized for their crystallinity index,
water absorption, and flexural and thermal resistance. The use of this novel class of nanocomposites
as a possible substitute for conventional glass fiber composites (fiberglass) was then suggested,
especially for the 1 and 2 wt% CNC composites due to promising bending, density, and water
absorption results. However, for effective engineering applications requiring impact and tensile
performance, the corresponding properties need to be evaluated. Therefore, this extension of the
previous work presents additional results on Izod and tensile tests of 1 and 2 wt% CNC-reinforced
polyester composites, together with a comparative cost analysis with fiberglass. The chemical effect
caused by incorporation of CNCs into polyester was also investigated by FTIR. In comparison to
the neat polyester, the Izod impact energy increased 50% and 16% for the 1 and 2 wt% composites,
respectively. On the other hand, the tensile strength and Young’s modulus remained constant
within the ANOVA statistical analysis. FTIR analysis failed to reveal any chemical modification
caused by up to 2 wt% CNC incorporation. The present impact and tensile results corroborate
the promising substitution of a polyester composite reinforced with very low amount of CNCs for
common fiberglass in engineering application.

Keywords: nanocomposite; chemical analysis; mechanical behavior; polyester; cellulose nanocrystal

1. Introduction

This century is experiencing an exponential increase in both the research works and
industrial application of natural lignocellulosic fiber (NLF)-reinforced polymer matrix
composites, as illustrated in the black squares curve in Figure 1 drawn by Luz et al. [1] from
the Scopus database [2]. Particularly in recent decades, many researches have been carried
out on composites reinforced with NFLs produced with fibers in different orientations,
usually in amounts higher than 10% as well as their respective fabrics [3–6]. Another
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recently emerging potential use of NLF, indicated by the red circles curve in Figure 1,
is through the extraction of its cellulose nanocrystals (CNCs) for the reinforcement of
nanocomposites [7–15].
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In fact, CNCs display outstanding properties such as surface to volume ratios of ~100,
relatively low densities, and high mechanical strength [14,15]. According to Kargarzadeh et al. [14],
CNCs can be easily modified as well as readily available, renewable, and biodegrad-
able. They are rod-like particles with transverse dimensions as small as 3–30 nm [16]
and lengths ranging between 100 and 1000 nm. In contrast to NLF, the incorporation of
CNCs into polymer matrices usually requires low percentages (<10 wt%) to effectively
reinforce nanocomposites [7–15] for a wide range of applications, including food packing
and biomedical devices [8–16]. This has motivated the exponential rise of publications
related to CNC nanocomposites in the past decade, as illustrated by the rede curve obtained
from Scopus database in Figure 1.

Different NLFs, such as kenaf [14], sugar palm [17], soft and hard wood mixtures [18],
rice husk [19], banana [20], sisal [21], and tunicin [22], have been used to isolate CNCs.
Among the polymer matrices reinforced by these CNCs, unsaturated polyester is one of the
thermoset resins that is most used for high-performance nanocomposites due to its room
temperature (RT) cure associated with elevated strength, water resistance, and transparency
properties [14]. However, the relatively low toughness of polyester limits its application
as an engineering component subjected to impact. In contrast, polyester composites
reinforced with more than 10 wt% of glass fiber, also called fiberglass, present an enhanced
toughness that allows for applications in many industrial sectors, including aerospace and
high-performance sports equipment, that require resistance to impact load [23–25].

A relevant point is the dispersion of hydrophilic CNCs into a hydrophobic polyester
matrix. To prevent the aggregation of CNCs, surface modification by chemical coupling
agents might not only improve dispersion but also enhance nanocomposite mechanical
properties [26]. In the present work, a styrene monomer was used as coupling agent
between a polyester matrix and CNCs following similar conditions used in a previous
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publication [27]. In that publication, polyester nanocomposites reinforced with 1, 2, and
3 wt% of CNCs extracted from conifer wood fiber were characterized for the crystallinity
index and water absorption, as well as flexural and thermal resistance. The use of these
novel nanocomposites was indicated as a possible substitute for conventional fiberglass in
engineering applications. In particular, promising bending and thermal resistance prelimi-
nary results were found for the 1 and 2 wt% CNC nanocomposites. However, for industrial
applications requiring impact and standard tensile performance, other specific properties
need to be evaluated together with a cost-effectiveness comparison with fiberglass. Thus,
this work presents additional results on Izod and tensile tests, as well as a comparative cost
analysis for the same [27] previously investigated 1 and 2 wt% CNC-reinforced polyester
composites. Fourier transform infrared spectroscopy as used to investigate possible chemi-
cal effects caused by CNC incorporation into polyester.

2. Materials and Methods
2.1. Materials

The same materials previously investigated in [27] were used in this work. Briefly,
unsaturated polyester resin (average molecular weight Mn = 9 × 103 g/mol, a butanox
catalyst (Mt 50), and a styrene monomer (coupling agent) were all supplied by Redelease,
Brazil. Conifer fiber CNCs were provided by the Development Center of the University
of Maine, Orono, ME, USA, with transverse dimensions of 3.0 ± 0.5 nm and a length of
190 ± 15 nm.

2.2. Processing of Nanocomposites

Similar procedures described in [27] were caried out when processing the nanocom-
posites. Briefly, separate amounts of 1 and 2 wt% of CNCs were initially mixed with the
styrene monomer and still fluid polyester/1% butanox. The mixture was then poured into
silicone molds with shapes and dimensions defined by the D256 [28] and D3039 [29] ASTM
standards for Izod and tensile specimens, respectively. Four specimens were fabricated for
each type of test and distinct amounts of CNCs, and they were finally cured at ambient
temperature and pressure for 24 h. The nanocomposites presented densification parameters
associated with void volume fractions of 5.6, 6.4, and 7.0% for 0 (neat polyester), 1, and
2 wt% CNC, respectively. Figure 2 schematically shows the composite fabrication process.

2.3. Fourier Transform Infrared Analysis (FTIR)

FTIR spectra were recorded at RT in a Bruker spectrometer, model Tensor 27 (Leipzig,
Germany), by the attenuated total reflectance (ATR) technique. The powder samples were
scanned in the range of 4000–600 cm−1 with a resolution of 4 cm−1. In this analysis, 32 scans
were collected for each FTIR spectrum.

2.4. Izod Impact Test

Izod tests were carried out at RT for each CNC composition in a Pantech Instruments
(São Paulo, Brazil), using a 11 J hammer pendulum. Prismatic standard [28] notched
specimens with a depth of 2.54 mm and an angle of 45◦ were fabricated using a Notchvas
model CEAST carver. Four samples for each percentage of CNCs with dimensions of
62.5 × 12.7 × 10 mm were produced. Figure 3 shows schematics the specimens of the
Izod tests.

2.5. Tensile Test

Tensile tests were conducted at RT on four standard [29] specimens for each CNC
composition in a model DL 10.000 EMIC universal machine, (São José dos Pinhais, Brazil),
operating with cross-head speed of 1 mm/min until the specimen ruptured using a 1 kN
load cell. Typical specimens prepared for the tensile tests are shown in Figure 4.
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2.6. Statistical Analysis

The analysis of variance (ANOVA) was applied to test the hypothesis of equality, and
a lower significant difference Tukey test was applied for the Izod and Young’s modulus
and ultimate tensile strength, both with 95% confidence level, results.

3. Results and Discussion
3.1. Fourier Transform Infrared Analysis Spectroscopy (FTIR)

Figure 5 shows the FTIR spectra of plain CNC (Figure 5a) and polyester nanocompos-
ites reinforced with 1 and 2 wt% of CNCs and neat polyester (Figure 5b).
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In Figure 5a, the wide band at 3336 cm−1 is related to the O–H group vibration with
strong intramolecular H bonds, which may have been associated with the alcohols, extracts,
and carboxylic acids that make up cellulose. In some cases, due to the crystalline or
hindrance steric structure, the hydroxyl group was not hydrogen-bonded. For this reason,
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a resultant weak band appeared between 3500 and 3300 cm−1, as observed in the cellulose
FTIR spectrum of Figure 5a. Moreover, the weak intensity of the OH band is usually found
when an ATR accessory is used for the IR measurements of polymers. A typical cellulose
FTIR/ATR spectrum was shown in the study of Larkin [30], which corroborated the CNC
profile obtained in our work. It is important to mention that these CNC nanocomposites
showed an irrelevant water absorption of only 0.2%, as reported in our previous work [27].
The 2906 cm−1 band corresponds to the C–H bonds, which are characteristic of organic
molecules found in natural components. The weak band around 2367 cm−1 refers to the
CO2 present in the atmosphere during the analysis. The band at 1638 cm−1 is related to OH
groups and water molecules absorbed onto the CNC surface [31–33]. The bands at 1429
and 1312 cm−1 can be attributed to symmetric angular strain in the plane of the CH2 group
and symmetrical angular strain in the plane of the CH2 groups, respectively. The band
around 1370 cm−1 can be attributed to the C–H strain. The band at 1162 cm−1 corresponds
to the angular deformation of the C–O connections of the esters existing in the CNC. The
bands at 1032 and 896 cm−1 indicate the purity of the crystalline cellulose. The band at
1032 cm−1 is attributed to the vibrations of the C–O. The band at 896 cm−1 is related to
the axial deformation of the C–O–C bonds and β-glycosidic bonds present between the
cellulose glucose groups [34–36]. The band around 662 cm−1 may be assigned to the -CH-
bonding of aromatic groups [32].

It is worth noting that the CNC spectrum in Figure 5a displays transmittance at 1429,
1162, and 896 cm−1, indicating that the nanocellulose produced before acid hydrolysis was
in the form of cellulose I, which corresponds to native cellulose [34–37]. In Figure 5b, it
can be observed that the unsaturated polyester had a weak band at 2920 cm−1, which can
be attributed to the C–H elongation. The weak band around 2367 cm−1 refers to the CO2
present in the atmosphere during the analysis, and the band at 1456 cm−1 is not associated
with any functional group present in the unsaturated polyester. The polyester showed
important characteristic absorption in the 1722 cm−1 band, which represents the carbonyl
group, C=O. The bands close to 1598 and 740 cm−1 represent the elongation of the aromatic
nucleus C=C. This occurred due to the presence of the unsaturated double bond (C=C) in
the polyester and refers to the vinyl group present in the styrene monomer. The bands
close to 1260 and 1117 cm−1 occurred due to stretching vibrations C–O–C connected to the
aliphatic and aromatic groups, respectively [38,39]. The bands at 1065 and 694 cm−1 can be
assigned, respectively, to the aromatic C–H ring in the plane and the aromatic C=C ring in
the plane [38].

The FTIR spectra in Figure 5 of polyester nanocomposites reinforced with 1 and 2 wt%
of CNCs show absorption bands similar to those of the polyester without reinforcement.
This indicates that the incorporation CNCs into the polyester did not significantly change
the chemical structure However, there were minor variations in the frequencies of the
absorption bands of the nanocomposites in comparison to those of the polyester. These
observed changes in the bands may indicate reinforcement load interactions with the
matrix [39,40].

3.2. Izod Impact Strength

Figure 6 shows the variation of Izod absorbed impact energy with CNC content in
unsaturated polyester matrix. A significant increase of 50% was obtained with the addition
of 1 wt% of CNCs into the polyester matrix, which proved a reinforcement effect in impact
strength. For the 2 wt% CNC nanocomposites, the average absorber impact energy showed
an increase of 16%. However, the relatively higher standard deviations (error bars) did not
guarantee a reinforcement effect. An important comparison might be done with the CNC
(isolated from kenaf bast fiber)-reinforced unsaturated polyester nanocomposite impact
energy results of Kargarzadeh et al. [14]. Though their impact test was performed with
unnotched specimens, which gave comparatively higher impact strengths for the polyester
matrix, the incorporation of 2 wt% of CNCs increased the impact energy by 14%. Another
relevant point discussed by the authors was the fact that the incorporation of inorganic
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nanoparticles such as 5 wt% Al2O3 [41] and 2 wt% nonclay [42] into unsaturated polyester
improved the impact resistance by 11% and 20%, respectively. Thus, the results presented
in Figure 3 corroborate the conclusion of Kargarzadeh et al. [14] that CNC has the potential
to be used as an impact modifier for different types of polyester nanocomposites

Polymers 2021, 13, x 7 of 12 
 

 

close to 1260 and 1117 cm−1 occurred due to stretching vibrations C–O–C connected to the 
aliphatic and aromatic groups, respectively [38,39]. The bands at 1065 and 694 cm−1 can be 
assigned, respectively, to the aromatic C–H ring in the plane and the aromatic C=C ring 
in the plane [38]. 

The FTIR spectra in Figure 5 of polyester nanocomposites reinforced with 1 and 2 
wt% of CNCs show absorption bands similar to those of the polyester without reinforce-
ment. This indicates that the incorporation CNCs into the polyester did not significantly 
change the chemical structure However, there were minor variations in the frequencies of 
the absorption bands of the nanocomposites in comparison to those of the polyester. These 
observed changes in the bands may indicate reinforcement load interactions with the ma-
trix [39,40]. 

3.2. Izod Impact Strength 
Figure 6 shows the variation of Izod absorbed impact energy with CNC content in 

unsaturated polyester matrix. A significant increase of 50% was obtained with the addi-
tion of 1 wt% of CNCs into the polyester matrix, which proved a reinforcement effect in 
impact strength. For the 2 wt% CNC nanocomposites, the average absorber impact energy 
showed an increase of 16%. However, the relatively higher standard deviations (error 
bars) did not guarantee a reinforcement effect. An important comparison might be done 
with the CNC (isolated from kenaf bast fiber)-reinforced unsaturated polyester nanocom-
posite impact energy results of Kargarzadeh et al. [14]. Though their impact test was per-
formed with unnotched specimens, which gave comparatively higher impact strengths 
for the polyester matrix, the incorporation of 2 wt% of CNCs increased the impact energy 
by 14%. Another relevant point discussed by the authors was the fact that the incorpora-
tion of inorganic nanoparticles such as 5 wt% Al2O3 [41] and 2 wt% nonclay [42] into un-
saturated polyester improved the impact resistance by 11% and 20%, respectively. Thus, 
the results presented in Figure 3 corroborate the conclusion of Kargarzadeh et al. [14] that 
CNC has the potential to be used as an impact modifier for different types of polyester 
nanocomposites 

 
Figure 6. Variation of the Izod absorbed impact energy of unsaturated polyester nanocomposite 
notched specimens with CNC content. 

Regarding these findings in CNC-reinforced polyester nanocomposites, it is worth 
mentioning that Bindal et al. [23] reported a much lower impact strength of polyester re-
inforced with 20 wt% of glass fiber. A question that may arise from the results in Figure 6 

Figure 6. Variation of the Izod absorbed impact energy of unsaturated polyester nanocomposite
notched specimens with CNC content.

Regarding these findings in CNC-reinforced polyester nanocomposites, it is worth
mentioning that Bindal et al. [23] reported a much lower impact strength of polyester
reinforced with 20 wt% of glass fiber. A question that may arise from the results in Figure 6
is the reason for the decrease in impact strength in going from 1 to 2 wt% of CNCs.
According to Peng et al. [43], nanocomposite impact strength decreases with increasing
additions of CNC, which may be due to the agglomeration of nanoparticles. Therefore, as
evidence in Figure 6, there is no need to reinforce a polyester matrix with more than 2 wt%
of conifer fiber CNC to obtain a significant impact strength to compete with nanocomposites
reinforced with inorganic nanoparticles or fiberglass at cost-effective conditions.

Another question regarding the values and corresponding error bars in Figure 6 is
the effective reinforcement caused by the incorporation of CNC into polyester matrix. The
ANOVA comparing neat polyester (0 wt%) and the 1 wt% CNC nanocomposite showed that
Fcal. (19.5923) > Fcrit (5.98737), which indicated that their impact strengths were different
with 95% of confidence.

From the Tukey test results, it was possible to affirm with a 95% level of confidence
that the impact strength of the 1 wt% CNC nanocomposite was higher not only than that of
the neat polyester but also the 2 wt% CNC nanocomposite. Moreover, both neat polyester
and the 2 wt% CNC composite had similar impact strengths.

3.3. Tensile Test

Figure 7 show the variation of (Figure 7a) tensile strength and (Figure 7b) Young’s
modulus with conifer fiber CNC content in unsaturated polyester nanocomposites. In
Figure 7a, one can notice a maximum in the average value of the tensile strength with the
incorporation of 1 wt% of CNCs. However, due to the relatively higher standard deviation
associated with the neat polyester, it is not possible to assert the existence of this maximum.

The ANOVA for the CNCs contents of 0 (neat polyester), 1, and 2 wt% revealed
an Fcal (2.742) < Fcrit (4.256), indicating no difference between the corresponding tensile
strengths with a 95% level of confidence. In this case, there was no need to perform the
Tukey test.
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Figure 7. Variation of (a) tensile strength and (b) Young’s modulus of unsaturated nanocomposites with conifer fiber
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As for the Young’s moduli in Figure 7b, there was no apparent increase with 1 wt%
conifer fiber CNC compared to the neat polyester. However, an average decrease of ~15%
occurred for the 2 wt% CNC composite as compared to the neat polyester. The ANOVA
for the three CNCs contents of 0, 1, and 2 wt% revealed an Fcal (11.813) > Fcrit (4.256),
indicating, with a 95% level of confidence, that there was a significant difference between
the Young’s moduli in Figure 7b.

In order to verify the origin of the difference detected by the ANOVA, a corresponding
Tukey test was performed. From the results, it is possible to affirm with a 95% level of
confidence that the Young’s moduli of 0 (neat polyester) and 1 wt% CNC composites were
similar but different to that of the 2 wt% CNC composite.

It is worth mentioning that Kargarzadeh et al. [14] found no increase in both ten-
sile strength and Young’s modulus with the incorporation of 2 wt% kenaf fiber CNC
compared to an unsaturated polyester matrix. The authors did not investigate 1 wt%
CNC nanocomposites.

Based on the results shown in Figures 6 and 7, one could conclude that 1 wt% conifer
fiber CNC is able to reinforce a polyester matrix. This finding was corroborated by the
results of Cherayil et al. [42], which also suggested that 0.5 wt% conifer fiber CNC might
even be a better reinforcement. On the other hand, common polyester composites rein-
forced with more than 10 wt% of glass fiber (fiberglass) usually display higher tensile
strengths than those of the aforementioned results reported in [14,42] and Figure 7 How-
ever, Bindal at al. [23] disclosed a tensile strength of 62.2 MPa for a polyester composite
with 20 wt% of glass fiber, which was slightly lower than the present value of 65.6 MPa for
a 1 wt% conifer fiber CNC polyester nanocomposite.

Despite the difference in mechanical properties, one important factor in deciding
to substitute a CNC nanocomposite for fiberglass is the comparative cost of materials.
For this purpose, Table 1 presents a preliminary cost analysis of the present polyester
nanocomposite with 1 wt% of conifer fiber CNCs and the glass fiber-reinforced polyester
composites of Bindal et al. [23].

The results of the cost analysis in Table 1 show that the nanocomposite with 1 wt%
of CNCs, despite the very low amount of filler, would always be more expensive due to
the greater price of polyester. However, the difference in price is negligible and might
never be a factor in engineering application decisions. On the other hand, technical
factors such as impact strength (Figure 6), which favor CNC nanocomposites over glass
fiber composites [23], might be decisive factors in specifying applications like aerospace
components and high-performance sport equipment.
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Table 1. Comparative cost analysis between the present polyester nanocomposite with 1 wt% of
conifer fiber CNC and the polyester composites reinforced with glass fiber.

Precursor Materials Price (US$/Kg) Ref

Unsaturated Polyester 11.10 [44]
E Glass Fiber 6.90 [45]

Conifer Fiber CNC 8.16 [present work]

Investigated Materials Calculation Final Cost (US$/Kg)

1 wt% Conifer fiber CNC/Polyester 0.01 × 8.16 + 0.99 × 11.10 11.07
20 wt% Glass Fiber/Polyester 0.2 × 6.90 + 0.80 × 11.10 10.26
30 wt% Glass Fiber/Polyester 0.3 × 6.90 + 0.70 × 11.10 9.84
40 wt% Glass Fiber/Polyester 0.4 × 6.90 + 0.60 × 11.10 9.42

Moreover, it is important to emphasize that glass fiber composites are highly anisotropic,
which could limit their applications in certain engineering conditions. In contrast, CNC
composites are isotropic, which opens more engineering possibilities.

4. Summary and Conclusions

Additional results for unsaturated polyester nanocomposites reinforced with 1 and
2 wt% of CNCs are presented here as an extension of previous work [27]. FTIR spectra
revealed that the small incorporation of CNC did not significantly alter the chemical
structure of the polyester matrix. The observed changes in bands might indicate filler
interaction with the matrix.

• An increase of 50% in the impact strength was obtained for the 1 wt% CNC nanocom-
posite, which proved to be an effective reinforcement with respect to neat polyester.
For the 2 wt% CNC composite, the 16% increase in the average value had standard
deviations coinciding with that of polyester and were not found be different via the
ANOVA and Tukey test.

• The tensile strength and Young’s modulus of the 1 wt% CNC nanocomposite were not
different than those of neat polyester, as supported by the ANOVA and Tukey test.
On the other hand, the Young’s Modulus of the 2 wt% nanocomposite decreased by
15% if compared to the neat polyester.

• A preliminary cost analysis found that since polyester is the most expensive precursor,
the 1 wt% CNC nanocomposite and glass fiber composites are equally cost-effective.

• Other factors such as impact strength and CNC renewability would favor the present
nanocomposite for specific applications in high-performance sport equipment.
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